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1. Introduction. The Cauchy problem for elliptic equations occurs in the
study of many practical problems. For example, in investigations of a gravita-
tional (electric, magnetic) field it is often necessary to determine the potential
of the field in a domain outside the mass (charge, current) creating the field,
from the values of the potential in a part of this domain. A related problem is
that of extending an analytic vector field in R3 or a curve in R2 to a harmonic
vector field outside with determination of its singularities. Such problems play a
role, e.g., in the construction of magnetohydrostatic equilibria [24, 25, 54]. The
solution of this problem is equivalent to the solution of a Cauchy problem for the
Laplace equation that is ill-posed in the sense of Hadamard [3, 27, 46, 81]. For
an introduction to the literature of such problems the reader is referred to [3, 27,
34, 46, 64, 81].

The solution of the Cauchy problem for the Laplace equation will exist only
if strong compatibility or smoothness conditions are imposed on the initial data.
It was Hadamard who showed that unless a certain compatibility relation holds
among the Cauchy data no global solution can exist. He further showed that even
if the data are such that a classical solution exists, this solution will not depend
continuously on the data [26, 27].

In this paper we consider the following problems A, B and C:

Problem A. Find a function u(y, x) which satisfies

(1.1) uyy(y, x) +∆u(y, x) = 0, (y, x) ∈ RN+1
+ = {(y, x) | y > 0, x ∈ RN},

[111]
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(1.2) u(0, x) = f(x) , x ∈ RN ,
(1.3) uy(0, x) = g(x) , x ∈ RN .
Problem B. Find a function u(y, x) which satisfies the equations

uyy(y, x) + uxx(y, x) = 0, (y, x) ∈ DY = {(y, x) | 0 < y,−π < x < π},(1.4)
u(0, x) = f(x) , uy(0, x) = g(x) , −π < x < π .(1.5)

Problem C. Find a function u(y, x) which satisfies

uyy(y, x) +∆u(y, x) = 0 , y ∈ (0, Y ) , x ∈ (−π, π)N =: Ω ,(1.6)
u(0, x) = f(x) , uy(0, x) = g(x) , x ∈ (−π, π)N ,(1.7)

u(y, x) |∂Ω= 0 , y ∈ (0, Y ) .(1.8)

These problems are well known to be ill-posed in the sense of Hadamard,
and many attempts, many investigations from various aspects, as existence–uni-
queness theorems [1, 5, 13–15, 17, 19, 20, 26, 27, 29–31, 37, 39–42, 47, 48, 51, 52,
57–59, 61, 62–67, 69, 73–79, 83, 94–99, 100, 101, 104, 106], stability estimates [3,
4, 7, 8, 21, 33, 35, 38, 40, 43–45, 48, 53, 55], regularization, least square methods
[21, 28, 32, 48, 56, 81, 92, . . .] for such problems have been discussed.

We shall use the theory of pseudodifferential operators with real analytic sym-
bols (ΨDOAS) [18, 84–89] and the approximation theory of functions to regularize
the above problems. We observe that every function in Lp(RN ) can be approxi-
mated by a sequence of entire functions of exponential type on CN , the restrictions
of which to RN belong to Lp(RN ) [60] (class Mνp), and in these classes our prob-
lems are well-posed. Therefore, we should first consider our problems with data
in Mνp and then approximate “improper” data in Lp by Mνp functions and sug-
gest the solutions with these approximation data as a regularization. We call this
method the mollification method. Tran Duc Van in his joint work with other au-
thors [87] has used this idea to approximate the solution of the well-posed Cauchy
problem for the wave equation. Dinh Nho Hào in his joint work with Gorenflo [16]
has observed that this method with a modification still works for many ill-posed
problems. We hope to present an abstract version of this method in a later work.

In Section II we give a short survey on the Cauchy problem for elliptic equa-
tions. Section III is devoted to Problems A, B and C. Numerical experiments will
be described in a succeeding work.

This paper was written during the stay of the first and second authors at the
Free University of Berlin (West). This research stay was supported by DAAD
(German Academic Exchange Service) and by the Alexander von Humboldt-
Stiftung. The authors are members of the research group “Regularization”.

2. A short survey

2.1. Existence and uniqueness theorems. The first result on the Cauchy prob-
lem for the Laplace equation is that by Hadamard [26]. He proved, for a particular
case of Problem B, the following
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Theorem 2.1. A necessary and sufficient condition for the existence of a
function u(y, x) which satisfies uyy + uxx = 0 in a neighborhood of the interval
−π < x < π of the x-axis, where y > 0 and u(0, x) = f(x), uy(0, x) = g(x),
−π < x < π, is that

(2.1) H(x) = f(x)− 1
π

π∫
−π

g(ξ) ln |x− ξ| dξ

be an analytic function of x for −π < x < π. Here f is of class C1 and g is of
class C0 in (−π, π).

An analogous result for Problem C has been obtained by Payne and Sather
in [67]. Furthermore, these authors have generalized the result of Hadamard to a
class of degenerate elliptic equations.

Theorem 2.2. A necessary and sufficient condition for the existence of a
function u(y, x) which satisfies uyy + yαuxx = 0 (α > 0) in a neighborhood of the
interval (−π, π) of the x-axis, where y > 0, and u(0, x) = f(x), uy(0, x) = g(x),
−π < x < π, is that

(2.2) Hα(x) = f(x) +mβ

π∫
−π

g(ξ)
|x− ξ|1−β

dξ

(
β =

2
α+ 2

)
be an analytic function of x for −π < x < π. Here f is of class C1 and g is of
class C0 in (−π, π), and

(2.3) mβ =
β1−βΓ ( 1

2 (3− β))
√
π(1− β)Γ ( 1

2 (2− β))
.

An interesting result on existence and uniqueness for Problem A has been
given by B. H. Li and Y. Q. Li [49]:

Theorem 2.3. Let f, g ∈ D′(RN ) and let (1.2), (1.3) be satisfied in the sense
of D′. Then Problem A is solvable if and only if

(2.4) D′-lim
y↘0

fy(y, x)− g

is an entire function, where f is a harmonic function such that

D′-lim
y↘0

f(y, x) = f(x) .

In [85], as a direct consequence of the result of Tran Duc Van in his recent
work on ΨDOAS [84], we have also obtained an existence and uniqueness theorem
for Problem A. Before outlining this result we need some definitions.

Let x ∈ RNx , N ≥ 1, and ξ ∈ RNξ be real variables, Dα = Dα1
1 . . . DαN

N ,
Dj = −i∂/∂xj , j = 1, . . . , N , α = (α1, . . . , αN ), |α| = α1 + . . .+ αN .

Definition 1. The space W+∞(RNx ) is the set of functions f : RNx → C,
satisfying the following conditions: f admits analytic continuation to an entire
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function on CN and for each ε > 0 there exist constants r <∞ and Cε, possibly
depending on f , such that

|f(x+ iy)| ≤ Cε exp(r|y|+ ε|x|) , x+ iy ∈ CN .
We list here some classes of functions which belong toW+∞(RNx ): all functions

f ∈ L2(RNx ) the support of whose Fourier transform f̂(ξ) is compact (band-
limited functions) [18], all functions in Mνp, 1 ≤ p ≤ +∞, ν < ∞ [60], all
functions in W+∞(RN ) [88, 89]. From the Paley–Wiener theorem it follows that
f ∈W+∞(RNx ) if and only if its analytic continuation f(z) is the Fourier–Laplace
transform of an analytic functional with compact support.

Definition 2. A sequence of functions fn ∈ W+∞(RNx ) is said to converge
to f ∈ W+∞(RNx ) if and only if for each ε > 0 there exists a constant r < ∞
such that (with z = x+ iy, x ∈ RN , y ∈ RN )

sup
z∈CN

|fn(z)− f(z)| exp(−r|y| − ε|x|)→ 0 , n→∞ .

Let the entire function A(ξ), ξ ∈ RNξ , be expanded in the Taylor series

A(ξ) =
∞∑
|α|=0

aαξ
α , aα = (iD)αA(0)/α! .

Denote by W−∞(RNx ) the space of all continuous linear functionals defined on
W+∞(RNx ). Let h ∈W−∞(RNx ) and

〈A(D)h, ϕ〉 := 〈h,A(−D)ϕ〉 , ∀ϕ ∈W+∞(RNx ) .

Theorem 2.4. Let f, g ∈W+∞(RNx ) (W−∞(RNx )). Then there exists a unique
solution of Problem A in C2(R1

+;W+∞(RNx )) (C2(RN+ ;W−∞(RNx )), and

(2.5) u(y, x) =
∞∑
n=0

(−1)ny2n∆nf(x)
(2n)!

+
∞∑
n=1

(−1)n−1y2n−1∆n−1g(x)
(2n− 1)!

.

For any y > 0, the right side of (2.5) converges in the sense of W+∞(RNx )
(W−∞(RNx )).

Medeiros in [52] has given another existence and uniqueness theorem for Prob-
lem C.

Uniqueness results have received quite extensive treatment [1, 5, 9, 13–15, 20,
26, 29, 30, 31, 37, 39, 40–47, 49, 51–53, 57–59, 61–67, 69–79, 85, 94–99, 100–
102, 106]. We note here again important works by Carleman [9], Hörmander [30,
31], Lavrent’ev [43, 44], Lavrent’ev, Romanov and Shishat-skĭı [46], Müller [59],
Heinz [29], Cordes [15], Landis [40–42] and by Payne and his collaborators [37,
62–67]. Uniqueness results for elliptic equations with multiple characteristics were
considered in [94–99, 106].

2.2. Stable methods for solutions. The first results concerning stable methods
to solve the Cauchy problems for the Laplace equation are contained in the works
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of Lavrent’ev [43, 45] and Pucci [70, 71] (see also John [35]). These authors estab-
lished stability estimates and proposed some stable methods. For further works
see [51, 53]. Other approaches have been tried, such as: establishing stability es-
timates [3, 4, 7, 8, 21, 22, 33–35, 46, 53], regularization by various methods, e.g.,
least squares, Carleman estimates, stable summation of Fourier series, finding a
Carleman function, Tikhonov regularization . . . [6, 7, 20, 21, 22, 28, 55, 56, 81,
90–93, 104, . . .]. For a function-theoretic method see [11, 12].

3. A mollification method

3.1. Problem A. Suppose that instead of the exact data f and g (which are
supposed to belong to Lp(RN ), 1 ≤ p ≤ ∞) we only have the measured data fε
and gε such that

(3.1) ‖fε − f‖ ≤ ε , ‖gε − g‖ ≤ ε .

We introduce mollification operators Mν which map a function f ∈ Lp to a
function fν in Mνp, and we require that fν → f in Lp as ν = (ν1, . . . , νN )→∞.

For simplicity of presentation, we first describe results only for the case N = 1.
We need some notations. Let ∆hf = ∆hf(x) = f(x + h) − f(x), where h is

any real number. Then

∆k
hf(x) = ∆h∆

k−1
h f(x) =

k∑
l=0

(−1)l+k
(
k

l

)
f(x+ lh) , k ∈ {1, 2, . . .},

∆0
h = f .

Let

ωk(δ) = ωk(f, δ)p = sup
|h|≤δ

‖∆k
hf(·)‖p , ω(δ) = ω(f, δ)p = ω1(f, δ) .

ωk(δ) is called the modulus of continuity of order k of the function f in the Lp
metric. It is well known that if f ∈Lp(R), 1 ≤ p <∞, then limδ→0 ω(δ) = 0. For
p =∞ this property does not hold in general. However, it is satisfied in a trivial
way if f is uniformly continuous on every compact subset of R.

Suppose that K(ξ) is a nonnegative even function of one variable, of exponen-
tial type 1, satisfying the condition

(3.2)
∞∫
−∞

K(t) dt = 1 ,

and K is chosen so that the integral

(3.3)
∞∫
−∞

K(ξ)|ξ|l dξ ,

where l is a fixed natural number, is finite. For K we may choose a function of
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the form

(3.4) µ

(
sin(ξ/λ)

ξ

)λ
,

where λ ≥ l + 2 is an even number and µ is a positive constant such that (3.2)
holds.

For f ∈ Lp(R) and ν ∈ R+ the function

(3.5) fν(x) = Mνf(x) =
∞∫
−∞

Kν(ξ − x)f(ξ) dξ ,

where

(3.6) Kν(ξ) =
l∑

j=1

(−1)j−1

(
l

j

)
ν

j
K

(
ξν

j

)
is well defined. Since K is an entire function of one variable, of exponential type
1, fν is an entire function of spherical type ν, lying in Lp(R) ([60], p. 186). Now
we have the following

Lemma 1 ([60], §5.2). If f has derivatives of order m lying in Lp, k = l −m,
0 ≤ m ≤ l, then fν is an entire function of spherical type ν and

(3.7) ‖fν − f‖p ≤
c(m)
νm

ωk(f (m), 1/ν)p ,

where

(3.8) c(m) =
∞∫
−∞

K(|ξ|)|ξ|m(1 + |ξ|)k dξ .

If s is a nonnegative integer with s ≤ m then

(3.9) ‖f (s)
ν − f (s)‖p ≤

c

νm−s
ωk(f (s), 1/ν)p , ν > 0 ,

where

(3.10) c =
∞∫
0

K(ξ)(1 + |ξ|)l dξ .

Now instead of (1.1)–(1.3) with the measured data fε and gε we consider the
mollified problem: Find uεν(y, x) such that

∂2uεν(y, x)
∂y2

+
∂2uεν(y, x)

∂x2
= 0 , (y, x) ∈ R+ × R ,(3.11)

uεν(0, x) = fεν (x) , x ∈ R ,(3.12)
∂uεν(0, x)

∂y
= gεν(x) , x ∈ R .(3.13)
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Theorem 3.1. Problem (3.11)–(3.13) is well-posed in C2(R;W+∞(RNx )) and

(3.14) uεν(y, x) =
∞∑
n=0

(−1)ny2n(fεν )(2n)(x)
(2n)!

+
∞∑
n=0

(−1)n−1y2n−1(gεν)(2n−1)(x)
(2n− 1)!

.

Furthermore, for every m, 0 ≤ m ≤ l, k = l −m,

(3.15) ‖uεν(y, ·)− u(y, ·)‖p

≤ c(m)
νm

ωk
(
∂mu(y, ·)
∂xm

,
1
ν

)
p

+ clε

[
cosh(yν) +

sinh(yν)
ν

]
,

where cl ≤ 2l − 1 does not depend on ν.

P r o o f. Formula (3.14) is a consequence of Theorem 2.4. We have

uεν(y, x)− u(y, x) = cos(yd/dx)fεν + [sin(yd/dx)/(d/dx)]gεν
− cos(yd/dx)f + [sin(yd/dx)/(d/dx)]g

= {cos(yd/dx)fεν − cos(yd/dx)fν
+ [sin(yd/dx)/(d/dx)]gεν − [sin(yd/dx)/(d/dx)]gν}
+ {cos(yd/dx)fν − cos(yd/dx)f
+ [sin(yd/dx)/(d/dx)]gν − [sin(yd/dx)/(d/dx)]g}

=: Σ1 +Σ2 .

From the fact that fν , gν ∈Mνp and (3.5) it can be verified that

cos(yd/dx)fν + [sin(yd/dx)/(d/dx)]gν
= Mν(cos(yd/dx)f + [sin(yd/dx)/(d/dx)]g) = Mνu(y, x) .

Thus,

‖Σ2‖p = ‖Mν(u(y, ·))− u(y, ·)‖p ≤
c(m)
νm

ωk
(
∂mu(y, ·)
∂xm

,
1
ν

)
p

.

On the other hand, since fεν , fν , gεν , gν belong to Mνp, we obtain from the
Bernstein–Nikol’skĭı inequalities ([60], p. 115)

‖Σ1‖p ≤ cosh(yν)‖fεν − fν‖p +
sinh(yν)

ν
‖gεν − gν‖p .

But

‖fεν − fν‖p =
∥∥∥ ∞∫
−∞

Kν(ξ − x)(fε(x)− f(x)) dx
∥∥∥
p

≤
∞∫
−∞

|Kν(ξ)| dξ ‖fε − f‖p ≤ clε

where cl ≤ 2l − 1 does not depend on ν ([60], p. 190). Analogously,

‖gεν − gν‖p ≤ clε .
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Thus,

‖Σ1‖p ≤ clε
[

cosh(yν) +
sinh(yν)

ν

]
,

and (3.15) is proved.

Theorem 3.2. Let

(3.16) ‖∂lu(y, ·)/∂xl‖p ≤M for y ∈ [0, Y ] ,

where m is a nonnegative integer. Then, with m = l − 1,

(3.17) ‖uεν(y, ·)− u(y, ·)‖p ≤
c(m)M
νl

+ 2clεeyν .

Furthermore, for y > 0 let

(3.18) Ω(ε) = inf
ν>0

{
c(m)M
νl

+ 2clεeyν
}
.

Then

(3.19) Ω(ε) = c(m)M
(

1
y

ln
lc(m)M

2yclε
(

1
y

ln
lc(m)M

2yclε

)(1/l)+l
+o(1)

)−1/l

as ε→ 0.

The infimum on the right hand side of (3.18) is attained if ν is the solution ν(ε)
of the equation

(3.20) ε =
c(m)Ml

2ycl
e−yν

2

νl+2
,

which can be written in the form

(3.21) ν(ε) =
(

1
y

ln
lc(m)M

2yclε
(

1
y

ln
lc(m)M

2yclε

)(1/l)+l
+ o(1)

)−1/l

as ε→ 0 .

P r o o f. The estimate (3.17) is a direct consequence of (3.15) and (3.16). To
prove (3.19)–(3.21) we need the following result:

Lemma 2 ([16]). Let

(3.22) Ωc(ε) = inf
δ>0

(δ + c(δ)ε) .

If c(δ) = c0 exp(sδ−η), η > 0, then

(3.23) Ωc(ε) =
(

1
s

ln
1

sc0ηε

(
1
s

ln
1

sc0ηε

)(η+1)/η
+ o(1)

)−η
as ε→ 0 .

The infimum is attained if δ is the solution δ(ε) of the equation

(3.24) ε =
1

c0sη
δη+1e−sδ

−η
,
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which can be written in the form

(3.25) δ(ε) =
(

1
s

ln
1

sc0ηε

(
1
s

ln
1

sc0ηε

)(η+1)/η
+ o(1)

)−η
as ε→ 0 .

Our estimates (3.19)–(3.21) now follow directly from this lemma if we take
c0 = cl/c(m)M, s = y, η = 2/l.

When N > 1, we can also approximate the measured data fε and gε by
functions of classes Mνp, ν = (ν1, . . . , νN ), by the above process, but since the
description is somewhat lengthy and no new idea is offered, we do not write it
down here.

3.2. Problem B. Instead of the exact data f and g in (1.5), let there be given
measured data fε and gε such that

(3.26) ‖f − fε‖Lp(−π,π) ≤ ε , ‖g − gε‖Lp(−π,π) ≤ ε .
The following lemma helps us to treat this problem.

Lemma 3. If f and g can be extended to entire functions in R of exponential
type, then the solution of Problem B can be written in the form

(3.27) u(y, x) =
∞∑
n=0

(−1)ny2nf (2n)(x)
(2n)!

+
∞∑
n=1

(−1)n−1y2n−1g(2n−1)(x)
(2n− 1)!

.

Furthermore, this series converges in the sense of W∞, for fixed y ∈ (0, Y ),
uniformly in x for |x| < π.

P r o o f. Denote the extensions of f and g to all of R by the same notations f
and g, respectively. Now we consider Problem A with these data. By Theorem 2.4
the solution of Problem A exists uniquely in W∞(Rx) and

u(y, x) =
∞∑
n=0

(−1)ny2nf (2n)(x)
(2n)!

+
∞∑
n=1

(−1)n−1y2n−1g(2n−1)(x)
(2n− 1)!

.

For fixed y ∈ (0, Y ) this series converges uniformly in every compact subset of R.
It is clear that the function u(y, x) satisfies (1.4)–(1.5). On the other hand,

since g(x) is an entire function of exponential type, so is
∫ π
−π g(ξ) ln |x − ξ| dξ

([60], §3.6). Thus f(x) − 1
2π

∫ π
−π g(ξ) ln |x − ξ| dξ is also an entire function, or

Problem B has a unique solution (Theorem 2.1). The lemma is proved.

Now for ν ∈ R+ we define

(3.28)

fεν (x) = M∗ν f
ε(x) =

π∫
−π

Kν(ξ − x)fε(ξ) dξ ,

gεν(x) = M∗ν g
ε(x) =

π∫
−π

Kν(ξ − x)gε(ξ) dξ .
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By Lemma 1, fεν and gεν are elements of Mνp. Therefore, from Lemma 3,

(3.29) uεν(y, x) =
∞∑
n=0

(−1)ny2n(fεν )(2n)(x)
(2n)!

+
∞∑
n=1

(−1)n−1y2n−1(gεν)(2n−1)(x)
(2n− 1)!

is the unique solution of Problem B with the data fεν instead of f , and gεν instead
of g. We hope that uεν can serve as an approximation to u(y, x). Indeed, the
following theorems will show how well uεν(y, x) approximates u(y, x).

Theorem 3.3. For every m, 0 ≤ m ≤ l, k = l −m, we have

‖uεν(y, ·)− u(y, ·)‖Lp(−π,π)

≤ c(m)
νm

ωk
(
∂mu(y, ·)
∂xm

,
1
ν

)
p

+ clε

[
cosh(yν) +

sinh(yν)
ν

]
,

where cl does not depend on ν.

Theorem 3.4. Let

‖∂lu(y, ·)/∂yl‖Lp(−π,π) ≤M for any y > 0 ,

where l is a positive integer. Then the estimates (3.17)–(3.21) are valid , with the
norm in (3.17) being that of Lp(−π, π).

The proofs are similar to those of Theorems 3.1 and 3.2.

3.3. Problem C. We can repeat, of course, the method 3.2 for Problem C.
This means that when the data are not precisely given, we approximate them by
entire functions of exponential type, and therefore all the above results remain
valid. But since the data, and so the solution, of Problem C are periodic, we can
approximate the data by trigonometric polynomials.

Let τν(t) (ν = 0, 1, 2, . . .) be a trigonometric polynomial of order not higher
than ν, having the following properties:

π∫
−π

τν(t) dt = 1 ,(3.30)

π∫
−π

|τν(t)| dt ≤ c (ν = 1, 2, . . .) ,(3.31)

where c is a constant not depending on ν. Obviously

(3.32) τ0(t) = 1/(2π) .

For ν > 0 the polynomials τν are defined nonuniquely. One may obtain such
polynomials, for example, by means of the formula

(3.33) dν(t) =
1
cν

(
sin(λt/2)
sin(t/2)

)2σ

,
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where σ is a positive integer not depending on λ, λ ∈ N+ (then ν = (λ − 1)σ).
Here

(3.34) cν =
π∫
−π

(
sin(λt/2)
sin(t/2)

)2σ

dt ∼ λ2σ−1 , λ = 1, 2, . . .

([60], p. 87). Define

(3.35) K∗ν (t) :=
l∑

k=1

(−1)k−1
(
l
k

)
k

k−1∑
s=0

τν

(
t+ 2sπ

k

)
.

Then K∗ν (t) is a trigonometric polynomial of order not higher than ν. Further-
more, if

(3.36) τν(t) =
ν∑

λ=−ν

aλe
iλt (aλ = a−λ) ,

then

(3.37)
k−1∑
s=0

τν

(
t+ 2sπ

k

)
=

ν∑
λ=−ν

aλ

k−1∑
s=0

eiλ(t+2sπ)/k ,

and therefore

(3.38) K∗ν (t) =
l∑

k=1

(−1)k−1
(
l
k

)
k

k−1∑
s=0

[ ν∑
λ=−ν

aλ

k−1∑
s=0

eiλ(t+2sπ)/k
]

=
ν∑

λ=−ν

k∗λe
iλt .

Now let

(3.39) fν(x) =
π∫
−π

K∗ν (ξ)f(x+ ξ) dξ .

Then fν(t) is a trigonometric polynomial of order not higher than ν. Furthermore,
as an analogue to Lemma 1 we have

Lemma 4 ([60, §5.3]). Suppose f ∈ Lp(−π, π) and f has a generalized deriva-
tive f (m). Furthermore, suppose that the even nonnegative trigonometric polyno-
mials τν(t) of order ν satisfy along with the condition (3.30) the further condition

(3.40)
π∫

0

τν(t)tm dt ≤ am
(ν + 1)m

,

where the constant am does not depend on ν = 0, 1, 2, . . . Then the function fν(t)
defined by (3.39) approximates f in the metric of Lp(−π, π) with the following
estimate:

(3.41) ‖f − fν‖Lp(−π,π) ≤ bm
ωkp(f (m), π

ν+1 )
(ν + 1)m

for ν = 0, 1, 2, . . . ,

where bm = 2(πm + 2al/π), k = l −m.
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R e m a r k. The function dν(t) in (3.33) with 2σ−m ≥ 3 satisfies the condition
of Lemma 4.

Now, suppose that instead of the exact f and g in (1.7), we only have the
measured fε and gε such that

‖f − fε‖Lp(−π,π) ≤ ε , ‖g − gε‖Lp(−π,π) ≤ ε ,(3.42)
fε(−π) = fε(π) = gε(−π) = gε(π) = 0 .(3.43)

For a positive integer ν, let

fεν (x) =
π∫
−π

K∗νf
ε(x+ ξ) dξ ,(3.44)

gεν(x) =
π∫
−π

K∗νg
ε(x+ ξ) dξ .(3.45)

It is not hard to see that

(3.46) uεν(y, x) =
∞∑
n=0

(−1)ny2n(fεν )(2n)(x)
(2n)!

+
∞∑
n=0

(−1)n−1y2n−1(gεν)(2n−1)(x)
(2n− 1)!

is the unique solution of Problem C with the data fεν and gεν instead of f and g,
respectively. On the other hand, from (3.38) and (3.44), (3.45) we have

fεν (x) =
ν∑

λ=−ν

(fεν )λeiλx , gεν(x) =
ν∑

λ=−ν

(gεν)λeiλx ,

where

(fεν )λ = k∗−λ

π∫
−π

fε(x)e−iλx dx ,(3.47)

(gεν)λ = k∗−λ

π∫
−π

gε(x)e−iλx dx .(3.48)

Thus,

(3.49) uεν(y, x) =
ν∑

λ=−ν

(fεν )λ cosh(λy)eiλx +
ν∑

λ=−ν

(gεν)λ
sinh(λy)

λ
eiλx

is a trigonometric polynomial of order not higher than ν.
The same estimates as in Theorems 3.1, 3.2 can be established, but we do not

write them down here again.

R e m a r k. Although our estimates for the regularizing solutions are not of
Hölder continuity type, they are stronger than any logarithmic continuity . An
important feature is that our estimates are uniform for y with 0 < y ≤ Y .
This has not been established in earlier works (see, e.g, [38], [43], [46], . . .). In
[6] Cannon and DuChateau have given a direct process for solving Problem B.
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Their estimates are also not of Hölder continuity type, but are stronger than any
logarithmic continuity. They are not valid for all y ∈ (0, Y ], as ours are, but only
for y ∈ (0, Y/3].
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partielles à deux variables indépendantes, Ark. Mat. Astr. Fys. B 26 (1939), 1–9.

[10] L. A. Chudov, Difference methods for solving Cauchy problem for Laplace’s equation,
Dokl. Akad. Nauk SSSR 143 (1962), 789–801; English transl.: Soviet Math. Dokl. 3
(1962), 499–503.

[11] D. L. Colton, Improperly posed initial value problem for self-adjoint hyperbolic and
elliptic equations, SIAM J. Math. Anal. 4 (1973), 42–51.

[12] D. L. Colton, Partial Differential Equations in the Complex Domain, Pitman, London
1976.

[13] J. Conlan and R. P. Gi lbert, Non-linear initial data for second and higher order semi-
linear elliptic equations, J. Reine Angew. Math. 276 (1975), 1–14.

[14] J. Conlan and G. N. Trytten, Pointwise bounds in the Cauchy problem for elliptic
systems of partial differential equations, Arch. Rational Mech. Anal. 22 (1966), 143–152.
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