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1. Sato’s definition of hyperfunctions. The hyperfunctions are a class
of generalized functions introduced by M. Sato [34], [35], [36] in 1958–60, only
ten years later than Schwartz’ distributions [40]. As we will see, hyperfunctions
are natural and useful, but unfortunately they are not so commonly used as
distributions. One reason seems to be that the mere definition of hyperfunctions
needs a lot of preparations.

In the one-dimensional case his definition is elementary. Let Ω be an open set
in R. Then the space B(Ω) of hyperfunctions on Ω is defined to be the quotient
space

(1.1) B(Ω) = O(V \Ω)/O(V ) ,

where V is an open set in C containing Ω as a closed set, and O(V \Ω) (resp.
O(V )) is the space of all holomorphic functions on V \Ω (resp. V ). The hyper-
function f(x) represented by F (z) ∈ O(V \Ω) is written

(1.2) f(x) = F (x+ i0) − F (x− i0)
and has the intuitive meaning of the difference of the “boundary values”of F (z)
on Ω from above and below.
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The main properties of hyperfunctions are the following:

(1) B(Ω), Ω ⊂ R, form a sheaf over R.

Namely, for all pairs Ω1 ⊂ Ω of open sets the restriction mappings ̺Ω
Ω1

:
B(Ω)→ B(Ω1) are defined, and for any open covering Ω =

⋃
Ωα they satisfy the

following conditions:

(S.1) If f ∈ B(Ω) satisfies f |Ωα
= 0 for all α, then f = 0;

(S.2) If fα ∈ B(Ωα) satisfy fα|Ωα∩Ωβ
= fβ |Ωα∩Ωβ

for all Ωα ∩ Ωβ 6= ∅, then

there is an f ∈ B(Ω) such that fα = f |Ωα
.

(2) The sheaf B of hyperfunctions is flabby.

That is, the restriction mappings ̺Ω
Ω1

are always surjective.
By property (S.1) each f ∈ B(Ω) has the maximal open subset of Ω on which

it vanishes. Its complement is called the support of f and is denoted by suppf . If
F is a closed set in Ω, we write

(1.3) BF (Ω) = {f ∈ B(Ω) ; supp f ⊂ F}.
(3) If K is a compact set in Ω, then

(1.4) BK(Ω) = A(K)′,

where the right hand side denotes the space of all continuous linear functionals
on the locally convex space

(1.5) A(K) = lim
−→

V ⊃K

O(V )

of all germs of real-analytic functions defined on a neighborhood ofK. The pairing
is given by the integral

(1.6) 〈ϕ, [F ]〉 = −
∮

Γ

ϕ(z)F (z) dz ,

where ϕ ∈ A(K), F ∈ O(V \K) and Γ is a closed curve in the intersection of the
domain of ϕ and V \K, which encircles K once.

These three properties characterize the sheaf B of hyperfunctions. In the one-
dimensional case they are derived from the Köthe duality [26]

(1.7) A(K)′ ∼= O(V \K)/O(V ) ,

and the Mittag-Leffler theorem

(1.8) H1(V,O) = 0 for any open set V in C.

The hyperfunctions in the higher dimensional case have the same properties,
and are characterized by them, too. It was not easy, however, to define the spaces
B(Ω), Ω ⊂ R

n, of hyperfunctions having these properties. Sato had spent two
years before he succeeded in giving a definition for the higher dimensional case.
His definition is

(1.9) B(Ω) = Hn(V, V \Ω;O),
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where the right hand side is the nth relative cohomology group of the open pair
(V, V \Ω) with coefficients in the sheaf O of holomorphic functions, which he
invented for this purpose. The same concept was independently introduced by
Grothendieck [12] under the name of the local cohomology group with support in
Ω. In Grothendieck’s notation it is written Hn

Ω(V,O).
In the earliest foundation of the theory of hyperfunctions, Martineau [30] and

Harvey [13] (cf. Komatsu [22]) derived the three properties from the Martineau

duality

(1.10) Hp
K(V,O) =

{
0, p 6= n,
A(K)′, p = n,

for any compact set K in R
n included in an open set V in C

n, the Malgrange

theorem [28]

(1.11) Hn(V,O) = 0 for any open set V in C
n

and the Grauert theorem [10] saying that for any open set Ω in R
n its pseudocon-

vex open neighborhoods V in C
n form a fundamental system of neighborhoods.

The disadvantage of this definition is that one has to take a one-year course
of several complex variables and homological algebra before he understands the
fundamental concepts.

2. Hyperfunctions as boundary values of harmonic functions. As we
remarked, the hyperfunctions are natural and useful. One evidence is that they
are closed under taking non-characteristic boundary values of solutions of linear
partial differential equations. Namely, let

(2.1) P (x, ∂) =
∑

|α|≤m

aα(x)∂α

be a partial differential operator with real-analytic coefficients aα(x) on an open
set V in R

n+1, and let Ω = V ∩ R
n be a non-characteristic hypersurface, or

a(0,...,0,m)(x
′, 0) 6= 0. Then we have

(2.2) H1
Ω(V,BP ) ∼= B(Ω)m

(Komatsu [21], Schapira [39] and Komatsu–Kawai [25]). If P has constant coeffi-
cients, then

(2.3) H1
Ω(V,BP ) ∼= BP (V \Ω)/BP (V ).

Here BP denotes the sheaf of hyperfunction solutions u of Pu = 0. The isomor-
phisms (2.2) and (2.3) mean that the right hand side of (2.3) is identified with
the m-tuples of hyperfunctions (∂j

nu(x
′,+0) − ∂j

nu(x
′,−0))0≤j<m in n variables.

This is proved only by properties (1), (2) and (3) of hyperfunctions and by the
Cauchy–Kowalevsky theorem.

If P (∂) is elliptic, then the hyperfunction solutions BP are real-analytic and
hence we may replace BP in (2.2) and (2.3) by the sheaf AP of real-analytic



236 H. KOMATSU

solutions. If n = 1, the Cauchy–Riemann operator

∂ = 1
2 (∂x + i∂y)

is an elliptic operator. In case n > 1, there are no single elliptic operators of first
order. The Laplacian ∆ would be the simplest elliptic operator in that case.

We denote points in R
n+1 by v = (x, t), w = (y, s) with x, y ∈ R

n and t, s ∈ R,
and the sheaf of harmonic functions on R

n+1 by P. Thus we have for any open
set V in R

n+1

(2.4) P(V ) = {H(v) ∈ C2(V ) ; ∆H = (∆x + ∂2
t )H = 0}.

Let Ω = V ∩ R
n = {x ∈ R

n ; (x, 0) ∈ V }. Then with any H(v) ∈ P(V \Ω), two
boundary values

H(x,+0)−H(x,−0) ∈ B(Ω) , ∂tH(x,+0) − ∂tH(x,−0) ∈ B(Ω)

are associated and H(v) can be continued to a harmonic function on V if and
only if these boundary values vanish. Moreover, all pairs of hyperfunctions on Ω
appear as boundary values.

If we take an open set V symmetric in t, then every H ∈ P(V \Ω) is decom-
posed into the sum of the odd harmonic function

H−(x, t) = 1
2 (H(x, t)−H(x,−t))

and the even one

H+(x, t) = 1
2 (H(x, t) +H(x,−t)).

Clearly the Neumann data (resp. the Dirichlet data) vanishes for H− (resp. H+).
Therefore every f(x) ∈ B(Ω) is represented as the Dirichlet boundary value of
an odd harmonic function H−. Moreover, the Dirichlet boundary value of H−

vanishes if and only if it can be extended to an odd harmonic function on V .
Thus we have the representation

B(Ω) = P−(V \Ω)/P−(V ) ,

where P− denotes the space of odd harmonic functions.
If we admit properties (1), (2) and (3) of hyperfunctions, this is a theorem.

Here we make this representation the definition of hyperfunctions and derive the
properties (1), (2) and (3) as theorems.

For the sake of convenience we write the upper half of V as V, the original V
as Ṽ and P−(V ) as P0(Ṽ ), and consider only the one-sided limit.

Definition 1. Let Ω be an open set in R
n, and V an open set in R

n+1
+ =

{(x, t) ∈ R
n+1 ; t > 0} such that Ṽ = V ∪Ω ∪ V is open in R

n+1, where V is the
mirror image of V :

V = {(x, t) ∈ R
n+1 ; (x,−t) ∈ V } .

Then the space B(Ω) of hyperfunctions on Ω is defined to be the quotient space

(2.5) B(Ω) = P(V )/P0(Ṽ ) .
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If a hyperfunction f(x) ∈ B(Ω) is represented by a harmonic function H(x, t) ∈
P(V ), we write

(2.6) f(x) = H(x,+0) .

The basic theorems we need are the following two.

The Grothendieck duality theorem ([11], [29]). Let K be a compact set

in an open set V in R
n+1. Then

(2.7) P(K)′ ∼= P(V \K)/P(V ).

If Φ ∈ P(K) and H ∈ P(V \K), then the pairing of Φ and the class [H] of H is

given by the integral

(2.8) 〈Φ, [H]〉 =
∫

∂L

{
Φ
∂H

∂n
− ∂Φ

∂n
H

}
dS,

where L is a compact neighborhood with smooth boundary of K in the intersection

of V and the domain of Φ.

The Mittag-Leffler theorem for harmonic functions. Let Vλ, λ ∈ Λ,
be open sets in R

n+1. If a family of harmonic functions Hλµ ∈ P(Vλ ∩Vµ) satisfy

(2.9) Hλµ +Hµν +Hνλ = 0 on Vλ ∩ Vµ ∩ Vν

for all Vλ∩Vµ ∩Vν 6= ∅, then there are harmonic functions Hλ ∈ P(Vλ) such that

(2.10) Hλµ = Hµ −Hλ on Vλ ∩ Vµ.

In terms of cohomology groups this is equivalent to the statement

(2.11) H1(V,P) = 0 for any open set V in R
n+1.

Malgrange [27] proved the theorem as the exactness of

(2.12) 0→ P(V )→ E(V )
∆→ E(V )→ 0 ,

where E denotes the sheaf of C∞ functions (cf. Hörmander [14], pp. 12–14).
As in the case of one complex variable, the Mittag-Leffler theorem is proved

by the Runge approximation theorem saying that for a compact set K in an
open set V in R

n+1, P(V ) is dense in P(K) if and only if V \K has no relatively
compact components in V . The Runge theorem can in turn be derived from the
Grothendieck theorem.

Proposition 1. B(Ω) does not depend on V .

P r o o f. Suppose that V ⊂W are two open sets such that Ṽ and W̃ are open.
We have to prove that the natural mapping

j : P(W )/P0(W̃ )→ P(V )/P0(Ṽ )

induced from restriction mappings is an isomorphism.
If H ∈ P(W ) has a continuous boundary value 0, then it can be continued to

a function in P0(W̃ ) by the reflection principle. Hence j is injective.
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The surjectivity is proved if every H ∈ P(V ) is decomposed as H1 − H0

with H1 ∈ P(W ) and H0 ∈ P0(Ṽ ). Since V = W ∩ (Ṽ ∪W ), it follows from
the Mittag-Leffler theorem for two open sets that there are G1 ∈ P(W ) and

G0 ∈ P(Ṽ ∪W ) such that H = G1 − G0. Then H0 = G0 + Ǧ0 ∈ P0(Ṽ ) and
H1 = G1 + Ǧ0 ∈ P(W ) satisfy the condition, where

Ǧ0(x, t) = −G0(x,−t).
Definition 2. Let Ω1 ⊂ Ω be open sets in R

n. Then we choose open sets
V1 ⊂ V in R

n+1
+ such that Ṽ1 = V1 ∪Ω1 ∪ V 1 and Ṽ = V ∪Ω ∪ V are open, and

define the restriction mapping ̺Ω
Ω1

: B(Ω)→ B(Ω1) by the natural mapping

(2.13) P(V )/P0(Ṽ )→ P(V1)/P0(Ṽ1)

induced from restriction mappings.
It follows from Proposition 1 that the mapping ̺Ω

Ω1
does not depend on V

and V1.

Theorem 1. The hyperfunctions B(Ω), Ω ⊂ R
n, with the restriction mappings

̺Ω
Ω1

, form a sheaf.

P r o o f. In order to prove properties (S.1) and (S.2), let Ωλ and Vλ be open

sets in R
n and R

n+1
+ respectively such that Ṽλ = Vλ ∪Ωλ ∪V λ are open in R

n+1.

We set Ω =
⋃
Ωλ and V =

⋃
Vλ. Then Ṽ = V ∪Ω ∪ V is also open in R

n+1.

To prove (S.1) suppose that H ∈ P(V ) belongs to P0(Ṽλ) for all λ. Then H

belongs to P0(Ṽ ) by the reflection principle.
To prove (S.2) suppose that Hλ ∈ P(Vλ) satisfy

Hλµ := Hµ −Hλ ∈ P0(Ṽλ ∩ Ṽµ) .

Then it follows from the Mittag-Leffler theorem and the antisymmetrization that
there are Fλ∈P0(Ṽλ) such that Hλµ = Fµ−Fλ. Then H = Hλ−Fλ is a harmonic
function in P(V ) which represents Hλ(x,+0) on Ωλ.

Theorem 2. The sheaf B of hyperfunctions over R
n is flabby.

P r o o f. It is enough to take V = R
n+1
+ for the representation (2.5).

Definition 3. Let K be a compact set in R
n. We define the pairing of ϕ∈

A(K) and f ∈ BK(Rn) as follows. Let Φ(x, t) ∈ P0(K) be the solution of the
Cauchy problem

(2.14)




∆Φ(x, t) = 0 ,
Φ(x, 0) = 0 ,
∂tΦ(x, 0) = ϕ(x) .

The Cauchy–Kowalevsky theorem guarantees the existence of a unique solution.
We take an H ∈ P0(Ṽ \K) such that f(x) = H(x,+0) and define

(2.15) 〈ϕ, f〉 :=
∫

S

{
∂Φ

∂n
H − Φ∂H

∂n

}
dS,
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where S is a hypersurface in the intersection of V and the domain of Φ, with
boundary in Ω\K, and oriented as a deformation of the natural orientation of Ω
in R

n, and n is the upward unit normal on S.

Theorem 3. Under the pairing defined above we have the isomorphism

(2.16) BK
∼= (A(K))′ .

P r o o f. Let S be the mirror image of S in (2.15). Then −S+S is the boundary

of a compact neighborhood L of K in the intersection of Ṽ and the domain of Φ.
Since Φ and H are odd functions in t, the right hand side of (2.15) is equal to
the same integral over S if n is interpreted as the outer unit normal on ∂L. The
upward normal n in (2.15) is also the outer unit normal on ∂L but the orientation
of S is opposite to that of ∂L. Therefore the integral (2.15) should be regarded
as the integral on the chain −S. Hence it is equal to one half of the integral on
∂L. It is proved in the same way that

∫

∂L

{
∂Φ

∂n
H − Φ∂H

∂n

}
dS = 0

for any even harmonic function Φ. Hence Grothendieck’s duality theorem implies
the isomorphism (2.16).

When an analytic functional T ∈ (A(K))′ is given, the corresponding hyper-
function f(x) is represented by the Poisson integral

(2.17) H(x, t) := 〈P (x− y, t), Ty〉,
where

(2.18) P (x, t) :=
2

ωn+1

t

(x2 + t2)(n+1)/2
=

1

(2π)n

∫

R
n

e−t|ξ|2+ixξ dξ

is the Poisson kernel.
In case the dimension n > 1, Poisson integrals H(x, t) often play an essential

role in making detailed study of various classes of (generalized) functions f(x)
(e.g. [43]). In this respect our definition of hyperfunctions is in accordance with
the tradition of real analysis.

3. Partial differential equations with constant coefficients. Since this
is a seminar on partial differential equations, we will show here some applica-
tions to linear partial differential equations with constant coefficients, which are
modifications, according to our new approach, of the results we reported at the
Conference on Generalized Functions held in Katowice in 1966 (cf. [20], [22]).

We define derivatives of hyperfunctions by

(3.1) ∂α
x (H(x,+0)) = (∂α

xH)(x,+0)

Given an r1 × r0 system of differential operators

P (∂) : Br0 → Br1 ,
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the transposed matrix P ′(−∂) may be regarded as the homomorphism C[∂]r1 →
C[∂]r0 of polynomial modules in ∂. Then by the Hilbert syzygy theorem there is
an exact sequence terminating for some m ≤ n:

(3.2) C[∂]r0
P ′(−∂)←− C[∂]r1

P ′

1
(−∂)←− C[∂]r2 ←− . . .

. . .←− C[∂]rm−1

P ′

m−1
(−∂)←− C[∂]rm ←− 0 .

Theorem 4. Let P (∂) and Pj(∂) be as above. Then for any convex open set

Ω in R
n we have the exact sequence

(3.3) B(Ω)r0
P (∂)−→ B(Ω)r1

P1(∂)−→ . . .
Pm−1(∂)−→ B(Ω)rm −→ 0 .

In particular , the equation

(3.4) P (∂)u = f

has a solution u ∈ B(Ω)r0 if and only if the data f ∈ B(Ω)r1 satisfies the com-

patibility condition

(3.5) P1(∂)f = 0 .

P r o o f. Let V be a convex open set in R
n+1
+ such that Ṽ =V ∪Ω∪V is convex

and open in R
n+1. Ehrenpreis [7], [8], Malgrange and Hörmander [14] have proved

the theorem with B replaced by the sheaf E of infinitely differentiable functions.
Hence the last two rows of the following diagram are exact:

(3.6)

0 0
↓ ↓

P(V )r0
P (∂x)−→ P(V )

P1(∂x)−→ . . .
↓ ↓
E(V )

P (∂x)−→ E(V )
P1(∂x)−→ . . .

↓ ∆ ↓ ∆

E(V )
P (∂x)−→ E(V )

P1(∂x)−→ . . .
↓ ↓
0 0

By the Malgrange theorem (2.12) all columns are exact. Thus it follows that the
first row is exact.

By the antisymmetrization we have the exact sequence

(3.7) P0(Ṽ )r0
P (∂x)−→ P0(Ṽ )r1

P1(∂x)−→ . . .

Hence the desired exactness follows from the exact sequences

0→ P0(Ṽ )rj −→ P(V )rj −→ B(Ω)rj → 0 .

Similarly we have the following theorem by Harvey [13] and Bengel [1].

Theorem 5. If P (∂) is elliptic, then every hyperfunction solution u of Pu = f
is real-analytic wherever so is f .
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In particular, we have the flabby resolutions

0 −→ C −→ B d−→ B(n

1) d−→ . . .
d−→ B(n

n) −→ 0 ,(3.8)

0 −→ O −→ B ∂−→ B(n

1) ∂−→ . . .
∂−→ B(n

n) −→ 0(3.9)

of the constant sheaf C and the sheaf O of holomorphic functions over R
n and

C
n respectively.

Now it is very easy to prove the basic results employed in the first foundation
of the theory of hyperfunctions.

Corollary 1 (Malgrange). We have

Hn(U,C) = 0 for any open set U in R
n ,(3.10)

Hn(V,O) = 0 for any open set V in C
n .(3.11)

P r o o f. By definition we have

Hn(U,C) = B(U)(
n

n)/dB(U)(
n

n−1).

Given an n-form f ∈ B(U)(
n

n), we can extend it to a form f̃ ∈ B(Rn)(
n

n) by

the flabbiness. Theorem 4 asserts the existence of a solution ũ ∈ B(Rn)(
n

n−1) of

dũ = f̃ . Its restriction u to V satisfies du = f on V . (3.11) is proved similarly.

Corollary 2 (Köthe–Martineau). If K is a compact set in an open set V in

C
n such that

(3.12) Hp(K,O) = 0 for p > 0 ,

then we have

(3.13) Hp
K(V,O) ∼=

{
0, p 6= n,
O(K)′, p = n.

P r o o f. The local cohomology groups Hp
K(V,O) are by definition the coho-

mology groups of the complex

(3.14) 0 −→ BK(Ω)
∂−→ BK(Ω)(

n

1) ∂−→ . . .
∂−→ BK(Ω)(

n

n) −→ 0 ,

which is dual to the complex

(3.15) 0←− A(K)(
n

n) −∂←− A(K)(
n

n−1) −∂←− . . . −∂←− A(K)
−∂←− 0 .

By (3.12), the complex (3.15) is exact except for the 0-th position at which the
cohomology group is equal to O(K). Hence we have (3.13) by the duality of
cohomology groups.

Similarly we have the following

Corollary 3 (Alexander–Pontryagin). For any compact set K in an open

set V in R
n we have

(3.16) Hp
K(V,C) ∼= (Hn−p(K,C))′ .

Hence we have a purely analytical proof of the Jordan–Brouwer theorem.
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4. Microlocal analysis. We have so far defined hyperfunctions as boundary
values of harmonic functions and have given some applications. All of these could
have been done in 1966 before the Conference in Katowice. Actually Bengel [1]
had considered boundary values of solutions of elliptic equations to prove his
Theorem 5. Sato had also mentioned a definition of hyperfunctions as boundary
values of harmonic functions.

It was three years later that microlocal analysis was born, that is, the analysis
on the cosphere bundle S∗Ω = (T ∗Ω\{0})/R+ or the cotangent bundle T ∗Ω over
the domain Ω on which we consider solutions. Whenever there is an epochmak-
ing discovery, there are always forerunners. In this case they are Calderón (1958)
and Mizohata (1959) for singular integral operators, Kohn–Nirenberg (1965) and
Hörmander (1965) for pseudo-differential operators, and Egorov (1969) and oth-
ers. The real history started, however, in 1969 at the International Conference
on Functional Analysis and Related Topics held in Tokyo. Sato [37] introduced
microfunctions as decompositions to the cosphere bundle S∗Ω of singularities of
hyperfunctions modulo the real-analytic functions; that is, he defined a sheaf C
over S∗Ω such that

(4.1) 0 −→ A −→ B sp−→ π∗C −→ 0

is exact, where π : S∗Ω → Ω is the canonical projection and π∗C denotes the
direct image so that we have C(π−1Ω1) ∼= B(Ω1)/A(Ω1) for any open set Ω1

in Ω.

His motivation was to prove Theorem 5 in the variable coefficient case in a
natural way. He showed that a linear differential operator P with real-analytic
coefficients acts on C locally in S∗Ω, that is, microlocally, and that P is injective
at non-characteristic points in S∗Ω. Hence we have

(4.2) SSu ⊂ SS(Pu) ∪ CharP ,

where SSu = supp spu. If P is elliptic, i.e., CharP = ∅, then u is real-analytic
wherever so is Pu.

Hörmander also attended the Conference and conducted a private seminar
in which he talked about his idea of Fourier integral operators. His motivation
was in Egorov’s work on propagation of singularities of solutions of hyperbolic
equations.

In 1969–1972 there was a hot competition between Sato’s school and Hörman-
der’s. The outcome was monumental papers Hörmander [15] and Duistermaat–
Hörmander [6] on the one hand, and Sato–Kawai–Kashiwara [38] on the other.
Each one is 200 pages long or more and contains many results. The highlight of
both papers was that they formulated the Huygens principle mathematically and
proved it. However, their definitions of fundamental concepts and their proofs
of the essentially same results are completely different. Sato et al. employ the
cosphere bundle S∗Ω, microfunctions C, singularity spectrum SSu and quan-
tized contact transforms whereas Hörmander et al. the cotangent bundle T ∗Ω,
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wave front sets WF (u) and Fourier integral operators. The analytic wave front
set WFA(u) Hörmander introduced later (cf. [16]) coincides with the singularity
spectrum SSu for distributions u but the proof was extremely difficult. One rea-
son is that Sato et al. employ higher cohomology groups. For example, the sheaf
C of microfunctions over S∗

R
n is defined as the nth derived cohomology group

(4.3) C := Hn
S∗Rn(π−1O)a

with support in S∗
R

n over the comonoidal transformation (Cn\Rn)∪S∗
R

n with
a non-Hausdorff topology. Our motivation is to build a bridge spanning these two
schools.

5.Microfunctions as singularities of holomorphic functions. Let Ω be
an open set in R

n. We define our disc bundle DΩ and cosphere bundle S∗Ω by

DΩ := {x+ iy ∈ C
n ; x ∈ Ω, |y| < 1} ,(5.1)

S∗Ω := (∂DΩ)a = {x− iω ; x ∈ Ω, |ω| = 1} ,(5.2)

where a stands for the antipodal mapping.
Note that these are entirely different from Sato’s.

Definition 4. The sheaf C of microfunctions over R
n is defined by the exact

sequence of sheaves over C
n:

(5.3) 0→ O|[DRn] → O|DRn → Ca → 0 ,

where [DR
n] denotes the closure DR

n∪(S∗
R

n)a of DR
n, and O|A the sheaf which

assigns to each open set W in C
n the space

O(W ∩A) = lim
−→

V ⊃W∩A

O(V )

for a locally closed set A. Ca means that we evaluate it at the antipodal point.
Since the quotient sheaf Ca has the support in the closed set (S∗

R
n)a, it is

naturally regarded as a sheaf over (S∗
R

n)a.
A microfunction on a neighborhood of a point (x, ω) ∈ S∗

R
n is by the defini-

tion a class of holomorphic functions K(z) defined on V ∩DR
n for a neighborhood

V of x− iω in C
n, modulo the holomorphic functions defined on a neighborhood

of x− iω in C
n.

Let Σ be an open set in S∗
R

n. If W is an open set in DR
n such that W ∪Σa

has a fundamental system of open neighborhoods W̃ in C
n which is pseudoconvex

and contains Σ as a closed set, then we have the global representation

(5.4) C(Σ) = O(W )/O(W ∪Σa) .

In fact, we have the exact sequence of cohomology groups

0→ O(W ∪Σa)→ O(W )→ C(Σ)→ H1(W ∪Σa,O) = 0 .

Since DR
n is strictly pseudoconvex and polynomially convex in C

n, we can
always find such an open set W . Actually the proof of the following theorem
shows that we can always take DR

n for W .
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Theorem 6 (Kashiwara). The sheaf C of microfunctions is flabby.

P r o o f. LetΣ be an open set in S∗
R

n. It is sufficient to prove that for any open
neighborhood V of DR

n ∪Σa in C
n there is a pseudoconvex open neighborhood

W̃ included in V .
W = DR

n is strictly pseudoconvex in the sense that it is defined in C
n by the

inequality

(5.5) ϕ(z) := |y|2 =

n∑

j=1

y2
j < 1

and the Hermitean form

(5.6)

n∑

j,k=1

∂2ϕ

∂zj∂ zk
wkwk =

1

2
|w|2

is strictly positive definite. Such a function is called strictly plurisubharmonic.
We take a partition of unity

∑
χν(z) = 1 on V \(S∗

R
n\Σ)a and an increasing

sequence of compact sets Kj in Σa which covers Σa. Let ψj(z) be the sum of all
χν(z) such that suppχν ∩Kj 6= ∅. We take an ε1 > 0 so small that

M1 := ε1 sup
|α|+|β|≤2

z∈V

|∂α∂βψ1(z)| ≤
1

4n2
,

and set M−1 = M0 = M1. If ε1, . . . , εj−1 have been chosen, then we set

Mj := max
1≤k<j

{εk sup
|α|+|β|=j+1

z∈V

|∂α∂βψk(z)|}

and choose an εj > 0 so that

εj sup
|α|+|β|=k

|∂α∂βψj(z)| ≤ 2k−j−2Mk−1 , 0 ≤ k ≤ j + 1 .

Then ψ(z) =
∑∞

j=1 εjψj(z) is an infinitely differentiable function such that ϕ(z)−
ψ(z) is strictly plurisubharmonic on C

n. Since ψ(z) > 0 on Σ and = 0 outside V,
it follows that

(5.7) W̃ := {z ∈ C
n ; ϕ(z) − ψ(z) < 0}

is a strictly pseudoconvex open neighborhood of DR
n ∪Σa included in V.

The following Grauert theorem is proved in the same way.

Lemma 1. Any open set Ω in R
n has a fundamental system of pseudoconvex

open neighborhoods in C
n. In particular , we have

(5.8) Hp(Ω,A) = 0 , p > 0 .

Hence it follows that if the sheaf A of real-analytic functions is a subsheaf of
a sheaf F and

(5.9) 0→ A→ F → G → 0
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is an exact sequence of sheaves over R
n, then

(5.10) 0→ A(Ω)→ F(Ω)→ G(Ω)→ 0

is exact for any open set Ω in R
n.

In order to define the spectral mapping sp : B → π∗C which induces the
isomorphism

(5.11) sp : B(Ω)/A(Ω) ∼= C(π−1Ω),

we prepare two lemmas.

Lemma 2 (Kiselman [19], Siciak [41]). Every harmonic function on the ball

(5.12) BR := {v = (x, t) ∈ R
n+1 ; |v| < R}

is continued to a holomorphic function on the Lie bal l

(5.13) B̃R := {u = v + iw ∈ C
n+1 ; t(u) < R},

where

t(u) = (|v|2 + |w|2 + 2(|v|2|w|2 − 〈v,w〉2)1/2)1/2(5.14)

=
( n+1∑

j=1

|uj |2 +
(( ∑

|uj |2
)2

−
∣∣∣
∑

u2
j

∣∣∣
2)1/2)1/2

.

P r o o f. If H(v) is continuous up to the boundary, then it is represented as
the Poisson integral

(5.15) H(v) =
R2 − v2

ωn+1R

∫

|b|=R

H(b)

((b− v)2)(n+1)/2
dSb .

Hence it is continued analytically to the connected component of BR in
{u ∈ C

n+1 ; (b − u)2 6= 0 for all b ∈ ∂BR}. The lemma will be proved if we

show that the component coincides with the Lie ball B̃R.

First we note that the boundary of B̃R is represented as

(5.16) ∂B̃R = {eiθ(q + ir) ; θ ∈ R, p, q ∈ R
n+1, |q|+ |r| = R, 〈q, r〉 = 0}

(Siciak [41], Lemma 2).

Secondly, we prove that if u ∈ ∂B̃R and b ∈ R
n+1 satisfy (u − b)2 = 0, then

|b| ≤ R.

In view of (5.16) the real part v of u and the imaginary part w are written

v = q cos θ − r sin θ , w = q sin θ + r cos θ ,

with q, r ∈ R
n+1 satisfying |q|+ |r| = R and 〈q, r〉 = 0.

The condition (u− b)2 = 0 implies

2〈q, b〉 cos θ − 2〈r, b〉 sin θ = (q2 − r2)(cos2 θ − sin2 θ) + b2 ,

〈q, b〉 sin θ + 〈r, b〉 cos θ = (q2 − r2) cos θ sin θ .
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Hence we have, in view of |q|+ |r| = R,

2〈q, b〉 = cos θ{2|q|R + (b2 −R2)} , 2〈r, b〉 = − sin θ{2|r|R+ (b2 −R2)} .
If either q=0 or r=0, then it is easy to see that |b| = R. Otherwise, we have

the following components of b with respect to the orthogonal unit vectors q/|q|
and r/|r|:

〈
q

|q| , b
〉

= cos θ

{
R+

b2 −R2

2|q|

}
,

〈
r

|r| , b
〉

= − sin θ

{
R+

b2 −R2

2|r|

}
.

Adding the squares of both sides, we have

(b2 −R2)

{
cos2 θ

(
1− R

|q| −
b2 −R2

4q2

)
+ sin2 θ

(
1− R

|r| −
b2 −R2

4r2

)}
≥ 0.

Since

1− R

|q| −
b2 −R2

4q2
=

(|q| − |r|)2 − b2
4q2

,

we have

(b2 −R2){(|q| − |r|)2 − b2}
(

cos2 θ

4q2
+

sin2 θ

4r2

)
≥ 0 .

This implies (|q| − |r|)2 ≤ b2 ≤ R2.

The proof also shows that for any u ∈ ∂B̃R there is a b ∈ ∂BR satisfying
(u− b)2 = 0. Hence the Lie ball B̃R is a component of {u ∈ C

n+1 ; (b− u)2 6= 0
for any b ∈ ∂BR}.

The following lemma is a part of the Paley–Wiener theorem for hyperfunctions.

Lemma 3. Let K be a compact convex set in R
n. If f(x) ∈ BK(Rn), then its

Fourier transform

(5.17) f̂(ζ) :=
∫
e−i〈x,ζ〉f(x) dx

is an entire function on C
n satisfying the estimates

(5.18) |f(ζ)| ≤ Cε exp{HK(ζ) + ε|ζ|}
for any ε > 0 with a constant Cε depending on ε, where

(5.19) HK(ζ) = sup
x∈K

Im〈x, ζ〉.

Moreover , the Poisson integral of f is represented as

(5.20) Pf(x+ iy, t) =
1

(2π)n

∫

R
n

e−t|ξ|+i〈x+iy,ξ〉f̂(ξ) dξ ,

and hence is holomorphic on the tube domain {x+ iy ∈ C
n ; |y| < t} for t > 0.

P r o o f. The space BK as the strong dual of A(K) is a Fréchet space, and so
is the space ExpK of all entire functions satisfying (5.18) if we take Cε as defining
semi-norms.



HYPERFUNCTIONS AND MICROFUNCTIONS 247

It is easy to prove that the Fourier transformation F : BK → ExpK and
the integral I : ExpK → P0(R

n+1\K) defined by (5.20) are continuous linear
mappings. If f(x)=δ(x− y), y∈K, then (I ◦ F)f is clearly equal to the Poisson
integral Pf . The linear combinations of such δ(x − y) are dense in BK and the
Poisson integral P : BK → P0(R

n+1\K) is continuous. Hence we have the identity
(5.20) for all f ∈ BK .

Definition 5. Let f ∈ B(Ω) be a hyperfunction on an open set Ω in R
n. We

choose an upper neighborhood V ⊂ R
n+1
+ of Ω so large that every closed ball of

radius 1 in R
n+1
+ touching an x ∈ Ω is entirely in V except for x, and we take a

harmonic function H ∈ P(V ) such that f(x) = H(x,+0). Then it follows from
Lemmas 1 and 2 that H(x, 1) has an analytic continuation H(x+ iy, 1) to π−1Ω
and its class in Ca(π−1Ω) does not depend on the choice of the defining harmonic
function H(x, t), which we define to be sp f :

(5.21) (sp f)(x,ω) := [H(x+ iy, 1)]y=−ω .

V

(x, 1)

Ω x

Fig. 2

Theorem 7. The spectral mapping sp induces the isomorphism

(5.22) B(Ω)/A(Ω)
∼→ C(π−1Ω)

for any open set Ω in R
n.

P r o o f. As we remarked after Lemma 1 this is equivalent to the exactness
of the sequence (4.1) of sheaves. Therefore it is sufficient to prove (5.22) for any
relatively compact open set Ω in R

n.
To prove the surjectivity, let [K(x + iy)] be a class in O(DR

n)/O(DR
n ∪

S∗Ωa) ∼= C(π−1Ω). We have to find an H(x, t) ∈ P(V ), for a sufficiently large
upper neighborhood V of Ω, such that

(5.23) K(x+ iy)−H(x+ iy, 1) ∈ O(S∗Ωa) .

We choose a relatively compact smooth domain Ω0 in R
n such that all balls

of radius
√

2 with center in Ω are included in Ω0, and define for t > 1

(5.24) H(x, t) :=
∫

Ω0

P (x− w, t− 1)K(w) dw ,
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where P (x, t) is the Poisson kernel. This is originally a harmonic function on the
upper half space t > 1 and has an analytic continuation to {(x + iy, t) ; t >
1, x ∈ R

n, |y| < t− 1}. Suppose t > 2. Then, since the kernel P (x+ iy, t− 1) is
holomorphic on the domain {x+ iy ∈ C

n ; x2−y2 +(t−1)2 > 0}, we can deform
the integral domain Ω0 into

Ωs(ω) := {u− iωsmin{1,dis(u, ∂Ω0)} ; u ∈ Ω0}
for ω∈Sn−1 and 0 ≤ s < 1. Then the integral represents a holomorphic function
on {(z, t) ; t > 1, Re(z − w)2 + (t − 1)2 > 0 for all w ∈ Ωs(ω)}. Hence H(x, t)
has an analytic continuation H(z, t) to the domain {(x + iy, t) ; t > 1, x ∈
Ω0, |y| < min{t−1, ((t−1)2 +dis2(x, ∂Ω0))

1/2}}. The derivative ∂tH(z, t) is also
holomorphic there.

Since H(x+ iy, t) satisfies the wave equation

(∂2
t −∆y)H(x+ iy, t) = 0

as a function of y and t, it can be continued to a holomorphic function on a
neighborhood of V0 = {(x, t) ; x ∈ Ω0, t > 1−min{1,dis(x, ∂Ω0)}} with the aid
of the fundamental solution of the wave equation.

Thus H(x, t) is continued to a harmonic function on the upper neighborhood
V = V0 ∪ {(x, t) ; x ∈ R

n, t > 1} of Ω, and we have by (5.24)

H(x+ iy, 1) = K(x+ iy) , x+ iy ∈ DΩ .
t

y

Ω0

Ωs(ω)

x

Fig. 3

If f(x) is a real-analytic function on a compact domain Ω0, then the same
proof shows that its Poisson integral

H(x, t) :=
∫

Ω0

P (x− y, t)f(t) dy

has an analytic continuation H(x + iy, 1) ∈ O(DΩ ∪ S∗Ωa) for the interior Ω
of Ω0.

Finally, suppose that an H(x, t) ∈ P(Rn+1
+ ) has the analytic continuation

H(x+ iy, 1) ∈ O(DΩ ∪ S∗Ωa) for a relatively compact domain Ω. Then we can
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construct as above a harmonic function K(x, t) on Ω × {t ≥ 0} such that

K(x+ iy, 1) = H(x+ iy, 1) , x+ iy ∈ DΩ .

Hence it follows from the reflection principle that

H(x, t) = K(x, t) +K(x, 2− t)−H(x, 2− t) .
The right hand side being real-analytic up to t = 0, H(x,+0) is real-analytic

on Ω.

6. Boundary values of holomorphic functions on tuboids. Let Ω be
an open set in R

n, and Γ a convex open cone in R
n\{0}. An open set W in C

n

is said to be a tuboid of profile Ω + iΓ if W ⊂ Ω + iΓ , and if for any open subset
Ω0 ⋐ Ω and subcone Γ0 ⋐ Γ (i.e. Γ0 ∩ Sn−1

⋐ Γ ∩ Sn−1) there is an r > 0 such
that

Ω0 + i{y ∈ Γ0 ; |y| < r} ⊂W .

For any holomorphic function F (z) ∈ O(W ) we define its boundary value F (x+
iΓ0) ∈ B(Ω) as follows.

Let Ω0 and Γ0 be as above. We take a small γ ∈ Γ0 and define

(6.1) Hγ(z, t) :=
∫

Ω0+iγ

P (z − w, t)F (w) dw .

This is originally a harmonic function on {(x+ iy, t) ; t > 0, x ∈ R
n, |y−γ| < t}.

If t > 2|γ| and |y − γ| ≤ |γ|, then the integral chain is deformed into

Ωs := {x+ iγ(1− smax{1,dis(x, ∂Ω0)/|γ|}) ; x ∈ Ω0}
for 0 ≤ s < 1. Therefore if

Ωγ := {x ∈ Ω0 ; d(x, ∂Ω0) > |γ|}
is not empty, Hγ(z, t) is continued to a harmonic function on Ωγ × {t > 0}.

iΓ0

Ω0 + iγ

Ωs

Ωγ

Fig. 4

Definition 6. For a holomorphic function F (x+ iy) ∈ O(W ) on a tuboid of
profile Ω + iΓ , its boundary value on Ωγ is defined by

(6.2) F (x+ iΓ0) := Hγ(x,+0) , x ∈ Ωγ .
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It is easily proved that F (x + iΓ0) does not depend on γ and Ω0 on the
common domain of definition. Hence the boundary value F (x+ iΓ0) is actually
defined on Ω.

We write F (z) ∈ O(Ω+ iΓ0) if it is a holomorphic function on a tuboid W of
profile Ω+iΓ . Thus the boundary value is a linear mapping O(Ω+iΓ0)→ B(Ω).

Theorem 8. Let Γ be a convex open cone in R
n\{0}. A hyperfunction f(x) ∈

B(Ω) on an open set Ω in R
n has its singularity spectrum

(6.3) supp sp f ⊂ Ω × (Γ ◦ ∩ Sn−1)

if and only if it is the boundary value F (x+ iΓ0) of a holomorphic function F (z)
on a tuboid of profile Ω + iΓ . Here Γ ◦ denotes the polar of Γ :

(6.4) Γ ◦ := {ξ ∈ R
n ; 〈y, ξ〉 ≥ 0 for all y ∈ Γ} .

The correspondence between F (z) ∈ O(Ω + iΓ0) and F (x+ iΓ0) ∈ B(Ω) is one-

to-one. If F (x + iΓ0) vanishes on an open subset , it vanishes on its connected

component.

P r o o f. Suppose that F (z) ∈ O(Ω + iΓ0). Then Hγ(x + iy, t) constructed
above is holomorphic on Ω0 + i{γ+y ; |y| < t}. Since γ can be an arbitrary small
vector in Γ , Hγ(x+ iy, 1) is holomorphic on (S∗Ω\(Ω + iΓ ◦))a.

Here we note that if F (x + iΓ10) = 0 on an open subset Ω1 of Ω, then F (z)
vanishes identically on the connected component of Ω1 + i{y ∈ Γ1 ; |y| < r}. In
fact, then Hγ(x, t) is analytic on a neighborhood of Ωγ×{t = 0} and Hγ(x, 0) = 0
for x ∈ Ωγ . On the other hand, we have

Hγ(x+ iy, 0) = F (x+ iy), x ∈ Ω1, y ∈ Γ2, |y| < |γ|/2
for an open cone Γ2 ⊂ Γ1 by deforming the integral chain of (6.1) as in the proof of
Theorem 7. Hence F (z) is analytically continued to Ωγ and vanishes there. Then,
the unique continuation theorem for holomorphic functions implies F (z) ≡ 0.

In particular, the boundary value mapping O(Ω + iΓ0) → B(Ω) is injective,
and the boundary value F (x+ iΓ0) has the unique continuation property in x.

Conversely, suppose that (6.3) holds. Then the harmonic function K(x, t)
constructed for the inverse image of the spectral mapping is continued to the
holomorhic function K(x+ iy, 0) on Ω1 + i{y ∈ Γ1 ; |y| < r} for any Ω1 ⋐ Ω and
Γ1 ⋐ Γ with a constant r > 0. It is easy to see that K(x+ iΓ10) = K(x,+0) on
Ω1. Since f(x)−K(x,+0) is real-analytic, there is an F (z) ∈ O(Ω1 + iΓ10) such
that f(x) = F (x+ iΓ0) on Ω1.

As we remarked above, F (z) is uniquely determined by f(x). Hence F (z) is
defined on a tuboid of profile Ω + iΓ .

The flabbiness of C (Theorem 6), the exact sequence

0→ A→ B → π∗C → 0

(Theorem 7) and the characterization of microfunctions with support in K×(Γ ◦∩
Sn−1) (Theorem 8) characterize the sheaf C over S∗

R
n up to an isomorphism.
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Therefore, our microfunctions are isomorphic to Sato’s.
The support supp sp f as a microfunction is called the singularity spectrum of

the hyperfunction f , and is denoted by SS f .
The following theorem is called Martineau’s edge of the wedge theorem [31].

Theorem 9. Let Γj , j = 1, . . . ,m, be convex open cones in R
n\{0}, and set

(6.5) Γjk := Γj + Γk.

Then we have for any open set Ω in R
n the isomorphism

(6.6)
{
f ∈ B(Ω) ; SS f ⊂ Ω ×

( m⋃

j=1

Γ ◦
j ∩ Sn−1

)}
∼=

m⊕

j=1

O(Ω + iΓj0)/∼ ,

where (Fj(z) ∈ O(Ω + iΓj0)) ∼ 0 if and only if there are Fjk(z) ∈ O(Ω + Γjk0)
such that

Fjk(z) + Fkj(z) = 0 ,(6.7)

Fj(z) =
m∑

k=1

Fjk(z) .(6.8)

Here Γjk are convex open cones but they are not necessarily in R
n\{0}. In that

case O(Ω + iΓjk0) denotes the real-analytic functions on Ω.

P r o o f. We consider the linear mapping

bd :
⊕
O(Ω + iΓj0)→ B(Ω)

which sends (Fj(z)) into
∑
Fj(x + iΓj0). Its image is clearly in the left hand

side of (6.6). If f(x) ∈ B(Ω) has its singularity spectrum in Ω ×⋃
Γ ◦

j , then by
the flabbiness of the microfunctions, sp f is decomposed into the sum

∑
sp fj

with SS fj ⊂ Ω × Γ ◦
j . Each fj is written the boundary value Fj(x+ iΓj0) of an

Fj(z) ∈ O(Ω + iΓj0). Since f −∑
fj is real-analytic, it may be added to one

of fj.
Suppose that Fj(z) ∈ O(Ω + iΓj0) satisfy

∑m
j=1 Fj(x + iΓj0) = 0 in B(Ω).

If m = 1, then we have F1(z) ≡ 0 by Theorem 8. In general, SSFm(x + iΓm0)

is included in Ω × (Γ ◦
m ∩

⋃m−1
j=1 Γ ◦

j ). Since Γ ◦
mj = Γ ◦

m ∩ Γ ◦
j cover Γ ◦

m ∩
⋃m−1

j=1 Γ ◦
j ,

there are Fmj(z) ∈ O(Ω+iΓmj0) such that Fm(z) =
∑m−1

j=1 Fmj(z). Let Fjm(z) =
−Fmj(z) and subtract it from Fj(z). Then we have the same situation with m−1
functions.

The converse is trivial.

If {Γ ◦
j } covers R

n, we have a representation of all hyperfunctions on Ω as
the sum of the boundary values of holomorphic functions on tuboids of profile
Ω + iΓj0. Kaneko [17] adopted this as the definition of hyperfunctions.

7. Hyperfunctions and microfunctions with a prescribed singularity

or regularity. Applications. We have so far considered hyperfunctions and
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associated microfunctions. There are, however, infinitely many classes of gener-
alized functions as well as regular functions between the hyperfunctions and the
real-analytic functions. An advantage of our approach to hyperfunctions and mi-
crofunctions is that it is then very easy to characterize those classes of generalized
functions or regular functions among the hyperfunctions and hence to introduce
the corresponding classes of microfunctions.

For the sake of brevity we consider here only Schwartz’ distributions D′, the
ultradistributions D(s)′ and D{s}′ of Gevrey classes and the associated classes
E , E(s) and E{s} of regular functions. We denote by ∗ the empty symbol or (s) or
{s} for 1 < s <∞. E∗(Ω) stands for the class of infinitely differentiable functions
f(x) on Ω such that for any compact set K in Ω

(7.1) sup
x∈K
|∂αf(x)| ≤




Cα, with a constant Cα if ∗ = ∅,
Ch|α||α|!s, for any h > 0 with a constant C if ∗ = (s),
Ch|α||α|!s, with constants h and C if ∗ = {s}.

Clearly E∗(Ω), Ω ⊂ R
n, form a sheaf. D∗(Ω) denotes its subclass of all func-

tions with compact support in Ω. The space D∗(Ω) has a natural locally convex
topology and its dual D∗′(Ω) is defined to be the space of (ultra-)distributions
of class ∗. If Ω1 ⊂ Ω, then the restriction mapping ̺Ω

Ω1
: D∗′(Ω) → D∗′(Ω1) is

defined naturally, and D∗′(Ω), Ω ⊂ R
n, form a sheaf. We have natural inclusion

relations:

(7.2) A ⊂ E(s) ⊂ E{s} ⊂ E(t) ⊂ E ⊂ D′ ⊂ D(t)′ ⊂ D{s}′ ⊂ D(s)′ ⊂ B,
1 < s < t <∞ .

A growth function G(t) of class ∗ is defined by

(7.3) G(t) =




−h log t for some h > 0 if ∗ = ∅,
supp log

1

tpHp(p!)s−1
,

where

(7.4) Hp :=

{
hp for some h > 0 if ∗ = (s),
h1 . . . hpWW for some sequence hp ր∞ if ∗ = {s}.

Note that G(t) is equivalent to (ht)−1/(s−1) if ∗ = (s).

Theorem 10. Let Ω ⊂ R
n and V ⊂ R

n+1
+ be as in Definition 1. Then the

following conditions are equivalent for H(x, t) ∈ P(V ):

(a) H(x,+0) ∈ D∗′(Ω);
(b) H(x, t) converges in D∗′(Ω) as t→ 0;
(c) For any K ⋐ Ω there are a growth function G(t) of class ∗ and constants

C and ε > 0 such that

(7.5) sup
x∈K
|H(x, t)| ≤ C expG(t) , 0 < t < ε .

Under each of these conditions, H(x, t) converges to H(x,+0) in D∗′(Ω).
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An (ultra-)differential operator P (∂) of class ∗ is defined by

(7.6) P (∂) =
∞∑

|α|=0

aα∂
α,

where aα ∈ C, and the aα vanish for sufficiently large |α| if ∗ = ∅;
(7.7) |aα| ≤ Ck|α|/(|α|!)s

with constants k and C if ∗ = (s); and (7.7) holds for any k > 0 with a constant
C if ∗ = {s}.
Theorem 11. Under the same assumptions on Ω and V the following condi-

tions are equivalent for H(x, t) ∈ P(V ):

(a) H(x,+0) ∈ E∗(Ω);
(b) H(x, t) converges in E∗(Ω) as t→ 0;

(c) For any differential operator P (∂) of class ∗, P (∂x)H(x, t) is locally

bounded in a neighborhood of Ω.

Under each of these conditions, H(x, t) converges to H(x,+0) in E∗(Ω).

A proof of Theorems 10 and 11 is given in [24]. Similarly we have the following

Theorem 12. The following conditions are equivalent for a holomorphic func-

tion F (z) on a tuboid of profile Ω + iΓ :

(a) The boundary value F (x+ iΓ0) in the sense of hyperfunctions belongs to

D∗′(Ω) (resp. E∗(Ω));
(b) F (x + iy) converges in D∗′(Ω) (resp. E∗(Ω)) as y tends to zero in some

(and any) closed cone Γ1 ⋐ Γ ;
(c) For any compact set K in Ω and closed cone Γ1 ⋐ Γ there are a growth

function G(t) of class ∗ and constants C and r such that

(7.8) sup
x∈K
|F (x+ iy)| ≤ C expG(|y|) , y ∈ Γ1 , |y| < r

(resp. P (∂z)F (z) is bounded on K + i{y ∈ Γ1 ; |y| < r} for any ultradifferential

operator P (∂) of class ∗).
Under each of these conditions, the topological limit coincides with F (x+iΓ0).

From now on we write ∗ = (∞) instead of ∗ = ∅ to avoid confusion.

Definition 7. We denote by O∗|DRn (resp. O∗|DRn) the sheaf over C
n of

holomorphic functions on DR
n with the growth condition of class ∗ (resp. with

the regularity condition of class ∗), and define the sheaf C∗ of microfunctions

of class ∗ (resp. the sheaf C∗ of microfunctions of regular class ∗) by the exact
sequence

(7.9)
0→ O|[DRn] → O∗|DRn → (C∗)a → 0

(resp. 0→ O|[DRn] → O∗|DRn → (C∗)a → 0).
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Then we have the exact sequences

0→ A→ D∗′ sp→ π∗C∗ → 0 ,(7.10)

0→ A→ E∗ sp→ π∗C∗ → 0 .(7.11)

The sheaves C∗ and C∗ are not flabby but have a little weaker property of
suppleness. Hence we have Martineau’s edge of the wedge theorem for D∗′ and
E∗.

The microfunctions C(∞) and C(∞) corresponding to the distributions D′ and
the infinitely differentiable functions E have been introduced by Bony [3] and
Bengel–Schapira [2]. De Roever [5] and Eida [9] extended them to the microfunc-
tions C∗ and C∗ corresponding to the ultradistributions and the ultradifferentiable
functions of general class ∗. Bony [3] employed C(∞) to prove the propagation of
analytic singularities along bicharacteristic manifolds of distribution solutions of
a class of microdifferential equations satisfying the Levi condition.

Eida [9] has proved that SKK’s reduction to canonical forms of microdiffer-
ential operators with characteristics of constant multiplicity is realized in Gevrey
class ∗ under the irregularity condition ∗ ≤ σ/(σ − 1) (where the irregularity σ
is defined in [23]), and thus has established the invariance of support of C∗- and
C∗-solutions under the bicharacteristic flows. A sketch of proof is given in [24].
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coefficients constants, Bull. Soc. Math. France 97 (1969), 329–356.
[20] H. Komatsu, Resolutions by hyperfunctions of sheaves of solutions of differential equa-

tions with constant coefficients, Math. Ann. 176 (1968), 77–86.
[21] —, Boundary values for solutions of elliptic equations, in: Proc. Internat. Conf. on Func-

tional Analysis and Related Topics, 1969, Univ. of Tokyo Press, 1970, 107–121.
[22] —, Relative cohomology of sheaves of solutions of differential equations, in: Lecture Notes

in Math. 287, Springer, 1972, 192–259.
[23] —, Irregularity of characteristic elements and construction of null-solutions, J. Fac. Sci.

Univ. Tokyo Sect. IA Math. 23 (1976), 297–342.
[24] —, Microlocal analysis in Gevrey classes and in complex domains, in: Microlocal Analysis

and Applications, Lecture Notes in Math., 1495, Springer, 1991, 161–236.
[25] H. Komatsu and T. Kawai, Boundary values of hyperfunction solutions of linear partial

differential equations, Publ. Res. Inst. Math. Sci. 7 (1971/72), 95–104.
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