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I want to present some results on the regularity for harmonic maps between
a surface of dimension two and a Riemannian manifold.

First of all, we recall what harmonic maps between Riemannian manifolds
are. Let (M, g) and (N , g) be two Riemannian manifolds of dimension m and
n respectively, and assume that N is compact and is isometrically embedded in
some Euclidean space Rk (which is always possible thanks to the Nash–Moser
theorem). We introduce the Dirichlet functional on the set of maps between M
and N . To do this we define the energy density of a map u from M into N at
any point x of M by

e(u)(x) = 1
2hij [u(x)]gαβ(x)uiαu

j
β

if we use local coordinates onM and N . We may alternativately write the energy
density by using the Euclidean structure of the space Rk:

e(u)(x) = 1
2g
αβ(x)〈uα, uβ〉 .

Here uα is the partial derivative ∂u/∂xα. Furthermore, we let the Riemannian
volume element be

dvg(x) =
√

det gab(x) dx1 . . . dxm .

Then the energy of a map u is

E(u) =
∫
M

e(u)(x) dvg(x) .

The function space on which this functional is defined is

H1(M,N ) = {u ∈ H1(M,Rk) | u ∈ N a.e.} .

[175]
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Consider some tubular neighbourhood V of N in Rk and let r : V → N be a
smooth retraction of V onto N . Given a map u in H1(M,N ), for any test map
ϕ in C∞c (M,Rk), and for sufficiently small real ε, u + εϕ takes its values in V.
Therefore we may consider r(u+ εϕ) which belongs to H1(M,N ). We say that
u is weakly harmonic if and only if

(1) lim
ε→0

E[r(u+ εϕ)]− E(u)
ε

= 0 ,

for any test map ϕ. The Euler equation associated with this type of critical points
is

(2) ∆Mu+A(u)(∇u,∇u) = 0 ,

where ∆M is the Laplace operator on (M, g), and A depends on the second
fundamental form of the embedding of N into Rk.

There exists a second type of critical points for E which we will call Noether
harmonic maps, because the associated Euler equation may be deduced by using
Noether’s theorem from the invariance of the energy functional under the group
of diffeomorphisms ofM. Consider a smooth family Φt of diffeomorphisms ofM
such that Φ0 = Id. Then u is Noether harmonic if and only if

(3) lim
t→0

E(u ◦ Φt)− E(u)
t

= 0 ,

for any Φt. The associated Euler equation is that the stress-energy tensor S =
e(u)g − u∗(h) is divergence free [BE], [B] (here u∗ denotes the pull-back).

We want to deal here with the regularity question for weakly harmonic maps,
or for Noether harmonic maps in the case whereM is a two-dimensional surface.
Note that weakly harmonic maps are not regular in general since for example
the map x → x/|x| from the unit ball of R3 into S2 is weakly harmonic but not
regular at the origin. However, in the case whereM is a surface, regularity results
are known in the following situations:

a) u is energy minimizing (Morrey [M]),
b) u is weakly harmonic and conformal (Grüter [Grü]),
c) u is stationary, i.e. weakly harmonic and Noether harmonic (Schoen [Sc]),
d) u is weakly harmonic and its image is contained in a geodesically convex

ball (Hildebrandt, Kaul and Widman [HKW]),
e) removability of isolated singularities of harmonic maps (Sacks and Uhlen-

beck [SaU]).

In the case where M is a surface, the energy functional is invariant under
conformal transformations, and we may therefore always suppose that locally the
metric is flat. Indeed, in complex isothermal coordinates, z = x + iy and using
the notations ux = ∂u/∂x and uy = ∂u/∂y we have

e(u)(z) dvg(z) = (|ux|2 + |uy|2) dx dy ,
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thus equation (2) becomes

(3) ∆u+A(u)(∇u,∇u) = 0

where ∆ = ∂2/∂x2 + ∂2/∂y2. The Euler equation associated with the Noether
harmonic maps is that the quadratic differential form

(4) ω = [|ux|2 + |uy|2 − 2i〈ux, uy〉](dz)2

is holomorphic (ω is called the Hopf differential ; note that ω ≡ 0 if and only if u
is weakly conformal).

The first result I want to present is related to Noether harmonic maps which
are homeomorphisms.

Theorem 1 [H1]. Let u be in H1(M,N ) where M and N are Riemannian
surfaces of the same genus. Assume that

(i) The Hopf differential ω is holomorphic.
(ii) u is quasi-conformal , i.e. there exists a real K in (0, 1) such that

|∂u/∂z| ≤ K|∂u/∂z| .
(iii) u is a homeomorphism between M and N .

Then u is a harmonic diffeomorphism.

R e m a r k. a) In contrast with this result note that J. Jost gave in [J] an
example of a Lipschitz map between the two-dimensional torus and the two-
dimensional sphere which satisfies (i) but which is not smooth.

b) Since u is a harmonic diffeomorphism it follows from [CH] that u is energy
minimizing.

The second result that I want to present is about the special case where (N , h)
is a round sphere, i.e. a sphere Sn equipped with the canonical metric. In this
case (3) becomes

∆u+ u|∇u|2 = 0 ,
where ∆ is the usual Laplace operator on R2. Then we have the following:

Theorem 2. Let M be a Riemannian surface and let Sn be the canonical
sphere of dimension n. Then any weakly harmonic map u in H1(M, Sn) is regular
inside M.

This theorem was proved in [H2] (see also [H3]). Here the proof is made shorter
and simpler thanks to remarks of P.-L. Lions. In higher dimensions we cannot
obtain the same results. However, we may ask if a weakly harmonic map defined
on an m-dimensional manifold Mm into a sphere which belongs to W 1,m (the
space of maps which belong to Lm and whose first derivatives belong to Lm) is
regular or not. In [H3] we also prove

Theorem 3. Let Mm be a Riemannian manifold of dimension m ≥ 3. Then
any weakly harmonic map in W 1,m(Mm, Sn) is regular inside Mm.
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Another extension of Theorem 2 is to replace the sphere by another Rieman-
nian manifold. In [H3] we prove that the two results above are true if one replaces
the sphere by some compact Riemannian manifold on which a Lie group acts
transitively by isometries. A basic tool for these extensions is Noether’s Theo-
rem. Very recently we found in [H4] the way to generalize Theorem 2 to the case
of a manifold without symmetry, where Noether’s Theorem is not available.

Also, note that in [E] L. C. Evans used our method in Theorem 2 to prove that
any map in H1(Ωm, Sn) which is stationary (i.e. weakly harmonic and Noether
harmonic) is regular on Ωm/S where S is a closed subset of Ωm whose Hausdorff
measure of dimension m− 2 is zero.

We now give a short description of the proofs of Theorems 1 and 2.

S k e t c h o f t h e p r o o f o f T h e o r e m 1. There are two cases. The first
is when ω ≡ 0; then u is conformal and the regularity follows from the result of
M. Grüter [Grü]. The second case is when ω 6≡ 0. Then since ω is holomorphic,
ω−1({0}) is a finite collection of points {a1, . . . , ak}. By the result on removability
of isolated singularities of [SaU] it suffices to show that u is regular everywhere
outside ω−1({0}). Let B1 be an open ball in M2 \ ω−1({0}). We will show that
the restriction of u to B1 is minimizing among maps from B1 into B2 ≡ u(B1),
which is enough to prove that u is regular because of Morrey’s result [M].

Because of the density results it suffices to show that for any map f of class
C1 from B1 to B2 which agrees with u on ∂B1 we have

EB1(f) ≥ EB1(u)

where EB1(f) =
∫
B1
e(f)(z) dvg(z) =

∫
B1

1
2 |∇f |

2(z) dx dy.
We assume for the moment that u is of class C1 (we will explain briefly at the

end why the computations which follow are valid in our case). Write f = u ◦ η
where η goes from B1 to B1. We use the notations η = (ηx, ηy), ϕα = ∂ϕ/∂α for
α = x or y, and 〈uα, uβ〉 = h(uα, uβ). Then we have

|∇f |2 =
∑
α=x,y

(ηxα, η
y
α)
(
|ux|2 〈ux, uy〉
〈ux, uy〉 |uy|2

)(
ηxα
ηyα

)
.

Equivalently,

|∇f |2 =
∑
α=x,y

|ux|2 + |uy|2

2
(ηxα, η

y
α)
(

1 0
0 1

)(
ηxα
ηyα

)
(5)

+
∑
α=x,y

(ηxα, η
y
α)

(
|ux|2−|uy|2

2 〈ux, uy〉
〈ux, uy〉 |uy|2−|ux|2

2

)(
ηxα
ηyα

)
.

Now let us use (i). Since ω 6= 0 on B1 there exists a holomorphic map g from B1

into C such that

(6) g(z)2 = |ux|2 − |uy|2 − 2i〈ux, uy〉 .
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Let θ(z) = Re{
∫ z
z0
g(t) dt}. θ is constructed in such a way that g(z)2 = (θx)2 −

(θy)2−2iθxθy (formally the same expression as (6) where u is replaced by θ). We
can also write

|∇(θ ◦ η)|2 =
∑
α=x,y

(θx)2 + (θy)2

2
(ηxα, η

y
α)
(

1 0
0 1

)(
ηxα
ηyα

)
(7)

+
∑
α=x,y

(ηxα, η
y
α)

(
(θx)2−(θy)2

2 θx, θy

θx, θy
(θy)2−(θx)2

2

)(
ηxα
ηyα

)
.

Now if we compute the difference between (5) and (7), we find

|∇f |2 = |∇(θ ◦ η)|2 +
|∇u[η(z)]|2 − |∇θ[η(z)]|2

2
|∇η|2 ,

and a straightforward computation shows that λ[η(z)] ≡ |∇u[η(z)]|2−|∇θ[η(z)]|2
is positive. Thus

|∇f |2 ≥ |∇(θ ◦ η)|2 + λ[η(z)]
∣∣∣∣ ηxx ηxy
ηyx ηyy

∣∣∣∣ ,
with equality in the case η = id, i.e. f = u. By integrating by parts over B1 we
get EB1(f) ≥ EB1(u) since θ is real harmonic.

Now to justify these arguments we must show that the chain rule for differ-
entiation of composed functions may be used. But hypotheses (i) and (ii) lead
precisely to the conclusion that u−1 is a Lipschitz map, which is enough to apply
the chain rule. This terminates the proof of Theorem 1.

P r o o f o f T h e o r e m 2. First recall two results which will be very useful.

Lemma 1 (Noether’s Theorem). Let u be a weakly harmonic map in
H1(M2, Sn). Then for any i, j in {1, . . . , n}, the following tangent vector field
bij of class L2 on M2 is divergence free in the distribution sense:

bij = ui graduj − uj gradui .

This fact was already noticed by J. Shatah [Sh], by Y.-M. Chen [Ch] and by
J. Keller, J. Rubinstein, P. Sternberg [KRS]. It can be verified by direct compu-
tation. However, this is nothing else but application of Noether’s Theorem to the
case of harmonic maps into a sphere. Here the symmetries which are used are the
isometries in SO(n+ 1) which act on Sn.

We will also use the following nice lemma of H. Wente [W] whose proof can
be found in the Appendix of [BC], or which can be deduced from recent results of
R. Coifman, P.-L. Lions, Y. Meyer and S. Semmes on Hardy spaces (see [CLMS]
or [E]).

Lemma 2. Let v and w be two maps in H1(B2,R) where B2 is the unit open
ball of R2 and let ϕ be the solution of

∆ϕ = vxwy − vywx on B2 , ϕ = 0 on ∂B2 .
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Then ϕ is in H1(B2,R) ∩ C0(B2,R).

Now let us turn to the proof of Theorem 2. Here since the expected result is
local we may work on the unit open ball B2 of R2. Let u be a map in H1(B2, Sn)
which is weakly harmonic. We observe that since the norm of u is constant we
have 〈u, gradu〉 = 0, and thus we can express gradu in the following way:

gradui =
n+1∑
j=1

(uj)2 gradui − ujui graduj =
n+1∑
j=1

ujbji ,

where the bji were introduced in Lemma 1.
Now we compute the divergence of this expression to obtain

(8) ∆ui =
n+1∑
j=1

uj div(bji) + graduj · bji =
n+1∑
j=1

gradui · bji .

Here we used Lemma 1 to get div(bji) = 0. Now we will use Lemma 1 a second
time to conclude that for any indices i and j, there exists a map ϕji in H1(B2,R)
such that

bji = curl(ϕji) =
(
∂ϕji

∂y
,−∂ϕ

ji

∂x

)
,

and if we insert this last expression in (8) we find

∆ui =
n+1∑
j=1

∂uj

∂x

∂ϕji

∂y
− ∂uj

∂y

∂ϕji

∂x
.

Hence we can write ui = vi1 + . . .+ vin+1 + λi where each vij is the solution of

∆vij =
∂uj

∂x

∂ϕji

∂y
− ∂uj

∂y

∂ϕji

∂x
on B2 , vij = 0 on ∂B2 ,

and λi is real harmonic on B2. But from Lemma above each vij is continuous on
the closure of B2 and λi is obviously smooth inside B2, and in conclusion u is
continuous inside B2. Smoothness of u follows then from standard results in [LU]
or from [HKW].
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