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tional Te 0'(§*~1) such that (6.9) and that F(¢) = #,T({), which proves the
surjectivity of (7.14). The rest of the proof is same as above. m

Remark. The linear topological isomorphism (7.13) and (7.14) are very special
cases of the Ehrenpreis-Palamodov fundamental principle.
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One of the most important questions of analysis is the investigation of functional
dependences using the concept of the limit. With it, on the one hand, many con-
clusions are valid under rather weak assumptions (they hold, for instance, for map-
pings of topological spaces). This fact may give an impression that the possi-
bilities of the complex function theory (which starts from the consideration of com-
plex-valued functions of complex variables) are contained in an abstract mapping
theory of topological (or some more general) spaces.

On the other hand it is important to take into account that more specific as-
sumptions permit a richer theory. The functions regarded within the complex func-
tion theory lead to the concept of holomorphy. Holomorphic functions have vari-
ous specific properties. Their local behaviour determines, for instance, their global
behaviour. Such properties of holomorphic functions cause that the complex func-
tion theory is an autonomous theory describing the general concept of holo-
morphy.

From this, however, it is not yet possible to conclude thata boundless devel-
opment of the concept of holomorphy gives the unique end of a general “complex
analysis”. In our opinion from this the possibility of too affected generalization
started indeed (as again in the case of other mathematical theories). For some gen-
eralizations of the concept of holomorphy, for instance, the applicability seems
to be not satisfactory at all. :

There are, for sure, many immediate applications of complex analysis (for
instance those connected with the approximation theory of one or several complex
variables). Fundamental applications of complex analysis, however, are connected
with the theory of partial differential equations. This is true not only in the case
of Cauchy-Riemann systems and the Laplace equation (holomorphic functions
are, as it is well-known, connected immediately with these partial differential equa-
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tions). For solving more general real partial differential equations it is needed to
expand the methodical resources of the complex function theory (this is needed,
already, for solving linear uniformly elliptic systems with help of complex methods;
the last observation leads to the generalized analytic functions in the sense of
. V. Vekua and to the pseudo-analytic functions in the sense of L. Bers).

The necessary development of methods of complex analysis is realized with
help of the Tg- and the Ilg-operators defined by

1{{_ A0
Tef(z) = ——ESGS fez d&dy,

egte) = == {{ L atan,

G

where z = x+iy, z* = x—iy, { = &+in. These operators are connected with the
inhomogeneous Cauchy—Riemann equation

ow
o =)

for which the function
wo = Tgf

is a special solution (this solution satisfies the additional relation dw,/dz = II;f).
The inhomogeneous Cauchy-Riemann equation is important not only for solving
general partial differential equations with help of complex methods, but it leads
to new points of view on the theory of holomorphic functions itself (cf. L. Hor-
mander [7]).

Further, applicability of complex-analytical methods is not only restricted to
linear partial differential equations. With help of complex methods it is also possible
to solve non-linear partial differential equations (cf. [12]). This is true also for
such equations, for which hitherto existing methods of real analysis are not appli-
cable. In addition, complex analysis proves to be a general method of non-linear
analysis. With its help it is possible, for example, to obtain explicite represen-
tations for implicit functions (applications of the complex analysis to the theory of
implicit functions).

The present paper collects possibilities of complex analysis for solving differ-
ent problems of non-linear analysis. Especially we are going to describe results
of the research group “Partial complex differential equations” (Mathematical In-
stitute, University of Halle).

B. Bojarski and T. Iwaniec regarded geometrical aspects [3] of the problem
(strictly speaking, they considered quasiconformal mappings satisfying non-linear
elliptic systems of partial differential equations of first order). For numerical
methods (including those for non-linear partial differential equations) based on
complex methods we refer to W. Wendland [24].
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1. Investigation of qualitative properties of partial differential equations and partial
differential inequalities

It is well-known that holomorphic functions possess certain important properties.
The new methods of complex analysis permit to extend many of those properties
to the case of more general complex-valued functions. It is sufficient for instance,
that the function be a solution of a linear or non-linear complex partial differential
equation which generalizes Cauchy-Riemann’s equations. It is also sufficient that
the function in question be a solution of a complex differential inequality.

The reduction of properties of generalized analytic functions to properties of
holomorphic functions is based on representation theorems for generalized analytic
functions. There are two principal possibilities of representing complex-valued
functions by means of holomorphic functions, namely additive and multiplicative
representations (using composite functions one can combine the two ways).

Denote by k the derivative with respect to z* of a given function w. Then

D =w—Tsk
is holomorphic, and so w admits the additive representation
w= O+ Tgk.

In order to get an analogous multiplicative representation we define another
auxiliary function, namely (see I. N. Vekua [22])

g={k/w,
0

Assume that exists a Lebesgue integrable function X = K(2) such that w fulfils
the inequality '

1¢9) k| < K(2)Iw].
Then the function g proves integrable (w and k are assumed to be continuous). De-

fine = Tgg and @ = we™®. Then the function @ is holomorphic at all points
where w # 0. If we assume additionally that

if w0,
otherwise.

(2) w=0 implies k=0,
then the function @ is holomorphic everywhere and w has the representation
w = De”.

Both assumptions (1) and (2) are fulfilled, if (1) holds with a continuous X = K(z).
Analogous representation theorems are valid also in the case of several complex
variables. Denote by k;,...;, the partial complex derivative
*w
z;*;l z,?j1

of order 1 < n; it is sufficient to consider derivatives with respect to variables z¥
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different from each other. For polycylmdnc domains G = Gy X ... xG, in C" we
define

® == (- D‘“Z To,, -

it e,

T, Kiy...ip0

where Z* denotes summation over multiindices i, ..., iy with distinct i’s. Since
@ is holomorphic, equation (3) yields an additive representation of w by holo-

morphic functions.
In order to get a multiplicative representation one defines the following auxili-

ary functions (see [19])

o a*(ﬁb-), if w0,
Qi = az;; oz \ w
0  otherwise.

Analogously to the case of one complex variable we assume the existence of inte-
grable functions Kj, ..i, = Kiy..5(215 +0s z,), such that

@ iyl < Kiyip(Zs -

Then the function & which we now define is holomorphic at all points where w # 0:

D=we" w= Z(——l)‘“ Z TGu' TGUngL

1y el

o Za) W]

In analogy to (2) we assume, moreover, that

(5) w=0 implies k;=0,..,k =0.
Then & is holomorphic everywhere and w is representable as the product
w= De”.

Both assumptions (4) and (5) are fulfilled, if (4) holds with continuous multipliers

Ki ..y

The additive and multiplicative representation just proved imply a priori esti-
mates, theorems of Phragmén-Lindelsf’s type (see H. Malonek [11]) and, finally,
the fact that the zeros of a function w fulfilling (4), (5) form an analytic set (this
means, in the case of (1), (2), that the zeros are isolated or the function w vanishes

identically).

2. Complex methods in the theory of implicit functions

The simplest implicit equation that has been solved by complex methods is the
algebraic equation

Za,z" =0,

v=0
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where a, are constants. As a result one gets the fundamental theorem of algébra.
A generalized fundamental theorem of algebra concerns the equation

® Y auzt =0

and was proved by M. B. Balk [1]. Such an equation possesses, in general, both
isolated and non-isolated solutions. In order to determine the isolated solutions
Heinz {6] developped the following method:

Denote the left-hand side of equation (6) by G(z, z*¥). Without restriction of
generality it may be assumed, that the degree of G with respect to z is less or equal
the degree of G with respect to z*. Now consider the Euclidean algorithm for G
and G* with respect to z*. As a result of the algorithm one gets a polynomial k(z)
with the property that every (isolated) solution of the equation G(z,z*) = 0 is a sol-
ution of the equation A(z) = 0. In this way one reduces the problem of finding
the (isolated) zeros of the non-holomorphic function G(z,z*) to that of finding
the zeros of the holomorphic function # = A(z).

Another type of implicit equations solved by complex method is the case of
algebraic functions. Such a function is defined as a solution w = w(z) of G(z, w) = 0,
where G is a polynomial with respect to z and w.

" Combining Heinz’ method described above and the theory of algebraic func-
tions, P. Czerner [4] solved the implicit equation G(z, z*, w, w*) = 0 by complex
methods (the left-hand side is a polynomial with respect to z, z¥, w and w*). His
result is the following:

There exist a finite number of critical curves decomposing the plane into
a finite number of domains G;. In each G; there exist a finite number of functions
algebraic with respect to z, z*, which are denoted by W, = wulz, 2%, p =1, -
(these functions are solutions of an equation of type G(z, z*, w) = 0, where G is
a polynomial with respect to z, z*, w; the theory of such equations is very similar
to the ordinary theory of algebraic functions). Some of the branches wu(z, z¥)
are solutions of the regarded equation

G(z, z*, w,w*) = 0.

Since the w,(z, z*) are representable locally by power series with respect to z and
z*, one can calculate w in each of the domains G; by extensmn of the power series
representation.

Instead of polynomials G(z, z*) and G(z, z*, w, w¥) one can consider power
series (also with respect to several variables z,, z¥). As regards the zeros of real
power series, G. Schopf [14] proved, for instance, the following fact:

Let G(z, z¥) be a power series with respect to both z and z*. Then the zeros
are isolated points or isolated analytic curves.
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3. Theorems on the extension of solutions

Suppose that a solution of a differential equation in a domain G, is given. In order
to extend this solution to a larger domain G,, there are two different possibilities,
The first one is the reflection principle (for linear partial differential equations of
second order see e.g. D. Colton [5]). The second one is based on representations by
power series. This method is applicable also to real power series, i.e. for power serjes
with respect to z and z*. In order to apply this method it is needed to assume that
the right-hand side of the differential equation under consideration admits itself
a representation by power series. On the other hand, extension of solutions
with the help of power series can be used in the case of nonlinear differential
equations. Already in the classical complex function theory this method is ap-
plied in the case of nonlinear differential equations. One of the most important
theorems based on this method is Kaplan’s theorem [8]:

Let w = w(z) be a local solution of a complex differential equation (in the
ordinary sense)

”2—”: — fz, W),

Assume that the right-hand side f(z, w) is an entire function; then the following
assertion holds: With the exception of a set of capacity zero it is possible to extend
the given solution to the whole complex plane.

The proof is based on Painleve’s and Meier’s theorems.

H. Michler in his thesis [10] proved the following generalization to partial
differential equations: .

Let w be a given solution of a system

ow
T Siz, w),

ow
% = falz, w)

in a domain G,. Assume that the right-hand sides f;, f, are defined in a larger
domain G, containing G, in its interior; then the given solution w can be extented
to almost every boundary point of G,.

In order to prove his theorem H. Michler generalizes Painleve’s theorem to
the case of real power series. Meier’s theorem is also needed in the proof of Ma-
chler’s theorem. An application of Meier’s theorem is possible after a suitable
change of coordinates, defined with the help of Beltrami’s equation; its appli-
cation requires, of course, the assumption that the system under consideration is
uniformly elliptic. The last assumption is equivalent to the inequality | f2] < go* /1>
0 < go < 1. In the new coordinate system the given solution is holomorphic.
And thus the basic idea of Michler’s proof is a reduction of the general case to
the case-of holomorphic functions. '
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Michler’s theorem formulated above and similar results (see [10]) show the
way in which complex methods allow one to prove the existence of extensions of
solutions of nonlinear partial differential equations.

We remark that in the case of several complex variables there is also another
kind of extension theorems. For holomorphic functions of several complex vari-
ables the following well-known theorem, for instance, is valid. If G is a given
domain in C" and G\ K is connected (where K is a compact subset of G), then every
holomorphic in G\ X function can be extended to a holomorphic function in K.
Analogous theorems on solutions of Vekua’s equation in C™,

ow
-b;;‘_ = AjW"i“BjW*

were proved by Le hung Son in his papers [16], [17].

4. Existence theorems for nonlinear differential equations

In order to construct a solution of a non-linear elliptic first order system

duy Dtz _ .
0] Hy{x, 95 thas oy ons s oo 3y )—0, j=1,.,2n,

in a given domain G by means of complex methods it is needed to write (7) in
complex normal form

ow ow
®) -§=F(z,w,ﬁ—),
where w = (W, ..., W), Wy = -+ itty,;. (W. Riiprich [13] deals with the implicit
partial complex differential equation
F(z,w,%—, ;v:‘ )= 0.)
Denote dw/dz by h. Then the equation (8) is equivalent to the system
w=O+TcF(-,w, b,
h =@ +IF(-,w,h),

where @ is a holomorphic function (see [12], [20]). In order to solve a boundary
problem or in order to construct a solution of (8) fulfilling a side condition we solve
an analogous problem for @ and define an operator (w, k) — (W, H) by

® W= O+ TF(-,w,h), H=®+IF(-,w,h

(we remark that the function @ depends on (w, 7). If (w, k) is a fixed point of
the operator defined by (9) then w is solution of (9) which fulfils the imposed
boundary or side condition. In this way it is possible, for instance, to solve Di-
richlet’s problem (see [20]) or to construct a solution fulfilling a condition of linear
conjugation along an interior curve (see [21]). In all quoted papers the boundary

17 Banach Center t. 11
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values are assumed to be Hglder-continuously differentiable. In order to weaken
the assumptions about the boundary values it is needed to regard the Slobodeckij
space W3i(0G) with s = 1—1/p. Then the solution w of (8) belongs to the Soboley
space W3(G). This is a result of A, Seif [15].

Complex methods permit one also to solve nonlinear differential equations
for functions w depending on time . Let

ow ow  dw
@ 5 F(Z’ b W’B—Z’T)

be a differential equation describing an instationary process in the plane. Using
Rothe’s method we replace this equation by the elliptic equation

i)
(10) LA (z, t, Wi,

oz* 8z’ t~t_,

which is solvable with the help of complex methods. In this way one reduces the
differential equation (9) to a finite number of elliptic equations of type (10) (as
starting function w, one uses the given initial values).

Another generalization of equation (8) is the equation

ow, Wi— Wiy )

an LA F(z, "),
1z 0z

in which the right-hand side depends on a control . If one examines a boundary
value problem for this equation, then the following problem arises: Find a char-
acterization for u in the case in which the solution w of the boundary value prob-
lem minimizes a given linear or non-linear functional depending on the solution w
and the control u. In the case of Dirichlet’s boundary value problem for (11)
a necessary condition for u was given by H.-K. Klink [9].

Finally, we remark that the methods described are applicable also to general-
ized analytic functions in C" or R".
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