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1. Introduction. In this paper we present our results on boundary value
problems for linear equations not solved with respect to the time derivative of
highest order

(1) L(x,Dt, Dx)u = L0(x,Dx)Dl
tu+

l−1∑
k=0

Ll−k(x,Dx)Dk
t u = f(t, x) .

Many problems of hydrodynamics lead to equations of this type. Let us consider
some examples.

1. One of the first equations of type (1) was considered by C. G. Rossby [19]
in 1939. It has the form

(2) ∆Dtu+ βDx2u = 0, n = 2 .

It arose in the study of motion of some type of ocean waves. Now it is called in
the literature the equation for Rossby waves (∆ is the Laplacian in x).

2. S. L. Sobolev’s equation [22] considered in the study of small oscillations of
a rotating ideal fluid is

(3) ∆D2
t u+ ω2D2

x3
u = f(t, x), n = 3

(ω/2 is the angular velocity). S. L. Sobolev studied the Cauchy problem and the
first and second boundary value problems for this equation and also formulated
some new problems of mathematical physics. It was the first deep study of equa-
tions not solved for the highest derivative with respect to time. This is why now
(3) is called the Sobolev equation and (1) is called an equation of Sobolev type.

3. The following equation was obtained for the problem of small oscillations
of a rotating viscous fluid:

(4) ∆D2
t u− 2ν∆2Dtu+ ν2∆3u+ ω2D2

x3
u = f(t, x), n = 3,

[101]
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where ν > 0 is the coefficient of viscosity (see, for example, [14], [17]).
4. Studying oscillations of a stratified ideal fluid leads to the equation

(5) ∆D2
t u+N2(D2

x1
+D2

x2
)u = 0, n = 3 ,

where N is the Väisälä–Brunt frequency. (5) is called the equation of internal
waves [12], [16].

5. In the 1960s the equation

(6) (η∆− 1)Dtu+ κ∆u = f(t, x), n = 3 ,

was studied by G. I. Barenblatt, J. P. Zheltov and I. N. Kochina [1]. It describes
the seepage of homogeneous liquids in fissure rocks.

In the 60s equation (6), for n = 1, also appeared in other physical papers, not
connected with seepage problems (see, for example, [2], [3]).

Appearance of equations of type (1) in many physical applications stimulated
the interest of mathematicians in them. Since the fifties, the study of equations
of Sobolev type has gone in different directions. In particular, the qualitative
behaviour of solutions of some boundary value problems has been investigated
together with spectral problems. Many papers were devoted to construction of a
general theory of boundary value problems for those equations.

In the literature, the most popular problems of type (1) are Sobolev’s equa-
tion (3) and the equation for internal waves (5). Many papers by S. L. Sobolev,
R. A. Aleksandryan, T. I. Zelenyak and V. N. Maslennikova were devoted to the
qualitative properties of solutions of (3). Since the 70s different properties of so-
lutions of (5) have been investigated in papers by S. A. Gabov, S. Ya. Sekerzh-
Zen’kovich, A. G. Sveshnikov and others.

M. I. Vishik’s, S. A. Galpern’s, A. A. Dezin’s, A. L. Pavlov’s, Ya. A. Du-
binskĭı’s, B. K. Romanko’s, J. Lagnese’s, T. W. Ting’s, G. I. Eskin’s, A. G. Kos-
tyuchenko’s, R. E. Showalter’s and other papers were devoted to construction of a
general theory of boundary value problems for equations of Sobolev type (see, for
example, the bibliography in [24]). However, most of the papers consider the case
when the symbol L0(x, iξ) of the operator L0(x,Dx) does not vanish for ξ ∈ Rn.
(Of the above equations only (6) satisfies this condition.) In this case for some
classes of equations of Sobolev type a theory analogous to the theory of bound-
ary value problems for hyperbolic and parabolic partial differential equations can
be constructed (see, for example, [15], [18], [20], [21]). But there is no analogous
theory in the case when L0(x, iξ) may be zero at ξ ∈ Rn. S. A. Galpern [13] first
observed this fact when constructing the L2-theory of the Cauchy problem. This
aspect for mixed problems was studied in detail in [24].

In the next section we give some results on the Lp-theory of the Cauchy
problem and mixed problems in a quarter-space for two classes of equations (1)
in the case when the symbol L0(x, iξ) degenerates at ξ = 0. These results reflect
a considerable difference between the theory of well-posedness for boundary value
problems and the corresponding results for classical equations. The solvability of
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a boundary value problem depends not only on the smoothness of its data but
on some additional requirements, such as orthogonality conditions for f(t, x).

We apply a construction of approximate solutions [24] for the boundary value
problems. This method uses a special regularization of functions given by
S. V. Uspenskĭı [23]:

F (x) = lim
h→0

(2π)−k
h−1∫
h

v−|α|−1
∫

Rk

∫
Rk

exp
(
i
x− y
vα

)
G(ξ)F (y) dξ dy dv ,

G(ξ) = 2m〈ξ〉2m exp(−〈ξ〉2m), 〈ξ〉2 =
k∑
i=1

ξ
2/αi

i .

Our method is applicable to boundary value problems for some class of linear
systems not of Cauchy–Kovalevsky type [4], [5], [11] and for some others. In
particular, it is applicable to boundary value problems for quasielliptic equations
in a half-space [24], [6], [7]. Some results can be used in the theory of hyperbolic
equations. For example, [8] establishes an interesting connection between the Lp-
theory of the Cauchy problem for a certain hyperbolic system of the dynamics of
a stratified fluid and the Lp-theory of the Cauchy problem for certain equations
of Sobolev type. An analogous connection exists for mixed problems.

2. The Cauchy problem. In this section we consider the following Cauchy
problem for two classes of equations of Sobolev type:

(7)
{
L(x,Dt, Dx)u = f(t, x), t > 0, x ∈ Rn ,
Dk
t u|t=0 = 0, k = 0, . . . , l − 1 .

We formulate some conditions on the differential operators L(x,Dt, Dx).

1) L(x,Dt, Dx) has the form

L(x,Dt, Dx) = L̃1(x,Dt, Dx) + L̃2(x,Dx)

=
(
L0(x,Dx)Dl

t +
l−1∑
k=0

Ll−k(x,Dx)Dk
t

)
+ L̃2(x,Dx) ,

where the symbol L̃1(x, iη, iξ) of the operator L̃1(x,Dt, Dx) is homogeneous with
respect to the vector −→α = (α0, α1, . . . , αn) = (α0, α), α0 ≥ 0 and 1/αi are natural
numbers, i.e.

L̃1(x, cα0iη, cαiξ) = cL̃1(x, iη, iξ), c ≥ 0 .

The operator L̃2(x,Dx) has the form

L̃2(x,Dx) =
∑

1−α0l≤βα<1

αβ(x)Dβ
x .

2) L0(x,Dx) is quasielliptic, i.e. L0(x, iξ) = 0 for ξ ∈ Rn if and only if ξ = 0.
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3) L(x,Dt, Dx) has variable coefficients which are smooth and constant outside
a certain compact set K ⊂ Rn.

The first class we consider contains the equations which are defined by oper-
ators L(x,Dt, Dx) with α0 = 0. The second class contains the equations defined
by operators L(x,Dt, Dx) with α0 > 0.

We assume supplementary conditions for the second class of equations:

4) L̃1(x, τ, iξ) 6= 0, Re τ ≥ 0, ξ ∈ Rn \ {0}, |τ |+ |ξ| 6= 0.

We now give some examples of equations for which 1)–4) are satisfied.

Example 1. The Sobolev equation (3) and the equation for internal waves
(5) are equations of the first class. The respective differential operators have the
homogeneity vector −→α = (0, 1/2, . . . , 1/2).

Example 2. Consider a pseudo-parabolic partial differential equation

L0(x,Dx)Dtu+ L1(x,Dx)u = f(t, x) ,

where L0(x,Dx) and L1(x,Dx) are homogeneous elliptic operators. Let ord L0 =
2m, ordL1 = 2k and m ≤ k; then −→α = ((k − m)/k, 1/2k, . . . , 1/2k) is the
homogeneity vector. If m = k, then this is an equation of the first class. If m < k
and L0(x, iξ) > 0, L1(x, iξ) > 0, ξ ∈ Rn \ {0}, it is an equation of the second
class.

Example 3. The equation for small oscillations of a rotating viscous fluid
(4) is an equation of the second class. In this case we can write L̃1(x,Dt, Dx) =
∆(Dt − ν∆)2, L̃2(x,Dx) = ω2D2

x3
, −→α = (1/3, 1/6, 1/6, 1/6).

We now define a certain function space.
Let r = (r0, r1, . . . , rn), 0 ≤ σ ≤ 1, γ > 0, G ⊆ Rn.
We denote by W r

p,σ,γ(R+
1 ×G) the space of locally integrable functions u(t, x)

in R+
1 ×G which have generalized derivatives Dr0

t u(t, x), Dri
xi
u(t, x), i = 1, . . . , n,

and finite norm

‖u(t, x),W r
p,σ,γ(R+

1 ×G)‖ = ‖e−γt(1 + 〈x〉)−σu(t, x), Lp(R+
1 ×G)‖

+ ‖e−γt(1 + 〈x〉)−σDr0
t u(t, x), Lp(R+

1 ×G)‖

+
n∑
k=1

‖e−γtDrk
xk
u(t, x), Lp(R+

1 ×G)‖ ,

where 〈x〉2 =
∑n
i=1 x

2/αi

i .
If σ = 0, then W r

p,σ,γ(R+
1 ×G) is denoted by W r

p,γ(R+
1 ×G), i.e. W r

p,γ(R+
1 ×G)

is a Sobolev space with weight e−γt.
Let |α| =

∑n
i=1 αi, αmin = min(α1, . . . , αn), p′ = p/(p− 1). We define vectors

s = (s0, s1, . . . , sn) and r = (r0, r1, . . . , rn) by

s0 =
{

1/α0 − l for α0 > 0,
l for α0 = 0,

sj =
{

0 for α0 > 0,
1/αj for α0 = 0,



SOBOLEV TYPE EQUATIONS 105

r0 = s0 + l, rj = sj + 1/αj , j = 1, . . . , n .

For simplicity we henceforth assume that f(t, x) = 0, x 6∈ K ⊂ Rn, where K
is a compact set.

Theorem 1. Suppose equation (1) has constant coefficients. Assume f(t, x) ∈
W s
p,γ(R+

n+1) and Dk
t f |t=0 = 0, k = 0, . . . , s0 − 1. If |α|/p′ + lα0 > 1, then there

exists γ0 > 0 such that the Cauchy problem (7) has a unique solution u(t, x) ∈
W r
p,γ(R+

n+1) provided γ ≥ γ0. Moreover ,

(8) ‖u,W r
p,γ‖ ≤ c‖f,W s

p,γ‖ ,

where c > 0 is a constant depending on γ0 and diamK.

Corollary. Suppose (1) has variable coefficients but L0(x,Dx) has constant
coefficients. Suppose that f(t, x) satisfies the assumptions of the theorem and
|α|/p′ + lα0 > 1. Then the Cauchy problem (7) has a unique solution u(t, x) ∈
W r
p,γ(R+

n+1) provided γ ≥ γ0, where γ0 > 0 is sufficiently large. The solution
satisfies the estimate (8).

Theorem 2. Let the assumptions of Theorem 1 be satisfied and |α|/p′ + lα0

≤ 1. Suppose that

(9)
∫

Rn

xβf(t, x) dx = 0, |β| = 0, . . . , N − 1 ,

where |α|/p′ + lα0 +Nαmin > 1 ≥ |α|/p′ + lα0 + (N − 1)αmin. Then there exists
γ0 > 0 such that the Cauchy problem (7) is well-posed in the weighted Sobolev
spaces W r

p,γ(R+
n+1), γ > γ0.

Theorem 3. Let the assumptions of Theorem 1 be satisfied and |α|+ lα0 > 1.
Then there exists γ0 > 0 such that the Cauchy problem (7) has a unique solution
u(t, x) ∈ W r

p,σ,γ(R+
n+1) provided γ ≥ γ0 and |α|/p > σ > 1 − |α|/p′ − lα0. The

solution satisfies the estimate

(10) ‖u,W r
p,σ,γ‖ ≤ c‖f,W s

p,γ‖ ,

where c > 0 is a constant depending on γ0 and diamK.

Corollary. Let the assumptions of the Corollary to Theorem 1 be satisfied
and |α| + lα0 > 1. Then the Cauchy problem (7) is well-posed in the spaces
W r
p,σ,γ(R+

n+1), γ > γ0, |α|/p > σ > 1 − |α|/p′ − lα0, where γ0 > 0 is sufficiently
large.

We illustrate these statements by the example of the Cauchy problem for the
equation of small oscillations of a rotating fluid:

∆D2
t u− 2ν∆2Dtu+ ν2∆3u+ ω2D2

x3
u = f(t, x), n = 3 ,

u|t=0 = 0, Dtu|t=0 = 0 ,

with ν ≥ 0.
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We recall that this equation belongs to the first class if ν = 0, and to the
second class if ν > 0.

If p > 3, then this problem has a unique solution u ∈ W r
p,γ for any f ∈ C∞0 .

This is the Corollary to Theorem 1. However, for p ≤ 3 it is not difficult to
show that the Cauchy problem, generally speaking, is unsolvable in W r

p,γ [9]. The
problem is well-posed for 3/2 < p ≤ 3 if

∫
R3
f(t, x) dx = 0, and for 1 < p ≤ 3/2

if
∫

R3
f(t, x) dx =

∫
R3
xjf(t, x) dx = 0, j = 1, 2, 3. This follows from Theorem 2.

Since |α|+lα0 > 1 we may apply Theorem 3, which gives the well-posedness of the
Cauchy problem in the weighted Sobolev spaces W r

p,σ,γ for p > 1, σ1 < σ < σ2.
To finish this section we formulate a statement which shows that the orthog-

onality conditions (9) are close to being necessary conditions for the solvability
of the Cauchy problem (7) in the spaces W r

p,γ .

Theorem 4. Let f(t, x) ∈ C∞0 (R+
n+1) and α1 = . . . = αn. If the Cauchy

problem (7) is well-posed in the spaces W r
p,γ for p ≤ 2 then the condition (9)

holds.

The proofs of the theorems for α0 > 0 are given in [4], [9]. The case α0 = 0 is
proved analogously.

3. Initial boundary value problems. In this section we consider the fol-
lowing initial boundary value problems in the quadrant R++

n+1 = {t > 0, xn >
0, x′ ∈ Rn−1} for two classes of equations (1):

(11)

L(x,Dt, Dx)u = f(t, x), t > 0, x ∈ R+
n ,

Bj(Dt, Dx)u|xn=0 = 0, j = 1, . . . , µ,
Dk
t u|t=0 = 0, k = 0, . . . , l − 1.

We now define some conditions on the differential operators Bj(Dt, Dx).
First note that from the conditions on the operator L(x,Dt, Dx) there exists

γ1 > 0 such that for Re τ ≥ γ1, ξ′ ∈ Rn−1 \ {0} the equation L(x, τ, iξ′, iλ) = 0
has no real roots. Let

M+(x; τ, ξ′, λ) =
µ∏
k=1

(λ− λ+
k (x; τ, ξ′)) ,

where we assume λ+
k (x; τ, ξ′), k = 1, . . . , µ, are all the roots with positive imagi-

nary part.
I. Assume that the number of the boundary operators at xn = 0 is equal

to µ.
II. If we consider the mixed problem for equations of the first class (α0 = 0)

then the operators Bj have the form

Bj(Dt, Dx) = bj(Dt)Dmj
xn

+
mj−1∑
k=0

Bj,k(Dt, Dx′)Dk
xn
,
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and for the second class (α0 > 0) the operators Bj have the form

Bj(Dt, Dx) = Dmj
xn

+
mj−1∑
k=0

Bj,k(Dx′)Dk
xn
.

Now assume only that the symbols Bj(iη, iξ) are homogeneous with respect to
the vector −→α = (α0, α), i.e.

Bj(cα0iη, cαiξ) = cβjBj(iη, iξ), c > 0 ,

where 0 ≤ βj < 1, j = 1, . . . , µ.
III. We suppose that the Lopatinskĭı condition holds. This means that

Bj(iη, iξ), j = 1, . . . , µ, are linearly independent modulo M+(x; τ, ξ′, λ) for x ∈
R+
n , Re τ ≥ γ1, ξ′ ∈ Rn−1 \ {0}, i.e. det bj,k(x; τ, ξ′) 6= 0, where bj,k(x; τ, ξ′) is

defined by
µ∑
k=1

bj,k(x; τ, ξ′)(iλ)k−1 ≡ Bj(iτ, iξ′, iλ) (mod M+(x; τ, ξ′, λ)) .

As an example, we discuss some mixed problems, namely the initial boundary
value problems in a quadrant of the space {t > 0, xk > 0} for the Sobolev equation
(3), the equation of internal waves (5) and the equation of small oscillations of a
viscous rotating fluid (4). For simplicity, we restrict ourselves to xk = x3.

As boundary condition for Sobolev’s equation we require one relation at
x3 = 0. For the first initial boundary value problem the boundary operator has
the form B1(Dt, Dx) = 1 (β1 = 0), but for the second initial boundary value
problem B1(Dt, Dx) = D2

tDx3 + ω2Dx3 (β1 = 1/2).
For the equation of internal waves we also require one boundary condition at

x3 = 0. For the first initial boundary value problem B1(Dt, Dx) = 1 (β1 = 0), but
for the second initial boundary value problem B1(Dt, Dx) = D2

tDx3 (β1 = 1/2).
For the equation of small oscillations of a rotating viscous fluid we require

three boundary conditions. In the case of the first initial boundary value problem
the corresponding boundary operators have the form Bj(Dt, Dx) = Dj−1

x3
, βj =

(j − 1)/6, j = 1, 2, 3.
Let αmin and the vectors s, r be as defined in Section 2. For simplicity we

henceforth assume that f(t, x) ≡ 0 for x 6∈ K, where K ⊂ R+
n is compact.

Theorem 5. Suppose equation (1) has constant coefficients. Assume f(t, x) ∈
W s
p,γ(R++

n+1) and Dk
t f |t=0 = 0, k = 0, . . . , s0 − 1. If |α|/p′ + lα0 > 1, then there

exists γ0 > γ1 such that the mixed problem (11) has a unique solution u(t, x) ∈
W r
p,γ(R++

n+1) provided γ ≥ γ0, and for the solution the estimate (8) holds.

Corollary. Suppose (1) has variable coefficients but L0(x,Dx) has constant
coefficients. Suppose that f(t, x) satisfies the assumptions of the theorem and
|α|/p′+ lα0>1. Then the initial boundary value problem (11) is well-posed in the
weighted Sobolev spaces W r

p,γ(R++
n+1), γ > γ0, where γ0 > γ1 is sufficiently large.
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Theorem 6. Let the assumptions of Theorem 5 be satisfied and |α|/p′ + lα0

≤ 1. Suppose that ∫
R+

n

xβf(t, x) dx = 0, |β| = 0, . . . , N − 1 ,

where |α|/p′+lα0+Nαmin>1≥|α|/p′+lα0+(N−1)αmin. Then there exists γ0 >
γ1 such that the mixed problem (11) has a unique solution u(t, x) ∈ W r

p,γ(R++
n+1)

provided γ ≥ γ0. The solution satisfies the estimate (8).

Theorem 7. Let the assumptions of Theorem 5 be satisfied and |α|+ lα0 > 1.
Then there exists γ0 > γ1 such that the initial boundary value problem (11) has
a unique solution u(t, x) ∈ W r

p,σ,γ(R++
n+1) provided γ ≥ γ0 and |α|/p > σ >

1− |α|/p′ − lα0. The solution satisfies the estimate (10).

Corollary. Let the assumptions of the Corollary to Theorem 5 be satis-
fied and |α| + lα0 > 1. Then the mixed problem (11) is well-posed in the spaces
W r
p,σ,γ(R++

n+1), γ > γ0, |α|/p > σ > 1− |α|/p′ − lα0, where γ0 > γ1 is sufficiently
large.

The statements of Theorems 5–7 for α0 = 0 strengthen the results of the
author [10]. For α0 > 0 these results are new.
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