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The purpose of this paper is to make a brief review of results obtained in the
theory of variational inequalities for nonclassical operators, namely, of degenerate
hyperbolic and variable type.

1. Introduction. The theory of variational inequalities for elliptic and para-
bolic type operators is quite developed now and there exist many applications
of this theory to various problems arising in mechanics, physics, electrodynamics
etc. [4].

There are rather fewer papers considering variational inequalities for hyper-
bolic type and variable type operators, though there are, at least, two reasons for
investigating such problems. The first one is to extend the theory of variational
inequalities to a wider class of operators, and the second is the well-known phe-
nomenon in the theory of initial-boundary value problems (IBVP) for nonlinear
hyperbolic equations, namely, the blow-up of smooth solutions at finite time (the
so-called “gradient catastrophe”).

Let us present three examples. Consider three strictly hyperbolic equations in
the cylinder QT = (0, T )×D, where D ⊂ Rn is a bounded domain with smooth
boundary ∂D:

L0u ≡ utt −∆xu+ u2 = f(x, t) ,(1.1)

L1u ≡ utt −
n∑
i=1

∂

∂xi
(ai(uxi)) = f(x, t) ,(1.2)

L2u ≡ utt −∆xu+ ϕ(u)ut = f(x, t) .(1.3)

The following IBVPs can be posed: find a smooth solution of (1.1), (1.2) or
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(1.3) in QT , satisfying the initial-boundary value conditions

u(x, 0) = u0(x) ,(1.4)
ut(x, 0) = u1(x) ,(1.5)

u|∂D×(0,T ) = 0 .(1.6)

It is well-known that the IBVP (1.1), (1.4)–(1.6) has no global smooth solution
for some smooth functions u0(x) and u1(x) [11]. It is necessary to use the method
of “potential well” in order to obtain global smooth solutions of (1.1), (1.4)–(1.6),
i.e. “smallness” (in appropriate norms) both of initial data and of the right-hand
side f(x, t) of (1.1) is required.

In the case of the IBVP (1.2), (1.4)–(1.6) there is an example [7] demonstrating
that no “smallness” requirements can “improve” this problem: we can have a
gradient catastrophe for arbitrarily small initial data.

In the case of the IBVP (1.3), (1.4)–(1.6) the existence or nonexistence of a
global smooth solution depends on the sign of ϕ(s), namely, if ϕ(s) ≥ δ > 0,
then there exists a global smooth solution for any smooth initial data and for
any smooth right-hand side, but if ϕ(s) may change its sign, then in general a
blow-up may occur.

It was found out [1, 2, 12] that in those three cases one can pose another
problem—of finding a global smooth solution of a variational inequality with an
appropriate restriction on ut, instead of posing the IBVP. Smooth global solutions
of the variational inequalities corresponding to equations (1.1)–(1.3) exist for any
smooth initial data and for any smooth right-hand sides without any additional
requirements, and these solutions satisfy (1.4)–(1.6).

Now we recall [11] how one can pose a problem of finding a solution of the
variational inequality for the linear wave operator, for example. In the domain
QT we consider the wave equation

(1.7) �u ≡ utt −∆xu = f(x, t)

and the boundary conditions (1.4)–(1.6). Here f(x, t) is a given function.
Let us introduce a convex set of restrictions K ⊂ W

◦
1
2 (D) closed in W

◦
1
2 (D).

The problem consists in finding a function u(x, t) ∈ L∞(0, T ;W
◦

1
2 ) such that

(a) ut ∈ L∞(0, T ;W
◦

1
2 ), utt ∈ L∞(0, T ;L2),

(b) u(x, t) satisfies (1.4)–(1.6),
(c) ut(·, t) ∈ K a.e. on [0, T ],
(d) for all t ∈ [0, T ] and for any v ∈ L∞(0, T ;W

◦
1
2 ) such that v(·, t) ∈ K a.e.

on [0, T ] we have the variational inequality
t∫

0

(�u− f, v − uτ )0 dτ ≥ 0 .

From now on, (·, ·)0 denotes either the inner product in L2(0, 1) or the duality
between some function spaces. The above problem has a unique solution [11].
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We should note that the choice of the convex set K of restrictions and of
appropriate function spaces essentially depends on the type of the hyperbolic
operator, especially in the nonlinear case.

In the 80’s a series of papers [1–3, 8–10, 12] appeared in which hyperbolic
variational inequalities were treated. In these papers various particular cases of
the general operator

(1.8) Lu ≡ k(u)utt −
n∑
i=1

∂

∂xi
(ai(uxi

)) + f(x, t;u, ut)

were considered together with the initial-boundary value conditions (1.4)–(1.6).
Sufficient smoothness of the coefficients of (1.8) was required. Existence theorems
for smooth global solutions of the corresponding variational inequalities were
proved by a correct choice of function spaces and sets of restrictions on ut in
each case. In all those papers the following conditions on the coefficients of (1.8)
were assumed: k(s) ≥ δ > 0, a′i(s) ≥ δ > 0, i = 1, . . . , n (which yields strict
hyperbolicity of L) and k(s) ≡ k0 > 0 if n > 1.

2. Variational inequality for some degenerate hyperbolic operators.
In this section we deal with operators which fail to be strictly hyperbolic. Consider
the rectangular domain Q = (0, T )× (0, 1), the operator

(2.1) M0u ≡ k(ut)utt − uxx − f(x, t)

in this domain and the initial-boundary value conditions

u|t=0 = u0(x) ,(2.2)
ut|t=0 = u1(x) ,(2.3)
u|x=0 = u|x=1 = 0 .(2.4)

Here k(s) ≥ 0 and k(s) can be zero only at isolated points; moreover, k(s) satisfies
the Lipschitz condition on every compact subset K ⊂ R (with a Lipschitz constant
depending on K).

Let us introduce two primitives:

A(s) =
s∫

0

k(σ)σ dσ , B(s) =
s∫

0

√
k(σ) dσ .

We assume that A(s) is a convex function, and A(s) ≥ C0|s|p (p > 1) for any
s ∈ R (C0 is a positive constant).

Let us introduce the convex set of restrictions

K = {z ∈W
◦

1
2 (0, 1) : |zx| ≤ 1 a.e. on [0, 1]} .

The following theorem is valid:

Theorem 1 [5]. Assume that all the above conditions on k(s) hold and that
f, ft ∈ Lp

′
(Q) (here p′ ∈ (1,∞) is such that 1/p + 1/p′ = 1), u0 ∈ W

◦
1
4 (0, 1),
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u1 ∈ K. Then there exists a function u(x, t) ∈ L∞(0, T ;W
◦

1
4 ) such that ut ∈

L∞(0, T ;W
◦

1
4 ), (∂/∂t)(B(ut)) ∈ L2(Q), u(x, t) satisfies (2.2)–(2.4), ut( , t) ∈ K

a.e. on [0, T ] and for any v(x, t) ∈ L∞(0, T ;W
◦

1
4 ) such that v(·, t) ∈ K a.e. on

[0, T ], the variational inequality
t∫

0

(M0u, v − uτ )0 dτ ≥ 0

is valid for all t ∈ [0, T ].

The following question arises: what is meant by saying that u(x, t) satisfies the
initial condition (2.3)? Unfortunately, we can only show that B(ut(t)) → B(u1)
in L2(0, 1) as t → 0+, so the second initial condition is fulfilled not in the usual
sense. But in the case when k(s) ≥ δ > 0 (i.e. M0 is strictly hyperbolic) one can
easily derive that ut(t)→ u1 in L2(0, 1) as t→ 0+.

The proof of Theorem 1 was published in [5]. The penalty method, “ε-regular-
ization”, Galerkin methods and a special technique of obtaining a priori estimates
were used.

3. Variational inequality for a variable type operator. The nonlinear
equation of variable type

(3.1) M1u ≡ uxuxx − uyy = f(x, y)

arises in transsonic gas dynamics. It is usually called the Karman equation.
It is very difficult to pose a correct boundary value problem for (3.1) because

of its nonlinearity, variable type and of the absence of any a priori estimates even
for smooth solutions. There is a paper [13] by S. Pyatkov in which a boundary
value problem of Neumann type was posed for (3.1). He obtained quite a nice
solution of this problem for which ux ≤ 0. We shall treat a case “opposite”, in
some sense, namely, (3.1) in the rectangular domain Q = (0, L)× (0, 1) together
with the initial-boundary value conditions

u(0, y) = ϕ(y) ,(3.2)
ux(0, y) = ψ(y) ,(3.3)
u(x, 0) = u(x, 1) = 0 .(3.4)

Note that we pose “hyperbolic” initial-boundary value conditions despite the
fact that (3.1) is actually a stationary equation. Here x plays the role of the
“time” variable and y is the “space” variable.

Let us introduce two sets of restrictions:

K1 = {z ∈W
◦

1
4 (0, 1) : z ≥ 0 a.e. on [0, 1]} ,

K2 = {z ∈W
◦

1
4 (0, 1) : |zy| ≤ 1 a.e. on [0, 1]} .

The purpose of the first set K1 is evident: we want to fix the type of (3.1),
namely, it is degenerate hyperbolic on the class of solutions for which ux ≥ 0
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a.e. on Q. There is an example [1] where the variational inequality for a second
order hyperbolic operator nonlinear in the principle part with restrictions only
on the first derivative ut occurs to be unsolvable. This is the reason why we must
introduce the second restriction (namely |uxy| ≤ 1) on the mixed second order
partial derivative.

The following theorem is valid.

Theorem 2 [6]. Assume that f, fx ∈ L3/2(Q), ϕ ∈ W
◦

1
4 (0, 1), ψ ∈ K1 ∩ K2.

Then there exists u(x, y) ∈ L∞(0, L;W
◦

1
4 ) such that ux ∈ L∞(0, L;W

◦
1
4 ) and

(∂/∂x)(u3/2
x ) ∈ L2(Q), u(x, y) satisfies (3.2)–(3.4), ux(x, ·) ∈ K1 ∩ K2 a.e. on

[0, L] and for all x ∈ [0, L] and for any v(x, y) ∈ L∞(0, L;W
◦

1
4 ) such that v(x, ·) ∈

K1 ∩K2 a.e. on [0, L] the variational inequality
x∫

0

(M1u− f, v − uξ)0 dξ ≥ 0

is valid.

The proof of Theorem 2 was published in [6]. It is analogous to the proof
of Theorem 1, except that it is possible to derive that ux(x) → ψ in L2(0, 1) as
x→ 0+, i.e. the initial conditions are satisfied in the usual sense.

To conclude, we remark that it would be interesting to consider multidimen-
sional problems like (2.1) and (3.1), but our special technique of obtaining a priori
estimates and using embedding theorems works in the one-dimensional case only.
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