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Introduction. It is well known that the Mizohata equation

∂u

∂t
+ it

∂u

∂x
= f, f ∈ C∞0 (R2) ,

has no solution in the space D′(R2) of distributions, or in the space B(R2) of hy-
perfunctions (see [T] for the historical backgrounds). On the other hand, N. Aron-
szajn introduced an abstract Fréchet space, the Aronszajn space of the traces of
the analytic solutions of the heat equations in Cn × {t ∈ C1, Re t > 0}, and
M. S. Baouendi [B] simplified the complicated arguments and showed that this
equation has a solution in the Aronszajn space.

In this talk, we introduce a much simpler space X (Rn) of real analytic and
exponentially decreasing functions and show that the Fourier transformation is
an isomorphism on X (Rn), and also on its strong dual X ′(Rn). As an application,
applying the Fourier transformation only we show that the Mizohata operator is
solvable in C∞(Rt;X ′(R)).

The complete proofs will be published elsewhere.

1. Definitions and basic properties. We introduce a space of exponentially
decreasing functions and its strong dual.

Definition 1.1. We denote by X or X (Rn) the set of all φ ∈ C∞(Rn) such
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that for any k, h > 0

(1.1) |φ|k,h = sup
x∈Rn

α∈Nn
0

|∂αφ(x)| exp k|x|
h|α|α!

<∞

where N0 is the set of all nonnegative integers. The topology in X defined by the
semi-norms in (1.1) makes X a Fréchet space. In fact, it is the projective limit
topology over all h > 0 and k > 0.

Furthermore, the space X is a Fréchet nuclear space and therefore it is reflex-
ive. Also, it is easy to show that the space X (Rn) is dense in S.

We show the Fourier transformation is an isomorphism of X (Rn).

Theorem 1.2. The Fourier transformation F : φ → φ̂ is a topological iso-
morphism of X (Rn) with inverse given by the Fourier inversion formula.

Definition 1.3. We denote by X ′ the strong dual of X . In other words,
u ∈ X ′ if and only if there exist k, h > 0 and C = C(k, h) > 0 such that

(1.2) |u(φ)| ≤ C|φ|k,h, ϕ ∈ X .
It is clear that the space S ′ of tempered distributions is a subclass of X ′ by

Theorem 1.2. Finally, we have the following theorem.

Theorem 1.4. The Fourier transformation is an isomorphism of X ′(Rn).

2. Applications. We are in a position to state the main result of our talk.

Theorem 2.1. The Mizohata equation

(2.1)
∂u

∂t
+ itk

∂u

∂x
= f , f ∈ C∞0 (R2) ,

has a solution in the space C∞(Rt;X ′(R)).

Finally, we show that the space X (Rn) is stable under local operators.

Theorem 2.2. Let P (x,D) =
∑∞
|α|=0 aα(x)Dα be a local operator , i.e., the

differential operator of infinite order with the property that for any M > 0 there
exist L > 0 and B > 0 such that

sup
x∈Rn

|Dβaα(x)| ≤ BM |β|β!L|α|/α!

for all α and β. Then the operator P (x,D) : X → X is continuous.
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