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The existence of a global solution for the Cauchy problem for the nonlinear
wave equation

(1) (∂tt −∆)u = F (u′, u′′) , t ≥ 0, x ∈ R3 ,

is established by S. Klainerman [6] under a suitable algebraic condition called
the null condition on the quadratic nonlinearity in F (u′, u′′). The global or “al-
most global” solution of the corresponding mixed problem has been studied by
Y. Shibata and Y. Tsutsumi [10], P. Datti [1] and P. Godin [2].

The main goal of this work is to study the nonlinear wave equation involving a
linear perturbation of short-range type, i.e. we shall consider the Cauchy problem
for the perturbed wave equation

(2) (∂tt −∆)u+ q(x)x = F (x, u′, u′′) ,

where q(x) is a smooth potential, which is nonnegative and decays sufficiently
rapidly at infinity. More precisely, we assume that

(H1) q(x) ≥ 0 , ∂rq(x) ≤ 0 , |q(x)| ≤ C(1 + |x|2)−2 ,

where ∂r is the radial derivative ∂r =
∑3
j=1(xj/r)∂j , r = |x|.

Even in the simple case q ≡ 0, the results of F. John [5] show that the solution
blows up for some choices of the nonlinearity F . That is why we assume that

(3) F = Q(x, u′, u′′) + C(u′, u′′) ,

where C(v, w) is a smooth function such that C(v, w) = O((|v| + |w|)3) near
(c, w) = (0, 0), while Q has the form

Q(x, u′, u′′) =
∑

1≤α≤2

∑
1≤β≤2

qα,β(x)∂αu∂βu ,(4)

[163]
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∂α = ∂α0
t ∂α1

1 ∂α2
2 ∂α3

3 , ∂0 = ∂t, ∂j = ∂xj
, j = 1, 2, 3.

The quadratic perturbation in (4) is assumed to satisfy the estimate

(H2) |qα,β(x)| ≤ C(1 + |x|)−1 .

Under the assumptions described above we consider the Cauchy problem for the
nonlinear wave equation (2) with initial data

(5) u(0, x) = εu0(x), ∂tu(0, x) = εu1(x) ,

where u0, u1 ∈ C∞0 (R3).
Our main result is the following.

Theorem. Under the assumptions (H1), (H2), there exists a sufficiently small
positive number ε0 such that for 0 < ε ≤ ε0 the Cauchy problem (2), (5) has a
unique global solution.

The main idea of the proof of a similar result for compact linear perturbations
and mixed boundary problems for (1) is due to Y. Shibata and T. Tsutsumi and
it is based on the application of the local energy decay for the corresponding
linear perturbations of the classical wave equation. The presence of a non-compact
perturbation in (2) causes a similar approach to meet essential difficulties. For
this reason we follow another idea proposed by S. Klainerman, namely, we use a
suitable modification of the usual conformal killing vector field

K0u = (1 + t2 + |x|2)∂tu+ 2tr∂ru+ 2tu .

More precisely, we consider the vector field

K = K0 + tξ(∂t + ∂r) + tξ/r ,

where ξ = ξ(r) is a suitable radial function satisfying

(6) 0 ≤ rξ′(r) ≤ ξ(r) , ξ′′(r) ≤ 0, ξ(0) = 0 .

The function ξ(r) serves to compensate the influence of the potential q so that
one can control the L2 norm of the solution as well as the L2 norms of LαZβu,
where Lj = t∂j + xj∂t, j = 1, 2, 3, and

(7) {Z1, . . . , Z8} =
{
∂µ, µ = 0, 1, 2, 3;

Ωkl = xk∂l − xl∂k, 1 ≤ k < l ≤ 3;S = t∂t +
3∑
j=1

xj∂j

}
.

This modification of the conformal vector field allows one to derive a precise L2-L2

conformal estimate of the perturbed linear wave equation

(8) (� + q)u+ γλµ∂λ∂µu = F .

Namely, we have the following
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Proposition 1. Suppose the properties (6) are fulfilled and the assumption
(H1) holds. Let γλµ(t, x), 0 ≤ λ, µ ≤ 3, satisfy the inequalities

(1 + |x|)(1 + t+ |x|)
∑
|β|≤1

|Lβγλµ(t, x)| ≤ δ

for t ≥ 0, x ∈ R3 and some δ ∈ (0, 1). Then the solution u(t, x) of (8) satisfies
the estimate∑
|α|+|β|≤1

‖LαZβu(t, ·)‖2L2 ≤ C
∑

|α|+|β|≤1

‖LαZβu(0, ·)‖2L2

+ C
t∫

0

∫
Rn

F (s, x)Ku(s, x) dx ds

+ Cδ
t∫

0

(1 + s)−1
∑

|α|+|β|≤1

‖LαZβu(s, ·)‖2L2 ds

+ C
t∫

0

(1 + s)−1‖∇t,xu(s, ·)‖L2

∑
|α|+|β|≤1

‖LαZβu(s, ·)‖L2 ds

with some constant C > 0.

To obtain an estimate for higher order derivatives of the solution we use only
the generators (7) of the conformal group in R1+3. The main advantage of this
choice of generators is that the assumption (H1) implies |Zαq(x)| ≤ C(1+ |x|2)−2

for any multiindex α. This basic property enables one to derive a higher order
decay estimate. We avoid the use of the boosts Lj , j=1, 2, 3, because of the decay
of the commutator of Lj and the potential. Even application of the generators
(7) is not sufficient to estimate the L2 norms of the higher order derivatives of
the solution. To estimate the L2 derivatives of order N we consider the modified
scaling

(9) S# = S + ξ∂r + ξ/r ,

where ξ is some function. To control the sup-norm of the solution we need an
L∞-L2 estimate for the linear wave equation involving only the generators chosen
above in (7). To do this we apply the approach proposed in [9] and based on
the estimation of the resolution operator for the linear wave equation (8) with
γλµ = 0.

Let N ≥ 1 be a fixed integer. We introduce the various L2 norms

eN (t, u) =
∑

|α|+|β|≤N+1
|α|≤1

‖LαZβu(t, ·)‖L2 ,(10)
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fN (t, u) =
∑

|α|+|β|≤N
|α|≤1,|γ|=1

‖Lα∂γZβu(t, ·)‖L2 + ‖LαΩγZβu(t, ·)‖L2 ,

gN (t, u) =
∑

|β|≤N,|γ|=1

‖∂γZβu(t, ·)‖L2 ,

as well as some weighted L∞ norms

(11)

{
en,int(t, u) = sup0≤τ≤t

∑
|β|≤n ‖τ2

+Z
βu(τ, x)‖L∞(|x|≤hτ),

en,ext(t, u) = sup0≤τ≤t
∑
|β|≤n ‖τ+τ−Zβu(τ, x)‖L∞(|x|≥hτ),

where n = N/2 + 1, τ± = 1 + |τ ± |x| | and 0 < h < 1 is suitably chosen.
These norms play an important role in our investigation. Assuming the L∞ norms
en,ext(t, u) and en, int(t, u) to be bounded, say

en,ext(t, u) + en,int(t, u) ≤ 1 ,

we prove that the L2 norms (10) satisfy the estimate

(1 + t)−σeN (t, u) + fN (t, u) ≤ η(ε) .

Here σ is a positive constant independent of ε, while η(ε) tends to 0 as ε tends
to 0. The proof of this estimate is based on Proposition 1.

From the representation of the solution one can follow the approach developed
by H. Pecher under the algebraic conditions (H1) imposed on the potential q. This
allows one to derive a suitable L∞-L∞ estimate for the linear wave equation (8)
with γλµ = 0.

Proposition 2. Let u(t, x) be a solution of (2) with initial data (5). There
exists δ > 0 such that for any sufficiently small ε the estimate

en,ext(t, u) + en,int(t, u) ≤ δ
implies

en,ext(t, u) + en,int(t, u) ≤ η(ε) ,
where η(ε)→ 0 as ε→ 0.

P r o o f o f T h e o r e m. The above estimates show that for any T > 0 the
sup-norm

(12) sup
0≤t<T

sup
x∈R3

∑
|α|≤2

|∂αt,xu(t, x)|

is bounded by some constant C > 0, independent of T . The continuation principle
completes the proof of the Theorem.
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[3] L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol. I, Distribution
Theory and Fourier Analysis, Springer, New York 1983.

[4] —, Non-linear Hyperbolic Differential Equations, Lectures 1986–1987, Lund 1988.
[5] F. John, Blow-up for quasi-linear wave equations in three space dimensions, Comm. Pure

Appl. Math. 34 (1981), 20–51.
[6] S. Kla inerman, The null condition and global existence to nonlinear wave equations, in:

Lectures in Appl. Math. 23, Part 1, Amer. Math. Soc., Providence, R.I., 1986, 293–326.
[7] —, Uniform decay estimates and the Lorentz invariance of the classical wave equation,

Comm. Pure Appl. Math. 38 (1985), 321–332.
[8] C. Morawetz, Energy decay for star-shaped obstacles, Appendix 3 in: P. Lax and

R. Phi l l ips, Scattering Theory , Academic Press, New York 1967.
[9] H. Pecher, Scattering for semilinear wave equations with small initial data in three space

dimensions, Math. Z. 198 (1988), 277–288.
[10] Y. Shibata and Y. Tsutsumi, On global existence theorem of small amplitude solutions

for nonlinear wave equations in exterior domains, ibid. 191 (1986), 165–199.


