PARTIAL DIFFERENTIAL EQUATIONS BANACH CENTER PUBLICATIONS, VOLUME 27 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1992

THE SPACE OF EXPONENTIALLY DECREASING ENTIRE FUNCTIONS AND ITS APPLICATION TO SOLVABILITY

DOHAN KIM

Seoul National University, Seoul 151-742, Korea

SOON-YEONG CHUNG

Duksung Women's University, Seoul 132-714, Korea

Introduction. It is well known that the Mizohata equation

$$\frac{\partial u}{\partial t} + it \frac{\partial u}{\partial x} = f, \quad \ f \in C_0^\infty(\mathbb{R}^2)\,,$$

has no solution in the space $\mathcal{D}'(\mathbb{R}^2)$ of distributions, or in the space $B(\mathbb{R}^2)$ of hyperfunctions (see [T] for the historical backgrounds). On the other hand, N. Aronszajn introduced an abstract Fréchet space, the Aronszajn space of the traces of the analytic solutions of the heat equations in $\mathbb{C}^n \times \{t \in \mathbb{C}^1, \text{Re } t > 0\}$, and M. S. Baouendi [B] simplified the complicated arguments and showed that this equation has a solution in the Aronszajn space.

In this talk, we introduce a much simpler space $\mathcal{X}(\mathbb{R}^n)$ of real analytic and exponentially decreasing functions and show that the Fourier transformation is an isomorphism on $\mathcal{X}(\mathbb{R}^n)$, and also on its strong dual $\mathcal{X}'(\mathbb{R}^n)$. As an application, applying the Fourier transformation only we show that the Mizohata operator is solvable in $C^{\infty}(\mathbb{R}_t; \mathcal{X}'(\mathbb{R}))$.

The complete proofs will be published elsewhere.

1. Definitions and basic properties. We introduce a space of exponentially decreasing functions and its strong dual.

DEFINITION 1.1. We denote by \mathcal{X} or $\mathcal{X}(\mathbb{R}^n)$ the set of all $\phi \in C^{\infty}(\mathbb{R}^n)$ such

This work was partially supported by the GARC-KOSEF.

^[221]

that for any k, h > 0

(1.1)
$$|\phi|_{k,h} = \sup_{\substack{x \in \mathbb{R}^n \\ \alpha \in \mathbb{N}_0^n}} \frac{|\partial^{\alpha} \phi(x)| \exp k|x|}{h^{|\alpha|} \alpha!} < \infty$$

where \mathbb{N}_0 is the set of all nonnegative integers. The topology in \mathcal{X} defined by the semi-norms in (1.1) makes \mathcal{X} a Fréchet space. In fact, it is the projective limit topology over all h > 0 and k > 0.

Furthermore, the space \mathcal{X} is a Fréchet nuclear space and therefore it is reflexive. Also, it is easy to show that the space $\mathcal{X}(\mathbb{R}^n)$ is dense in \mathcal{S} .

We show the Fourier transformation is an isomorphism of $\mathcal{X}(\mathbb{R}^n)$.

THEOREM 1.2. The Fourier transformation $\mathcal{F} : \phi \to \hat{\phi}$ is a topological isomorphism of $\mathcal{X}(\mathbb{R}^n)$ with inverse given by the Fourier inversion formula.

DEFINITION 1.3. We denote by \mathcal{X}' the strong dual of \mathcal{X} . In other words, $u \in \mathcal{X}'$ if and only if there exist k, h > 0 and C = C(k, h) > 0 such that

(1.2)
$$|u(\phi)| \le C |\phi|_{k,h}, \quad \varphi \in \mathcal{X}.$$

It is clear that the space S' of tempered distributions is a subclass of \mathcal{X}' by Theorem 1.2. Finally, we have the following theorem.

THEOREM 1.4. The Fourier transformation is an isomorphism of $\mathcal{X}'(\mathbb{R}^n)$.

2. Applications. We are in a position to state the main result of our talk.

THEOREM 2.1. The Mizohata equation

(2.1)
$$\frac{\partial u}{\partial t} + it^k \frac{\partial u}{\partial x} = f, \quad f \in C_0^\infty(\mathbb{R}^2).$$

has a solution in the space $C^{\infty}(\mathbb{R}_t; \mathcal{X}'(\mathbb{R}))$.

Finally, we show that the space $\mathcal{X}(\mathbb{R}^n)$ is stable under local operators.

THEOREM 2.2. Let $P(x,D) = \sum_{|\alpha|=0}^{\infty} a_{\alpha}(x)D^{\alpha}$ be a local operator, i.e., the differential operator of infinite order with the property that for any M > 0 there exist L > 0 and B > 0 such that

$$\sup_{x \in \mathbb{R}^n} |D^{\beta} a_{\alpha}(x)| \le BM^{|\beta|} \beta! L^{|\alpha|} / \alpha!$$

for all α and β . Then the operator $P(x, D) : \mathcal{X} \to \mathcal{X}$ is continuous.

References

- [B] M. S. Baouendi, Solvability of partial differential equations in the traces of analytic solution of the heat equation, Amer. J. Math. 97 (1976), 983-1005.
- [K] H. Komatsu, Ultradistributions, I. Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20 (1973), 25–105.

222

- [M] T. Matsuzawa, A calculus approach to hyperfunctions. II, Trans. Amer. Math. Soc. 313 (1989), 619-654.
- [PM] Y. Park and M. Morimoto, Fourier ultra-hyperfunctions in the Euclidean n-space, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20 (1973), 121–127.
- [S] P. Schapira, Une équation aux dérivées partielles sans solutions dans l'espace des hyperfonctions, C. R. Acad. Sci. Paris Sér. A 265 (1967), 665–667.
 [T] F. Treves, On local solvability of linear partial differential equations, Bull. Amer. Math.
- Soc. 76 (1970), 552–571.