ON THE EQUIVALENCE BETWEEN LOCALLY POLAR AND GLOBALLY POLAR SETS IN \(\mathbb{C}^n \)

J. Siciak

Institute of Mathematics, Jagiellonian University
Raymonda 4, 30-045 Krakow, Poland

B. Josefson [3] has recently proved that every locally \(\mathbb{C}^n \)-polar set is a globally \(\mathbb{C}^n \)-polar set. Using the method of the proof developed by Josefson we prove that every locally \(\mathbb{C}^n \)-polar set \(E \) is an \(L \)-polar set (i.e. there exists a function \(W \) plurisubharmonic in \(\mathbb{C}^n \) such that \(W = -\infty \) on \(E \) and \(W(x) < \beta + \log^+|x| \) for all \(x \in \mathbb{C}^n \), where \(\beta \) is a real constant).

1. Introduction

Given an open subset \(D \) of \(\mathbb{C}^n \) we denote by \(\text{PSH}(D) \) the family of all functions plurisubharmonic in \(D \). We denote by \(L \) the class of all functions \(U \) plurisubharmonic in \(\mathbb{C}^n \) such that

\[
U(x) < \beta + \log^+|x|, \quad x \in \mathbb{C}^n,
\]

where \(\beta \) is a real constant depending on \(U \) and \(|x| := \max_{\text{indices}} |x_i| \).

The aim of this paper is to prove the following

Theorem. Given any subset \(E \) of \(\mathbb{C}^n \), the following conditions are equivalent:

(a) \(E \) is locally \(\mathbb{C}^n \)-polar, i.e. for every point \(a \in E \) there exist a neighbourhood \(U_a \) of \(a \) and a function \(W \in \text{PSH}(U_a) \) such that \(W = -\infty \) on \(E \cap U_a \);

(b) \(E \) is \(L \)-polar, i.e. there exists a function \(W \) of the class \(L \) such that \(W = -\infty \) on \(E \);

(c) \(E \) is globally \(\mathbb{C}^n \)-polar, i.e. there exists a function \(W \in \text{PSH}(\mathbb{C}^n) \) such that \(W = -\infty \) on \(E \).

The implication (a) \(\Rightarrow \) (c) was a question posed by P. Lelong [4] which has been recently solved by B. Josefson [3]. The main tool of the proof given by Josefson is an "elementary" Lemma on systems of homogeneous linear equations. The same lemma will be basic for the proof of our theorem.

The equivalence of locally polar and globally polar sets in \(\mathbb{R}^n \) with respect to
subharmonic functions is well known. However in the case of C^\ast-polar sets we cannot apply the methods of the classical potential theory.

Functions of the class L found some interesting applications in the theory of analytic functions of several complex variables, in particular in theory of interpolation and approximation by polynomials of several complex variables.

The class L permits to extend the classical notion of the Green function with pole at infinity to the case of C^\ast. It also permits to generalize the notion of the classical logarithmic capacity to the case of C^\ast in such a way that the C^\ast-capacity of a subset E of C^\ast is equal zero if and only if the set E is C^\ast-polar (see [6], [7], [8]).

The class L is a narrow and a very special subclass of the class $PSH(C)$. Nevertheless it follows from the Theorem that if U is any plurisubharmonic function in an open set $D \subseteq C^\ast$ then there exists a function $W \in L$ such that

$$\{ x \in D : U(x) = - \infty \} \subseteq \{ x \in C^\ast : W(x) = - \infty \}.$$

In fact the Theorem says more, namely, if E is any subset of C^\ast such that E is locally of the form $\{ x \in D : U(x) = - \infty \}$ with $U \in PSH(D)$, then $E \subseteq \{ x \in C^\ast : W(x) = - \infty \}$ with $W \in L$. As a direct consequence we get that every locally analytic set $E \subseteq C^\ast$ (i.e. for every point $a \in E$ there exist functions f_1, \ldots , f_l holomorphic in a ball $B(a, R)$ such that $E \cap B(a, R) = \{ x \in B(a, R) : |f_1(x)| + \ldots + |f_l(x)| = 0 \}$) is L-polar.

2. Some known results

We shall recall some known results which will be used in the proof of the Theorem.

2.1. Theorem (Bremmermann [1]). If D is a domain of holomorphy in C^\ast and if $U \in PSH(D)$ then Hartogs domain

$$H := \{ (x, y) \in D \times C^\ast : |y|e^{2\pi i y} < 1 \}$$

is a domain of holomorphy.

If f is a holomorphic function on H not continuable analytically beyond D and if

$$F(x, y) = \sum_{j=1}^n f_j(x) y^j, \quad (x, y) \in H,$$

is its development into the Hartogs series then

$$U(x) = V(x) := \limsup_{x \to x_0} V(x), \quad x \in D,$$

where

$$V(x) := \limsup_{j \to \infty} (1/j)^{\log |f_j(x)|}, \quad x \in D.$$

2.2. Hartogs Lemma. [2]. Let $\{ U_{\alpha} \}$ be a sequence of plurisubharmonic functions in $D \subseteq C^\ast$ which are uniformly bounded from above on every compact subset of D. If $\limsup_{x \in K} U_{\alpha}(x) < m$ in D, then for every $\varepsilon > 0$ and for every compact set $K \subseteq D$ one can find k_0 such that $U_{\alpha}(x) \leq m + \varepsilon, x \in K, k \geq k_0$.

2.3. Let $\{ U_{\alpha} \}$ be a sequence of plurisubharmonic function in a domain $D \subseteq C^\ast$ which are uniformly bounded from above on every compact subset of D. Put $U_{\alpha}(x) = \limsup_{x \to x_0} U_{\alpha}(x)$ and $U^* := \limsup_{x \to x_0} U(x)$ for $x \in D$. Then either $U = - \infty$ or there exists a sequence $x_\alpha \to x_0$ in $PSH(D)$. Moreover the set $N^* := \{ x \in D : U^* < U^*(x) \}$ is of $(2n)$-dimensional Chebyshev measure zero. In particular for every point $x_0 \in D$ there exists a sequence $x_\alpha \to x_0$ such that $x_\alpha \in D$ and $U^*(x_\alpha) = \lim_{x_\alpha \to x_0} U(x_\alpha)$.

2.4. For every function U of the class L and for every $r > 0$

$$U(x) \leq \sup_{y \in B(x)} \{ |y| < r \} + \log^+ |x| r^\alpha, \quad x \in C^\ast.$$

In particular, if p is a polynomial of n complex variables then

$$|p(x)| \leq |p(x)| r^\alpha, \quad x \in C^\ast,$$

where

$$|p|^r := \sup \{ |p(x)| : |x| \leq r \} \quad (see \ [6], [7]).$$

3. A lemma on systems of homogeneous linear equations

Let n, c, j, k, p and α denote fixed positive integers satisfying the following conditions:

$$c > 1, \quad j \geq p = k^* > (2n+2)!, \quad \alpha = \alpha_j := 4ck^*.$$

Put

$$M := \{ r \in Z^* : r < p, \quad z = 1, \ldots, n \}.$$

$$M^* := \{ r \in Z^* : r < \alpha, \quad z = 1, \ldots, n \}.$$

Elementary Lemma. [3]. Let $a_0, a \in Z^*_r$ be an n-fold sequence of complex numbers satisfying the following conditions:

$$|a_0| > e^{-c^2}, \quad |a| \leq 1 \quad \text{for all } r \in Z^*_r.$$

Then there exists a solution $(U_{\alpha})_{\alpha}$ of the following system (S) of the homogeneous linear equations

$$S \quad \sum_{\alpha \in M} a_{\alpha} x_\alpha = 0, \quad r \in M \setminus M^*,$$

such that $\max_{\alpha \in M} |U_{\alpha}| = 1$ and $\max_{\alpha \in M} |d_{\alpha}| > e^{-p^{1/2}}$, where

$$d_{\alpha} := \sum_{\alpha \in M} a_{\alpha} U_{\alpha} \quad \text{and} \quad a_{\alpha} = 0 \quad \text{if } \min_{k \in k^*} (r_k - t_k) < 0.$$

Proof. Put $M_0 := N_0 := M$ and $M_i := M \setminus \{ r^1, \ldots, r^i \}, \quad r^i, z = 1, \ldots, n$ denote all the points of M^*.
The system of homogeneous linear equations

\[(S_1) \quad \sum_{t \in N_i} a_{t_i} x_t = 0, \quad r \in M_1\]

has \((p)^n-1\) equations and \((p)^n\) unknowns. Let \((U^i)^{n_1}_{m_1}\) be a solution of \((S_1)\) such that \(\max\{|U^i_t| = 1\}, \) and let \(t^1\) be a point of \(N_i\) such that \(|U^i_{t^1}| = 1\).

Put \(N_i := N_i \setminus \{t^1\}\) and let \((U^i)^{m_1}_{n_1}\) be a solution of the system

\[(S_2) \quad \sum_{t \in N_i} a_{t_i} x_t = 0, \quad r \in M_2\]

such that \(\max\{|U^i_t| = 1\}, \) and let \(t^2\) be a point of \(N_i\) with \(|U^i_{t^2}| = 1\).

Continuing this procedure we may define for every \(i = 1, \ldots, a^*\) a set \(N_i = M \setminus \{t^1, \ldots, t^i\}, \) where \(t^1, \ldots, t^{a^*}\) are different points of \(M^a,\) and a solution \((U^i)^{m_1}_{n_1}\) of the system

\[(S_i) \quad \sum_{t \in N_i} a_{t_i} x_t = 0, \quad r \in M_i,\]

such that \(\max\{|U^i_t| = 1\}\).

Put \(U^i_t = 0\) for \(r \in M \setminus N_i^e\) and define

\[d^i_t := \sum_{t \in N_i} a_{t_i} U^i_t, \quad r \in M, \quad i = 1, \ldots, a^*\]

Then \(d^i_t = 0\) for \(r \in M \setminus M^a,\) because \(d^i_t = 0\) for \(r \in M_i\) and \(M \supset M \setminus M^a.\)

In order to prove the lemma it is enough to show that

\[\text{max}\{|d^i_t|; \quad r \in M, \quad i = 1, \ldots, a^*\} > e^{\varepsilon/2^i},\]

because \((U^i)^{m_1}_{n_1}\) is a solution of \((S)\) with \(\max\{|U^i_t| = 1\} \) for \(i = 1, \ldots, a^*.\)

Given two subsets \(K\) and \(L\) of \(M\) with the same number of elements, \(\star K = \star L = m,\) we put

\[D(K, L) := \text{det}[a_{t_i}]_{t \in K} := \text{det}[a_{t_i}]_{t \in L}, \quad i = 1, \ldots, m,\]

where \(K = \{t^1, \ldots, t^m\},\) \(L = \{t^1, \ldots, t^m\}\) and \(r^1 < s^1 < \cdots < r^m < s^m, < \) denoting the lexicographical order in \(Z_m^+\).

Suppose \((3.3)\) to be false, i.e., suppose that

\[|d^i_t| < e^{2^i}, \quad r \in M, \quad i = 1, \ldots, a^*.\]

We claim that these inequalities imply the following inequalities

\[(3.5) \quad |D(M_i, N_i)| > e^{-\varepsilon 2^{i+1} + 4\varepsilon^2}, \quad i = 1, \ldots, a^*.

Indeed, if \(i = 0\) we have

\[|D(M_0, N_0)| = |D(M, M)| = |a_0|^{2^n} > e^{-\varepsilon 2^n}\]

because \(D(M, M)\) is diagonal with all the diagonal elements equal to \(a_0.\) So \((3.5)\) is true for \(i = 0.\)

Suppose \((3.5)\) to be true for \(i,\) where \(0 < i < a^*\) and put \(b^n_i := a_{n-i}\) when \((r, t) \in M_i \times N_i\) and \((r, t) \neq (t^{i+1}, t^{i+1}).\) When \((r, t) = (t^{i+1}, t^{i+1})\) we put \(b^n_i := a_{n-i} U^i_{t^{i+1}} U^i_{t^{i+1}}.\)

Then \((U^i)^{m_1}_{n_1}\) is a nontrivial solution of the system

\[(3.6) \quad \sum_{t \in N_i} b^n_i U^i_t = 0, \quad r \in M_i.

Indeed, if \(r \neq t^{i+1}\) then

\[\sum_{t \in N_i} b^n_i U^i_t = \sum_{t \in N_i} a_{n-1} U^{i+1}_t = 0.

If \(r = t^{i+1},\)

\[\sum_{t \in N_i} b^n_i U^i_{t^{i+1}} = \sum_{t \in N_i} a_{n-1} U^{i+1}_{t^{i+1}} - d^i_{t^{i+1}} = 0.

Since the number of equations of the system \((3.6)\) is equal to the number of its unknowns \(n_i,\) it follows that

\[0 = \text{det}[b^n_i] = D(M_i, N_i) - D(M_{i+1}, N_{i+1}) d^i_{t^{i+1}} U^{i+1}_{t^{i+1}} U^{i+1}_{t^{i+1}}.

Hence, by virtue of \((3.4)\) and by the induction assumption we get

\[|D(M_{i+1}, N_{i+1})| \geq |D(M_i, N_i)| e^{2(\varepsilon 2^{i+1} + 4\varepsilon^2)} = e^{-\varepsilon 2^{i+1} + 4\varepsilon^2},\]

By the induction principle this implies that \((3.5)\) follows from \((3.6).\)

Now observe that the inequalities \(|a_{n-i}| < 1, \) \(r, t \in M,\) imply the inequalities

\[|D(M_i, N_i)| \leq (p)^{n_i} a^n, \quad i = 1, \ldots, a^*.

But \((p)^{n_i} < j^{n_i} < j^{n_{i+1}} (2n_i + 1) < c^i, \) because \(j > p > (2n_i + 1).\)

Therefore

\[|D(M_i, N_i)| < c^i a^n, \quad i = 1, \ldots, a^*.

Now, if \(i = a^*\) the inequalities \((3.5)\) and \((3.7)\) imply

\[-c^i (p)^{n_{a^*}} + a^n (p)^{n_{a^*}} < 0,\]

whence

\[4(c^i)^2 (p)^{n_{a^*}} < 2(c + 1)(p)^{n_{a^*}},\]

because \(c = 4c^i (p)^{n_{a^*}}.\) This contradicts the assumption that \(c > 1.\) Therefore \((3.3)\) is true, and consequently the Lemma is true.

4. Two approximation lemmas

Again following the idea of Josephson we shall prove two approximation lemmas which say that for every function \(f\) analytic in a given ball there exists a polynomial \(g\) which is sufficiently "small" in the set where \(f\) is "small".

Approximation Lemma 1. [3]. Assume that \(a, f, p\) and \(u\) satisfy \((3.1),\) and
let $\mathcal{F}(c,f)$ denote the set of all functions f holomorphic in the ball $B(0,3)$ such that $|a_r| = |f(0)| > e^{-\pi}$ and $|\alpha| < \epsilon$ for all $r \in \mathbb{Z}^2$, where $\alpha := Df(0)/r1$ denotes the r-th Taylor coefficient of f at 0.

Then for every $f \in \mathcal{F}(c,f)$, there exists a polynomial g of n complex variables of degree at most $m := m(n)$ such that

$$1 \leq ||g||_1 \leq d$$

and

$$|g(z)| < e^{-\pi/12} \text{ when } |z| \leq 1/2 \text{ and } |f(z)| < e^{-\pi},$$

where $||g||_1$ denotes the supremum of the absolute value of g on the ball $B(0,1) = \{|z| < 1\}$.

Proof. Given $f \in \mathcal{F}(c,f)$, let $(U_{\lambda})_{\lambda \in \Lambda}$ denote a collection of solutions of the system (S) given by the elementary lemma, where a_r denote the Taylor coefficients of f. Put

$$H(z) := \left(\sum_{|a| \leq n} U_{a \lambda} \right) \cdot f(z) = \sum_{|a| \leq n} d_a z^a,$$

$$G(z) := \sum_{|a| \leq n} d_a z^a, \quad g(z) := G(z)/d,$n

where

$$d := \max \{|d_a| : a \in \Lambda\}.$$

Then $d \leq m = m(n)$ by Cauchy inequalities, and

$$||g||_1 \leq ||G||_1/d \leq \epsilon_0 = e^{-\epsilon_0} = e = d.$$

If $|z| \leq 1/2$ and $|f(z)| < e^{-\pi}$ then

$$|G(z)| \leq ||H(z)|| + |H(z)| = (g(p)e^{-\epsilon_0}) + (g(p)e^{-\epsilon_0}) \leq \left(\frac{1}{2} \right)^{1/2}.$$

and

$$f(z) < e^{-\pi/12},$$

since $|d_a| < (g(p)e^{-\epsilon_0})$ for all $a \in \mathbb{Z}^2$. Therefore, since by the Bernoulli inequality $1 - 2^{-2^{-1}} > 1 - n \cdot 2^{-n}$, we get

$$|g(z)| < \left(g(p)e^{-\epsilon_0} \left| e^{-\epsilon_0/12} \right| \right)^{1/2} \leq (3g(p)e^{-\epsilon_0/12})^{1/2} \leq e^{-\pi/12},$$

which proves the lemma.

APPROXIMATION LEMMA 2. Let $\mathcal{F}(c,f)$ denote the family of all functions f holomorphic in the ball $B(0,4)$ such that

$$||f||_1 \leq 1 \quad \text{and} \quad ||f||_{1/12} > e^{-\pi}.$$

Then for every function $f \in \mathcal{F}(c,f)$, and for every $p = n^2$ with $n \geq p > (2n + 2)!$ there exists a polynomial g of degree at most $m := m(n)$ such that

$$2^{-m} \leq ||g||_1 \leq 4^{n}$$

and

$$(4.2) \quad |g(z)| < e^{-\pi/12} \text{ when } |z| \leq 1/2 \text{ and } |f(z)| < e^{-\pi}.$$

Proof. Given $f \in \mathcal{F}(c,f)$, there exists $x \in B(0,1/4)$ such that $|f(x)| > e^{-\pi}$. Let $F(z) := f(z-x)$. Then $F(0) = f(0)$ and by the approximation lemma 1 there exists a polynomial G of degree at most m such that $1 \leq ||G||_1 \leq e^{2\epsilon_0}$, and $|G(z)| < e^{-\pi/12}$ when $|z| \leq 1/2$ and $|F(z)| < e^{-\pi}$.

Let $g := G(z-x)$. Then g is a polynomial of degree at most m and $|g(z)| < e^{-\pi/12}$. Hence by 2.4

$$||g||_1 \leq d(3/4)^{12} < 4^{n}.$$

Since $d \leq 4^n$ we have $|G||1| \leq ||G||_{1/12}(3/4)^{12}$, so $|G||1| \geq ||G||_{1/12} > (3/4)^{12} > 2^{-m}$.

Let now $|z| \leq 1/4$ and $|f(z)| < e^{-\pi}$. Then $|F(z-x)| < e^{-\pi}$ and $|z-x| \leq 1/2$. Therefore $|g(z)| = |G(z-x)| < e^{-\pi/12}$, when $|z| \leq 1/4$ and $|f(z)| < e^{-\pi}$. The lemma is proved.

5. Main Lemma

Let U be a plurisubharmonic function in a ball $B(0,R)$. Then the set $E := \{ z \in C^2 : |z-a| \leq R/16, U(z) = -\infty \}$ is L-polar.

Proof. Without loss of generality we may assume that $a = 0$ and $R = 4$. We may also assume that $U(z) < -3$ in the ball $|z| \leq 2$.

Let F be a holomorphic function in the Hartogs domain $H := \{ (z,w) \in C^2 : |z| < 4, |w|^{2\pi} < 1 \}$ such that F cannot be continued holomorphically beyond H and

$$|F(z,w)| < 1 \text{ when } |z| \leq 2 \text{ and } |w| < e^2.$$

The function F may be written in the form

$$F(z,w) = \sum_{j \geq 0} f_j(z)w^j, \quad (w,z) \in H,$$

where f_j are holomorphic in $B(0,4)$. By Cauchy inequalities

$$|f_j(z)| \leq 1, \quad |w| < 2, j > 0.$$

Since F is not continuous beyond H, we have by 2.1

$$\limsup_{z \to \infty} \max_{j \geq 0} V(z) = V^*(z)$$

where

$$V(z) := \limsup_{j \to \infty} (1/j) \log |f_j(z)|, \quad z \in B(0,4).$$

The set $B_\infty = \{ z \in C^2 : |z| > 1/4, V(z) < U(z) \}$ is of (2n)-dimensional Lebesgue measure zero. Therefore there exists a point x in $B(0,1/4)$ such that $V(x) = U(x) > -\infty$.

10 Branch Center 11
Hence there exists an infinite subset \(J \) of positive integers and an integer \(c > 1 \) such that
\[
\| f_j \|_{L^1} > e^{-c^{v_j}}, \quad j \in J.
\]

Therefore \(f_j \in F(c_j, j) \) for every \(j \in J \). So we may apply Approximation Lemma 2 to each function \(f_j, j \in J \). Thus for every \(j \) and \(p \) such that \(j \in J \) and \(j > p = k^* > (2n+2)! \) we can find a polynomial \(g_{j,k} \), of degree at most \(t_j := n_j \) such that
\[
2^{-v_j} < \| g_{j,k} \|_1 < 4^j.
\]

and
\[
|g_{j,k}(z)| \leq e^{-p/12} \quad \text{when} \quad |z| \leq 4, \quad \text{and} \quad |f_j(z)| < e^{-t_j},
\]

Put
\[
g_k(z) := \limsup_{j \to \infty} g_{j,k}(z), \quad z \in C^*.
\]

It follows from 2.4 that for all admissible \(j \) and \(p \) we have
\[
|g_{j,k}(z)|^{1/v_j} \leq \max\{1, 4|z|\}, \quad z \in C^*,
\]

so the functions \(|g_{j,k}(z)|^{1/v_j} \) are uniformly bounded from above on every compact subset of \(C^* \), and moreover
\[
g_k(z) \leq \max\{1, 4|z|\} \quad \text{in} \quad C^*
\]

for all \(p > (2n+2)! \).

We claim that
\[
\forall T < 0 \exists p \forall x \in E \quad g^*_k(x) < e^{t+1},
\]

where \(g^*_k(x) := \limsup_{x \to x} g_k(x) \). Suppose (5.2) to be false. Then there exists \(T < 0 \) such that for every \(p \) one can find \(z \in E \) such that \(g^*_j(z) > e^{t+1} \). Take \(p \) so large that \(T > -\sqrt[p]{4|z|/4k^*} \). Next take \(z_0 \in E \) such that \(g^*_j(z_0) > e^{t+1} \). By 2.3 there exists a sequence of points \(z_n \), such that for every \(v > r \), \(g_k(z_n) = g^*_k(z_n) \), and \(g_k(z_n) = g^*_k(z_n) \).

Therefore
\[
\begin{align*}
g_k(z_n) &> e^{t+1/2}, \quad r \geq r_0, \\
\text{Hence for every} \quad r > r_0 \text{ there exists an infinite subset} \ J_n \text{ of} \ J \text{ such that} \\
|g_{j,k}(z_n)| &> e^{t_{j,n}} > e^{t_{j,n}/11} > e^{-p/12}, \quad j \in J_n, \\
\text{Therefore by} \quad (5.0) \\
|f_j(z_n)| &> e^{-p}, \quad j \in J_n, \quad r > r_0.
\end{align*}
\]

Hence
\[
V(z_0) = -p, \quad r > r_0.
\]

We have got a contradiction which shows that (5.2) is true.

By 2.3 the functions \(g^*_k \) are plurisubharmonic in \(C^* \). We claim that there exists a point \(\xi \) in the unit ball \(B(0, 1) \) such that
\[
\limsup_{p \to \infty} g^*_k(\xi) > 3/10.
\]

Suppose that (5.3) is false. Then \(\limsup_{p \to \infty} g^*_k(z) < 3/10 \) in \(B(0, 1) \). Therefore by Hartogs Lemma, given any \(e \) with \(0 < e < 1 \), we have
\[
g_k(\xi) < g^*_k(\xi) < 3/9, \quad |\xi| < 1 - e, \quad p > p_0 = p_0(\xi).
\]

Hence
\[
\limsup_{p \to \infty} |g_{j,k}(z)|^{1/v_j} < 3/9, \quad |z| < 1 - e, \quad p > p_0.
\]

Again by the Hartogs Lemma
\[
|g_{j,k}(z)| \leq (3/8)^{p_0} \quad |z| < 1 - 2e, \quad j > j_0(\xi, p), \quad p > p_0(\xi).
\]

Therefore by 2.4
\[
\|g_{j,k}\|_{L^1} < (3/8)^{p_0} (1 - 2e) < 1/2, \quad j > j_0(\xi, p), \quad p > p_0(\xi),
\]

when \(0 < e < 1/8 \).

But we know that \(\|g\|_{L^1} \geq 2^{-v} \) for all \(j > p \) sufficiently large with \(j \geq p \). We have obtained a contradiction which shows that (5.3) is true.

Fix any point \(\xi \) satisfying (5.3). Then by (5.2) we can find a sequence of positive integers \(\{r_n\} \) such that
\[
g^*_k(\xi) < e^{-r} \quad \text{for all} \quad x \in E \quad \text{and} \quad r \geq 1,
\]

and
\[
\limsup_{p \to \infty} s^*_k(\xi) \geq 3/10.
\]

We claim that the function \(W \) defined by
\[
W(x) := \sum_{x \in E} 2^{-v} \log g^*_k(x), \quad x \in C^*
\]

is a function of the class \(L \) such that \(W = -\infty \) on \(E \).

Indeed, by (5.4) we have \(W = -\infty \) on \(E \). So it is enough to show that \(W \) is a plurisubharmonic function of the class \(L \).

First observe that \(W \) is upper semicontinuous because for every \(R > 1 \) the partial sums of the series
\[
W(x) = \sum_{r \geq 1} 2^{-r} \log g^*_k(x)/4R + \log(4R)
\]
constitute a decreasing sequence of plurisubharmonic functions in the ball \(B(0, R) \). Since by (5.3) \(W(x) \neq -\infty \), the function \(W \) is plurisubharmonic in \(C^* \). It is of the class \(L \) because of (5.1).

6. Proof of the theorem

If \(E \) is locally \(C^* \)-polar then for every \(a \in E \) we can find a ball \(B(a, R_0) \) and a function \(U_a \) plurisubharmonic in \(B(a, R_0) \) such that \(E \cap B(a, R_0/16) = E_a := \{ z \in C^*: |z - a| \leq R_0/16, U_a(z) = -\infty \} \). By the Main Lemma the set \(E_a \) is \(L \)-polar. Since \(E \) may be covered by a sequence of balls \(B(\alpha_i, R_{\alpha_i}) \), \(E \) is contained in a countable union of \(L \)-polar sets. Hence it is sufficient to apply the following

Proposition. [7]. A countable union \(E = \bigcup_{k=1}^{\infty} E_k \) of \(L \)-polar sets \(E_k \) is an \(L \)-polar set.

Proof. Since a finite union of \(L \)-polar sets is \(L \)-polar, we may assume that \(E_k \subset E_{k+1} \) (because \(E = \bigcup_{k=1}^{\infty} E_k \), where \(E_k := E_k \cup \ldots \cup E_1 \)). Let \(W_k \) be a function of the class \(L \) such that \(E_k \subset \{ x: W_k(x) = -\infty \} \). We may assume that

\[
\sup \{ W_k(x): |x| \leq 1 \} = 0, \quad k \geq 1.
\]

By (6.1) we have

\[
W_k(x) \leq \log^+ |x| \quad \text{in} \quad C^* \quad \text{for all} \quad k \geq 1,
\]

so that the functions \(W_k \) are uniformly bounded from above on every compact subset of \(C^* \).

We claim that there exists a point \(\xi \in C^* \) and a number \(\varepsilon > 0 \) such that

\[
\limsup_{k \to \infty} W_k(\xi) > \varepsilon.
\]

Otherwise we would have

\[
\limsup_{k \to \infty} W_k(x) \leq 0 \quad \text{in} \quad C^*.
\]

Hence by Hartogs Lemma

\[\exp W_k(x) \leq 1/\varepsilon, \quad |x| \leq 1, \quad k \geq k_0.\]

Thus \(W_k(x) \leq -1, |x| \leq 1, k \geq k_0 \). This is impossible because of (6.1).

Let \(\{ k_i \} \) be an increasing sequence of positive integers such that

\[\lim W_{k_i}(\xi) \geq \log \varepsilon > -\infty.\]

One can easily check that

\[W(x) := \sum_{j=1}^{\infty} 2^{-j} W_{k_j}(x), \quad x \in C^*,\]

is a function of the class \(L \) such that \(W(x) = -\infty \) on \(E \).