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In this talk we survey results on continuation of solutions of linear partial
differential equations. We can classify this problem, roughly speaking, into three
categories as follows:

(1) continuation to a large set (e. g. across a hypersurface; problem of hyper-
bolicity);

(2a) continuation to a small set (problem of removable singularity), with
growth condition on the solution;

(2b) as above, but without growth condition.

Our research mainly concerns problems of type (2b). As a survey, however, we
shall start with the general story. As is well known, the origin of this study lies
in the problem of removable singularities in the theory of functions of a single
complex variable (category (2a) in this classification). Already as early as 1851,
Riemann [1] had pointed out that an isolated singularity of a holomorphic func-
tion is removable if the function is bounded around the singularity. Later, in
1906, Hartogs [1] proved that in the case of holomorphic functions of several vari-
ables any convex compact set is removable, irrespective of the boundedness of the
function. After that, studies extending these results were made by researchers
in complex analysis. Among them we mention that Hartogs’ theorem was gen-
eralized by these people to any pair K ⊂ U , where K is the part of a convex
compact set lying in a half space and U is a neighborhood (although this form of
the assertion also bears Hartogs’ name nowadays). See Struppa [1] for a detailed
history of these.

In 1952 Bochner [1] gave a new proof of Hartogs’ theorem employing the
notion of an overdetermined system of differential equations. This initiated an
abundant study of the problem of continuation of solutions in the theory of partial
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differential equations. In particular, a satisfactory generalization of the Hartogs
theorem was given by Ehrenpreis [1], Malgrange [2], Palamodov [1], Komatsu [1].
We present here a typical result:

Theorem A. Let K be a convex compact subset of Rn and let U be an open
neighborhood. Then for a matrix P (D) of linear partial differential operators with
constant coefficients, the following are equivalent :

1) Every hyperfunction solution u of the system P (D)u = 0 defined in U \K
can be continued to U .

2) Ext1(Coker tP,P) = 0.

Here P denotes the ring of polynomials in ζ (or D) and tP denotes the transposed
matrix of P (ζ). The continuation is unique if and only if Hom(Coker tP,P) = 0.

We emphasize that we took hyperfunction solutions here because of the sim-
plicity of the corresponding result. If we take distribution solutions, we have to
replace K by an open set, as in Malgrange, or introduce a notion related to an
inductive limit around the set K, as in Palamodov. This annoyance comes from
the non-extendibility of general distributions from an open set, and arises only
when Hom(Coker tP,P) 6= 0. The matter is similar for infinitely differentiable so-
lutions, but then an additional restriction that the interior of K must be non-void
is required, as we shall see below. In any case, note that the above theorem con-
cerns systems. Since in this talk we mainly treat single equations, we will not
give definitions for these notions concerning systems. Notice only that for a single
operator P , Coker tP = P/tPP, Ext1(Coker tP,P) ∼= P/PP, and this latter is 0
if and only if P is non-zero constant. Also note that Hom(Coker tP,P) = 0 if and
only if P = 0. These facts have already been observed in Ehrenpreis [1].

If we consider a sufficiently regular solution with a thin singularity K, then
taking the equation D1u = 0 as an example, we can easily see that the situation of
continuability of solutions will differ greatly because of the “unique continuation
property”. Grushin [2] gave the following wide class of single equations which
admit this property:

Theorem B. Let P (D) be a single linear partial differential operator with
constant coefficients. Assume that every irreducible factor of P has a simple char-
acteristic direction. Then every isolated singularity of infinitely differentiable so-
lutions of P (D)u = 0 is removable.

Our study was to clarify this phenomenon from as general a viewpoint as
possible. This is a particular case of the continuation problem belonging to cat-
egory (2b) in our classification at the beginning. In the sequel we shall restrict
our talk mainly to continuation of real-analytic solutions. (Some of the results are
extended to quasi-analytic solutions. See Abramczuk [1].) We list here the main
results among them:



CONTINUATION OF REGULAR SOLUTIONS 185

Theorem C (Kaneko [1], [6]). Let K be a convex compact set and let U be
its neighborhood. For a linear partial differential operator P with constant coeffi-
cients, the following are equivalent :

1) Every real-analytic solution of P (D)u = 0 defined on U \K can be continued
to U .

2) P has no elliptic irreducible factor.

There is a version for systems (Kaneko [1], II). It suffices to replace P by
Ext1(Coker tP,P) in 2). To assure the real analyticity of the continued solution,
however, we must assume Hom(Coker tP,P) = 0, which is automatic for single
operators. The condition of convexity of K can be relaxed to the connectedness of
Rn\K (Kaneko [3]). The result contains as a particular case Severi’s generalization
of Hartog’s theorem to real-analytic functions which are holomorphic in some of
the variables (Severi [1]).

In order to state a variant of non-compact type K we shall say in general that
K ⊂ U is a Hartogs pair if K is the intersection of a convex compact set with
the half-space xn < 0, and U is an open neighborhood. Actually, the convexity of
K can be replaced by the connectedness of {xn < 0} \K as above. We shall give
an explanation, however, for the simplest situation.

Theorem D (Kaneko [14]). The following are equivalent :

1) The continuation of real-analytic solutions holds for every Hartogs pair.
2) For any A, a > 0 we can find B ≥ A, b < a, δ > 0 such that the following

Phragmén–Lindelöf type principle holds for global holomorphic functions on every
irreducible component Nλ of the variety N(P ) := {ζ ∈ Cn ;P (ζ) = 0}: If F (ζ)
satisfies, for any ε > 0,

(α) |F (ζ)| ≤ Cε exp(ε|ζ|+A|Im ζ ′|+ a(Im ζn)−) for ∀ζ ∈ Nλ ,
and , for any ε > 0,

(β) |F (ζ)| ≤ Cε exp(ε|ζ|+A|Im ζ ′|+ b|Im ζ|) on Nλ∩{|Im ζ| ≤ δ(|Re ζ|+ 1)} ,
then it satisfies, for any ε > 0,

(γ) |F (ζ)| ≤ Cε exp(ε|ζ|+B|Im ζ ′|+ b|Im ζ|), for ∀ζ ∈ Nλ .
Here (t)− := max{−t, 0} and ζ ′ = (ζ2, . . . , ζn−1).

The above presentation imitates Hörmander’s work [1] on the global solvability
of real-analytic solutions, and was given rather recently. Our first works were on
concrete sufficient conditions (Kaneko [2]). We give them here in a later-improved
form.

Theorem E. The continuation of real-analytic solutions for any Hartogs pair
holds if every irreducible factor Q satisfies one of the following :

1) There exists a sequence of directions ϑk tending to dxn such that Q is
hyperbolic in every direction ϑk.
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2) Q(D) has the principal part Qµ(D) which does not contain Dn and which
is elliptic with respect to the variables actually contained in Qµ(D).

3) Q(D) is of second order and has real principal part independent of Dn.
4) The operator Q(D) itself does not contain Dn.

Hyperbolicity is here understood in the weakest sense, i.e. that for the principal
part. The following theorem says that hyperbolic operators are only generic ones
in this context:

Theorem F. If dxn is a non-characteristic direction of P (D) and if the
extension of real-analytic solutions holds for a Hartogs pair K ⊂ U such that
K ∩ {xn = 0} has a non-void interior as a set in Rn−1, then P (D) is hyperbolic
in the direction dxn.

The heat equation D2
1 + . . . + D2

n−1 + iDn is, however, a more interesting
example of the above theorem. The concrete meaning of our abstract criterion in
Theorem D for such degenerate cases is not yet very clear. It is an interesting,
open question if it depends only on the principal part or not.

For the heat equation and the time-evoluting direction we can extend this re-
sult to equations with real-analytic coefficients employing the analytic semigroup
theory. It is very plausible that the same is true in the opposite time direction,
too, or for Schrödinger type equations. But we have no idea of tools for these for
the moment.

If we consider a Hartogs pair with a thin set K, we can considerably enlarge
the class of operators admitting the continuation of solutions:

Theorem G. Let K be contained in the hyperplane x1 = 0 which is non-
characteristic with respect to P (D). Assume that every root τ(ζ ′) of P (τ, ζ ′) = 0,
where ζ ′ = (ζ2, . . . , ζn), satisfies the estimate

|Im τ(ζ ′)| ≤ ε|ζ ′|+ b|Im ζn|+ Cζ2,...,ζn−1,ε .

Then every real-analytic solution of P (D)u = 0 in U \K can be continued to U .

This theorem, first proved by Fourier analysis, lies halfway to micro-local
analysis. It was later reproved by micro-local analysis based on the following result
on the propagation of regularity along the boundary and the Kashiwara–Kawai
theorem of Holmgren type, which replaces the Phragmén–Lindelöf principle in
Fourier analysis:

Theorem H (Kaneko [9]). Assume that P (D) satisfies the same condition
as in the above theorem. Then the boundary values uk(x′) = Dk

1u|x1→±0, k =
0, . . . ,m − 1, of every real-analytic local solution u of P (D)u = 0 defined on
±x1 > 0 satisfy the following phenomenon of propagation of micro-analyticity :
The set

m−1⋃
k=0

S.S. uk(x′) ∩ {xn = const} × {± dxn}

cannot be compact.
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Once the micro-local approach is adopted, it is straightforward to generalize
the problem to equations with variable coefficients. Actually the following results
were given even earlier than the above somewhat delicate result:

Definition I. Consider the set of points (x, ξ′ dx′) ∈ {±x1 > 0} × Sn−2

such that the characteristic equation Pm(x, ζ1, ξ′) = 0 for ζ1 has at least one root
with positive (resp. negative) imaginary part. Take its closure in Rn×Sn−2 and
restrict it to S = {x1 = 0}. We let V +

S,A(P ) (resp. V −S,A(P )) denote the set of
points (x′, ξ′ dx′) ∈ Rn−1 × Sn−2 obtained in this way.

Theorem J. Let u be a real-analytic solution of Pu = 0 defined on ±x1 > 0.
Then its boundary values at x1 → ±0 have S.S. contained in V ±S,A(P ).

Corollary K. Let K = {xn ≥ ϕ(x′)} ∩ {x1 = 0}, where ϕ is a function of
class C1 such that ϕ(0) = 0, ∇ϕ(0) = 0. If either of (0,± dxn) is outside the set
VS,A(P ) := V +

S,A ∪ V
−
S,A, then every real-analytic solution of Pu = 0 defined in a

neighborhood of the origin outside K can be continued as a hyperfunction solution
to a whole neighborhood of the origin.

Note that without the assumption of “convexity” for K we need not have
the propagation of real analyticity, hence the continued solution need not be
real-analytic. This result covers the generic case. Some more delicate cases are
treated by Schapira [1], [2], [3], Kataoka [1], Kaneko [7], Ôaku [2], Zampieri [1],
Uchida [1], Uchida & Zampieri [1] etc. and are still in progress.

Changing the viewpoint, we try to study what kind of singularities are actually
presented by real-analytic solutions. For this purpose it is necessary to consider
singularities of minimal dimension because those of higher dimension may be as
complicated as will be by means of superposition.

Theorem L. Let rS(P ) denote the minimal value of the codimension in Sn−2

of concentric subspheres contained in the generic fiber of VS,A(P ). Suppose that
there exists a real-analytic solution u to the equation P (x,D)u = 0 such that u
is defined outside C but cannot be continued to a neighborhood of C, even as a
hyperfunction solution. Then the conormals of C must be contained in VS,A(P ).
(We call such C weakly timelike.) Hence in particular dimC ≥ rS(P ). Further ,
if dimC = rS(P ), it follows that C is a real-analytic submanifold.

The assertion about dimension is a direct consequence of the preceding theo-
rem. The last statement on the analyticity follows from the following generaliza-
tion of a classical result of Hartogs:

Lemma M. Let F (z, τ) be a function holomorphic on a domain obtained from
the polydisc C×∆ by removing a closed subset B whose section Bτ with τ = const.
is always compact and reduces to a point {ϕ(t)} when τ = t is real. Then ϕ(t) is
real-analytic unless F (z, τ) can be continued to the whole polydisc.

This lemma was proved by T. Ohsawa (see Kaneko [11]). Similar results
were also given by Sadullaev & Chirka [1]. These depend on the Oka–Nishino–
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Yamaguchi theory on the distribution of parabolic Riemann surfaces, which may
itself be considered as belonging to the field of continuation problems. We also
note a work of Kawai [4] which gave a new interpretation to Hartogs’ original
theorem from the viewpoint of partial differential equations.

As a converse to the above we have the following:

Theorem N. Let r0(P ) denote the minimal value of the dimension of smooth
submanifolds in Rn which are timelike, i.e. have only non-characteristic conor-
mals. If C is a real-analytic timelike submanifold of dimension r0(P ), we can
find a real-analytic solution u of Pu = 0 defined outside C which has C as non-
removable singularity.

There is some gap between the two theorems. Generically, Theorem N covers
the interior of the region treated by Theorem L. Besides, there is one significant
defect compared to Fourier analysis or the Fundamental Principle in the case of
constant coefficients: the irreducible components are not dealt with well in these
results. We have some remedy for this (the Fundamental Principle for operators
with variable coefficients at the vertex of a cone). This idea was sketched in
Kaneko [10]. In the case of a thin singularity K a concrete result is given in
Kaneko [8] but is not yet sufficiently well developed. See also a recent work of
Uchida [1] which solved this problem for a class of operators containing the wave
operator at the edge of a thick wedge.

The idea of the micro-localization of the problem of continuation of solutions is
explained in our former survey Kaneko [5]. Further development on the analyticity
of a minimal dimensional singularity is explained in a more recent survey Kaneko
[12], [16].

We now consider how our study relates to other types of continuation prob-
lems listed at the beginning. Problems of type (1) have a different origin, coming
from hyperbolicity: A solution can be continued to any hyperbolic direction (pre-
serving the regularity of the solution) across a hypersurface. When we consider a
generalization of Theorem A to non-compact K, we must also take into account
this hyperbolicity, as is already pointed out in Malgrange [2]. A result is as follows:

Theorem O (Kaneko [2]). Let K be the part in xn<0 of some convex compact
set , and let U be a neighborhood of K. Then the following are equivalent :

1) Every hyperfunction solution u of the system P (D)u = 0 defined in U \K
can be continued to U .

2) Ext1(Coker tP,P) is hyperbolic in the direction dxn, and its propagation
cone C satisfies

∀a ∈ K, ({a}+ C) ∩ {xn < 0} ⊂ K .

To our surprise, it was revealed that after having started with an apparently
very different method via Fourier analysis, we came back to the hyperbolicity at
the micro-local level. Thus these methods are, grosso modo, similar as regards
the existence of characteristics.
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Continuation of holomorphic solutions in the complex domain is also a problem
in the category of hyperbolicity. We shall not discuss this topic, but list some
references: Kiselman [1], Zerner [1], Bengel [1], Bony & Schapira [1], Tsuno [1],
[2], Pallu de la Barrière [1], Presson [1], [2], Tajima [1], etc. These works are
not directly related to ours. (It is too much easy to suppose that a result of
continuation in the complex domain may directly imply one for real-analytic
solutions.) But they have important connections with ours in the sense that they
provide some of results on the propagation of micro-analyticity.

The study of removable singularities with growth condition posed on the solu-
tions around the singularity is just a successor to the original theorem of Riemann.
In this direction, studies were made to weaken the boundedness assumption or
to enlarge the singularity set from isolated points to those of capacity zero etc.,
and for general elliptic equations, even non-linear ones. We shall not discuss these
but refer to a good survey by Polking [1]. We remark here on two topics which
are missing in his survey: Some results which may be classified into this category
are of particular interest even to our present problem. For example, the following
result of Grushin [1] rather inspired us all at the outset (see the similarity of the
statement with Theorem C):

Theorem P. Let P be a single linear partial differential operator with constant
coefficients. The following are equivalent :

1) Every weak isolated singularity of infinitely differentiable solutions of
P (D)u = 0 is removable.

2) P has no hypoelliptic irreducible factor.

Here weak singularity means that the solution can be extended as a distribu-
tion to the singularity set. For this it is sufficient that the solution is of growth
at most O(|x − a|−N ) at the singularity a, for the some finite N . Palamodov
[1] generalized this result to the case of systems, replacing condition 2) by the
one for Ext1(Coker tP,P). There are still some isolated results in this category,
such as Chudov [1] etc. of which clarification from a general viewpoint would be
interesting. A micro-local approach to the study of capacity arguments would
also be interesting. Another topic is that for some non-linear elliptic equations
isolated singularities become removable irrespective of the boundedness of the
solution thanks to the non-linear effect. See e.g. Finn [1]. We expect that the
significance of this work to the recent study of the one-point blowing up of solu-
tions to non-linear equations will soon be fully appreciated, and may possibly be
related to micro-local analysis.

In closing our general survey, we call readers’ attention to our terminology.
Our use of singularity of the solution is different from its usual use in the theory
of partial differential equations: Singularity in our sense implies that the solu-
tion does not satisfy the equation at the singularity set in any reasonable sense,
whereas in its usual meaning it implies that the solution satisfies the equation but
only lacks the regularity under consideration. Our use is rather consistent with
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the one in classical complex analysis. For elliptic equations, there is no ambiguity
between these two, because once u is a solution it must be very regular. Since we
mainly treat non-elliptic equations we need to avoid confusion. In our study we
first look for the continuation of solutions in its weakest sense, namely as hyper-
function solutions. We then examine if we can assure the same regularity as the
original solution to the continued one.

Appendix. A proof of Theorem C. In order not to finish this talk without
substantial discussion, we present here a sketch of the proof for Theorem C in the
introduction. Our method is based on Fourier analysis. It starts with Grushin’s
idea of representing the obstruction to the continuation via spaces of holomorphic
functions on the variety of zeros of P (ζ):

N(P ) := {ζ ∈ Cn ; P (ζ) = 0}
First we give our special notation.

For an open set U we let AP (U) denote the space of real-analytic solutions
of P (D)u = 0 in U . Let K ⊂ U be a pair of a convex compact set and its
neighborhood. Then the quotient space

(A.1) AP (U \K)/AP (U)

represents the obstruction to continuation of real-analytic solutions from U \K
to U . We also consider auxiliary spaces of hyperfunction solutions BP (U) etc.
Let B[K] denote the space of hyperfunctions with supports in K. Since BP (U)∩
B[K] = 0, corollary to Holmgren’s uniqueness theorem, we can consider BP (U) ⊂
BP (U \K). Thus the quotient space BP (U \K)/BP (U) represents the obstruction
to continuation of hyperfunction solutions. Further, since BP (U) ∩ A(U \K) =
AP (U), which is a kind of propagation of real analyticity, we consider AP (U \
K)/AP (U)⊂BP (U\K)/BP (U). In other words, even for the continuation of real-
analytic solutions it suffices to see its possibility as hyperfunction solutions. Let
u ∈ BP (U \K). In view of the flabbiness of B, we can extend it to a hyperfunction
[u] on U . Then P (D)[u] becomes an element of B[K] which is well defined modulo
P (D)B[K]. This ambiguity disappears when we apply the Fourier transformation
and restrict the result to the variety N(P ). Thus we obtain the canonical mapping,
which we shall call the Grushin representation:

(A.2) BP (U \K)/BP (U)∼→B̃[K]{N(P )} .

Here B̃[K]{N(P )} denotes the space of global holomorphic functions on the va-
riety N(P ) satisfying the same growth condition as the Fourier image of B[K].
The latter is given by the Paley–Wiener–Ehrenpreis theorem: for any ε > 0 there
exists Cε > 0 such that

(A.3) |F (ζ)| ≤ Cεeε|ζ|+HK(Im ζ) ,

where HK(η) is the supporting function of K. The Fundamental Principle is the
statement that (A.2) is an isomorphism if P (ζ) is irreducible. As a matter of fact,
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modification for the case when P (ζ) is not irreducible is easy, but we shall assume
the irreducibility of P for the sake of simplicity.

Now we are interested in the image of the subspace (A.1) under the mapping
(A.2). Actually, it consists of functions satisfying

(A.4) |F (ζ)| ≤ Ce−δ|ζ| for |Im ζ| ≤ δ(|Re ζ|+ 1)

for some δ > 0. This estimate comes from the real-analytic regularity of the solu-
tion. In Kaneko [1] we first proved this employing differential operators of infinite
order of local type, then reproved it in Kaneko [6] by means of an approximately
real-analytic sequence of cut-off functions. Here we give a new proof employ-
ing Fourier hyperfunctions. This method was exploited in Kaneko [13] to treat
non-compact K. Note that all these three techniques are considered to be substi-
tutes for the use of cut-off functions in the C∞ category. Let u ∈ AP (U \K), and
let [u] ∈ B(U) be an extension. A result in the theory of Fourier hyperfunctions
assures that we can then find v ∈ B(Rn) such that

1) [u]− v is real-analytic in U .
2) v extends holomorphically to a neighborhood of Rn \K which contains a

set of the form |Im z| ≤ δ|Re z| − 1/δ on which v satisfies |v(z)| ≤ Ce−δ|z|.
A hyperfunction satisfying the condition 2) will simply be called a section of ≈O

on Dn \K. Actually, this is a sheaf on the directional compactification D2n of Cn
whose stalks at points in Cn agree with those of O, and those at infinity consist
of the boundary values of holomorphic functions satisfying the growth condition
just described in the above condition 2). The space ≈O(Dn) of global sections of
this sheaf on the “real axis” Dn just consists of functions satisfying (A.4) for some
δ > 0. It has natural structure of (DFS)-space, and it is stable under the classical
Fourier transform. The dual Q̃(Dn) is bigger than the space S ′ and the Fourier
transform can be extended to it. It is localized to a sheaf Q̃ on Dn, which agrees
with the sheaf B of hyperfunctions on Rn. The existence of a modification v as
above follows from the flabbiness of the quotient sheaf Q̃/≈O on Dn. We have the
following convenient criterion to measure the size of the analytic singular support
K via the Fourier transform:

Lemma A.1 (Kawai [1]). Let K be a convex compact set. For v ∈ Q̃(Dn), the
following are equivalent :

1) v(x) ∈ ≈O(Dn \K).
2) (Fv)(ζ) is a real-analytic function which, for any δ > 0, can be holomor-

phically extended to a conic neighborhood |Im ζ| ≤ Cδ(|Re ζ| + 1), and there it
satisfies, for any ε > 0,

|(Fv)(ζ)| ≤ Cεeε|ζ|+HK(Im ζ)+δ|Im ζ| .

Now consider w := P (D)[u]− P (D)v. By the assumption w belongs to A(U)
and also to ≈O(Dn \K). Hence w ∈ ≈O(Dn). Because on some domain of the form
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|Im ζ| ≤ δ(|Re ζ|+ 1) we have

F(P (D)[u]) = P (ζ)F(v) + Fw = Fw for P (ζ) = 0 ,

we conclude that F(P (D)[u]) is exponentially decreasing on N(P ) in the real
direction.

The next step is to examine if such a function can exist on N(P ). If it is on
the free space this is denied by a theorem of Carlson extending the Phragmén–
Lindelöf principle. For a general variety N(P ), it depends on the existence of a
real point at infinity. It is rather obvious that if N(P ) contains no real points
at infinity, then P becomes elliptic, in which case (A.1) contains a non-trivial
element, e.g. E(x − a), where E is the fundamental solution of P and a ∈ K.
This is equivalent to saying that the function F (ζ) ≡ 1 on N(P ) satisfies (A.4)
when P is elliptic. Assume to the contrary that N(P ) contains a real point at
infinity. After a real-linear coordinate transformation, we can assume it to be
(0, 0, . . . , 0, 1), hence Pm(0, 0, . . . , 0, 1) = 0 and further Pm(1, 0, . . . , 0) 6= 0. Then
we can find a function τ(ζ ′) defined on, say,

(A.5) {ζ ′ ∈ Cn−1 : |ζ ′′| < δ, Im ζn > 1/δ} ,
where ζ ′′ = (ζ2, . . . , ζn−1), ζ ′ = (ζ ′′, ζn), such that for each fixed ζ ′′, τ(ζ ′) is
holomorphic in ζn and satisfies

1) P (τ(ζ ′), ζ ′) = 0,
2) |τ(ζ ′)| ≤M(|ζn|+ 1),
3) Im τ(ζ ′) = o(|ζn|).
Then G(ζn) := F (τ(ζ ′′, ζn), ζ ′′, ζn) becomes a holomorphic function of one

variable satisfying the assumption of Carlson’s theorem. Especially important is
the fact that thanks to the condition 3) |Re ζn| only appears to small order in
the estimate of G on substitution of ζ1 = τ(ζ ′). Hence G(ζn) vanishes identically.
Since the set of points (τ(ζ ′), ζ ′) corresponding to (A.5) is open in the irreducible
variety N(P ), we conclude that F (ζ) ≡ 0. Namely, the solution can be continued
to U .
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in: Geometrical and Algebraical Aspects in Several Complex Variables, Editel, Rende, 1991,
155–167.

K. Kataoka [1] Micro-local theory of boundary value problems II , J. Fac. Sci. Univ. Tokyo
Sect. 1A 28 (1981), 31–56.

T. Kawai [1] On the theory of Fourier hyperfunctions and its applications to partial differential
equations with constant coefficients, ibid. 17 (1970), 467–517.
[2] Removable singularities of solutions of systems of linear differential equations, Bull.
Amer. Math. Soc. 81 (1975), 461–463.
[3] Extension of solutions of systems of linear differential equations, Publ. RIMS Kyoto
Univ. 12 (1976), 215–227.
[4] A differential equation theoretic interpretation of a geometric result of Hartogs, Proc.
Amer. Math. Soc. 98 (1986), 222–224.

C. O. Kise lman [1] Prolongement des solutions d’une équation aux dérivées partielles à coeffi-
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tielles, C. R. Acad. Sci. Paris 272 (1971), 1646–1648.


