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Topics prepared for this lecture consist of four parts which are almost inde-
pendent of each other, However, three parts among them are reported here, since
the remaining one was published in the Proceedings of 7th Conference on Ana-
lytic Functions in Kozubnik-Porgbka.

1. Conformal mapping onto polygonal domains

1.1. Schwarz-Christoffel formula. It is well known that the function f which
maps E = {|z] < 1} conformally onto a rectilinear polygonal domain P with in-
terior angles a, 7z (4 = 1, ..., m) at vertices f(e'®) is represented by the classical
Schwarz-Christoffel formula ([52], [10], [11], [12])

z m
f@ = AS[] (@m—2pu-1dz + B,
0p=1
where the constants A(# 0) and B depending only on the magnitude and the pos-
ition of P are given by

A= f’(O)exp(izm:(l—-a,,)qa,,), B = (0).
u=1

As a generalization to the doubly-connected case, we can derive a similar
formula for the function which maps an annulus onto a ring domain bounded
by two rectilinear polygons. The mapping function is really represented ex-
plicitly in terms of elliptic functions. In order to show the actual procedure of its
derivation, we first illustrate it for the Schwarz-Christoffel formula itself; the
method will serve as an alternative proof of this formula; cf. [35].

Now, let @ be holomorphic in E and the quantity p defined by

k4
or, @) = S Red(re'?)db
0
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be of bounded variation in @ € (0, 2m) uniformly for r e (0, 1). Then & admits
the Herglotz representation ([31])

21
1 ( el?+z ,
() = EE(S e dg(g) +iTm &(0),
where o(p) = limo(ry, ¢) for a suitable increasing sequence {r,} tending to 1. If.
- 0 . - -y ’ ?
in particular, @ is holomorphic throughout E, then
@

o(@) = § Red(e?)at.

0

The mapping function f of E onto P is piecewise holomorphic on E and the

saltus of argf’ along O at e’ is equal to (1—a,)m. Hence the function @ defined
by

f'(@ z—elPu

bebaves holomorphically throughout E. By applying the Herglotz representation,
we get ’

?(z) = z;—zlog(f’(z) ﬁ (z—emyi-u) = ;2@ | 2 (1-a)z
A= a=1

2

" 1 iv “ -
Zf ) ='Z{S ez d@(‘ﬁ)"z(l o)z
pu=1

3 e —z z—eltn ’
? e m
= - "(e")
o(®) § ReD(e’)dl = arg—?,—(l—)— + ; (1—a) (%i -Tw,,(tp)) ,

&, being the characteristic function of the interval (@4, 2%]. Thus we have

z

2n
f'(2) 1 Py .
7@ "2 S S dargf (e,
0 .

e
}?d, a.;tler subtracting- the relation obtained by putting z = 0 (non-vanishing of
in E!} and by taking arg(df(e"')/dcp) = w[2+argf (') into account,

'@ 1 1
fl(z) = '; § Hdargdf(ei%.

ev—z
Consequently, by remembering that arg

. df is piecewise
fumps at e by (l—a,)m, we obtain p: constant along AE and

@) _ N\ 1-a,

'@ = ePu—z°
p=1

Successive integration yields readily the Schwarz-Christoffel formula.
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1.2. Villat-Stieltjes representation. We consider the annulus R= R, = {g
< |z| < 1} with a fixed g > 0 and a function @ holomorphic in R and continuous
on R. The formula corresponding to the Poisson representation in E is provided
by the Villat representation; cf. [55], [14], [13]. It states

2r

qb(z)=~%Skeq)(ew)(:(f‘—;}mg§;)—( ! —%)logz)dap—
[

2w,

2n
- % S} Re@(qeiw)(cg,(%ilog-e%) - (2—5)3 - %)Iogz)dzpﬂc,
where C is a real constant and the symbols from Weierstrassian theory of ellip-
tic functions are concerned with those of primitive periods 2w, and 2w; which
are real and purely imaginary, respectively, and satisfy
Tws
iw,

1
log— = .
g‘]

The condition that @ is single-valued in R is given by the monodromy relation

on 2

{ Red()dp = | Red(ge™)dp.

6 ¢
Since only the value of ratio wsfw; = —ilogg/x is essential, we may take for
the sake of brevity

w, =7n, ;= —ilogg.

In this simplified case the representation for a single-valued & becomes

2 2n
D(z) = —7%? § Re@(e“”)[(ilog%) do— % § Re®P(ge™) s (ilog%)dtp—*—ic.
Now, we put, as before,-
or,p) = fRe@(re“’)dG O<p<2m,g<r<]1).
0
If it is of bounded variation in g uniformly for r, then @ admits the Villat-Stieltjes
representation of Herglotz type

P2 27
1 i z 1 . z .
D(z) = — § ;‘(zlog;ﬁ;\)dg(gv ~ = § {3 (llog—ﬁ,—)dt(ga)—ﬂc,
where ¢ is a real constant depending on @ and g(¢) = lime(re, ), 7@
= limp(#, ¢) for suitable monotone sequences {r;}, {# } tending to 1, 4, respectively.
If, in particular, @ is holomorphic and single-valued throughout R, then

o(g) = | Re@(@9)dd,  (p) = | ReP(ge?)do.
0 0
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1.3. Formula for mapping function onto polygonal ring domain.
the aimed result ([37], [39]):

TueoreM 1.1. Let a finite polygonal ring domain P with (logarithmic) modulus
logg™* be given and its outer and inner boundary components be m-gon and n-gon,
respectively. Let f map R = {g < |z| < 1} conformally onto P such that {jz| = 1}
corresponds to the outer component. Let further the interior angles at vertices f(e'v)
w=1,..,m and flge™) (» = 1, ..., n) be a, 7 and B, m, respectively, where f,x
are exterior angles with respect to P. Then f is represented in the form

o —1
z HO’(IIOg p ) ‘u
1@ = Afaer B
-1
. zZ
[Josfos ]

where c* is a real constant defined by

—”;(Em; (Y ot -8
n= v=1

and A(# 0) and B are constants depending only on the magnitude and the position
of P.

Proof. Similarly as in the simply-connected case, the function ® defined by

(@) = z-log( ') [T ene ) c—gemy=r.
dz

is holomorphic and smgle—valued on R. By applymg the Villat-Stieltjes rep-
resentation, we get after some calculation

2 2
f i 1 , ,
7 ((zz)) S C(’l"ge’ff)dargf Nl L’ S S (“"g%)dargf "(ge™")+ic*.

By adding the relation which is obtained either by applying the Villat formula
to the particular function 1 or by using the residue calculus, we get

e
'@ _ 1
T ~ § ¢ (llog—)d argdf(e'?)—— S s (1 log—= o )d argdf(ge'?) +ic*.

18:06 arg df jamps at e= and ge'v by (I~a)n and (1-B,)m, respectively, we
ve

1 fl’l((zz))_ _'Z(I “ﬂ)c(ll"g'—)HZ(l ﬂu)Cs(llog—~)+w*

The integration with respect to logz yields

mH ( a(zlog(z/e%)))z“ -1 /11[ (OMV_)))M—I-

i o) 55(v,)

We mention

dz+B,

142222
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Finally, in order to determine the value of real constant c*, we carry out the trans-
formation logz|logz+2ni. Then, while the left member of the last relation remains
unchanged, the right member gains a factor ¢? with

m
02 = —2nc*+ Z (oc,,—l)(wi—Zm (ilog—?— —7:) +
= e’f“n
n
Z 1)2, | ilog—
+ (ﬁv_ ) N1 IOEW—E .
y=1 .
m n
By taking the relation Zi (o, —1) = Z (f,—1) = —2 into account, we have
= y=1

0 = —2me*—2mit2n, (Zl (=) pu— }:1 1-Byw).
H= =

Since £ must be an integral multiple of 2xi, this leads to the desired expression
of c*.

It is noted that it is quite inessential to take the point 1 as the lower limit
of the integral with respect to z. If this point were eventually the inverse image of
a vertex of P, it is only necessary to take any ordinary point.

A formula in terms of theta functions which is equivalent to that stated in
Theorem 1.1 is found in [44].

1.4. Polygonal ring domain containing the point at infinity. We have hitherto
supposed that P does not contain the point at infinity in its interior.- The formula
must be modified when this is the case. For that purpose, we have only to replace
F'(2) by f'(z) (z—p)* in the defining equation of @, where p denotes the inverse
image of co by the mapping. Similar argument as above will then lead to the
desired result.

The result obtained in the simply-connected case becomes

z m
dz
Py e 7)1 S
AS LT @yt g 2

where a,7 denotes the interior angle at f(e'*) with respect to P; especially

fla) =

m
Z (#,—1) = 2. Moreover, in view of the single-valuedness of f, the residue at p
n=1

of the integrand in this expression must vanish, whence follows

The corresponding result in the doubly-connected case will be stated in the
following theorem ([41]):
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TueoreM 1.2. The function f which maps the annulus R = {q < |z| < 1} onto
a polygonal ring domain P containing co is represented in the form

m oty —1
. z \*
i = Afe 1 ol )
z)= A\z — L Vo Y dz+B;
H A (ilogE) o (ilog ;) o(ilog(F2))?
ve=l
c* = n—nl (Z (1= pu— Z (1 —ﬁ,)w,+4argp),
a=1 y=1

where o, denotes the interior angle at f(e'*s) and B,w denotes the exterior angle
at f(ge'-), both with respect to P, while p denotes the inverse image of oo by f.
Moreover, in view of the single-valuedness of f, the monodromy conditions

; (I—a) (C (ilog;%)—%) - Z a-g) (Cs (ilog—e%;) - M) +

T

. 2
+2(c<2llog|pl)~~:}argp) =0,

x ] o(gu—gyut
e u=1 dp

8 [T os(p,— gy loGilogp+@)[* ~

p=1

must hold among several parameters involved.

Pr.oofi The expression of f is derived by the way explained above. In order
to derive the first monodromy condition, we write the integrand of the expression

for f in the form
f—,izl: m(z)/a(ilog?)z.

Then @ is holomorphic at p and the principal part of o(ilog(z/p))~2 at the pole

of the second order is given by —p? -2 -
, Pz—p)*—p(z—p)t. H i
S/ at p is oqual to p(z—p) ence the residue of

=pa(p)—p*e’(p) = —p[(z0(2))>=".
Since this residue must vanish, we obtain
o= L[] 1] s

T o) Togz Iog(zcu(z))] =p

i

= - : 4 -
*+ Z(% D14 (ﬂog;;;)* Z (8 —‘1)Cs(iloge—f;v—)—2§(iloglp]2),

a=1 y=1
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whence follows by substituting the value of ¢* the desired condition. The last con-
2n

dition is an immediate consequence of S df(e'?) = 0.
o

1.5. Remarks. In conclusion, we supplement some remarks.

First, it is noted that any result on the doubly-connected case of an annulus
R, reduces to the corresponding one on the simply-connected case of the unit
disk when ¢ tends to 0.

A polygonal domain is determined, provided, for instance, the coordinates of
its vertices are assigned. But the preimages of vertices by the mapping are re-
lated rigidly so that for a given polygonal domain there are few parameters among
{pu, 9} in the expression of mapping function which are at our disposal. In fact,
the number of such real parameters is only three or one in the simply- or doubly-
connected case, respectively. It will be a difficult and perhaps troublesome but im-
portant problem to determine a complete system of relations for the whole set of
parameters in an available form; cf. [2], [21], [34], etc.

It is possible to generalize the formulas derived above to the case of Rie-
mann surfaces. In fact, the polygonal domain may be admitted to ramify at some
branch points and to contain some points lying over co; cf. [41].

On the other hand, the discussion explicitly made in simply- and doubly-con-
nected cases will be suitably generalized to multiply-connected case. There are
several possibilities in choosing the type of canonical domains D instead of E or R.
We may take, for instance, a circular slit annulus or a fully circular domain. The
way of deriving the above results has been essentially based on the complex form
of Green formula. It gives the integral representation for an analytic function
holomorphic on D in terms of its real part as the weight function in which the
kernel is a definite domain function. Hence the method will apply similarly as
above for deriving a formula for polygonal mapping function.

Finally, we can deal with polygonal domains bounded by circular arcs. The
simply-connected case is classical; [52], [53]. A differential equation of the third
order related to the Schwarzian derivative is derived for the mapping function
also in the doubly-connected case; [39], [40].

2. Isoperimetric inequalities and related variational problems

2.1. The isoperimetric problem. The most simple isoperimetric problem for-
mulated and solved by Steiner [54] is to maximize the area of a figure bounded
by a curve with assigned length. Beside a purely geometrical proof due to Edler~
[16], an elegant analytical proof was given by Hurwitz [32], [33]. But the latter
assumed the piecewise smoothness of boundary curves in order to assure the
termwise differentiability of Fourier series used in his proof. Various proofs and
generalizations have been subsequently published by Brunn [8], Minkowski [48],
[49], Carathéodory-Study [9] and others, as fully explained in a book of Bonne-
sen—Fenchel [7].
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The present purpose is to show that a function-theoretic proof based on con-
formal mapping is possible; cf. [38].

TueoREM 2.1. Let F denote the area of a finite region bounded by a rectifiable
Jordan curve with length L. Then the isoperimetric inequality 4nF < L? holds and
the equality sign appears iff the boundary curve is a circle.

Proof. Let the given region E be a continuum with outer mapping radius
(i-e., transfinite diameter or capacity) ¢. The complement of E laid on the w-plane
is then regarded as the image of {|z] > ¢} by a univalent function of the form

w=g(z) =z+ Zbkz"‘ (Iz] > ).
=

Let F(r) (r > @) denote the area of the finite region bounded by the curve I,
= g({lzl = r}). Then, by means of a way in the proof of Bieberbach’s area the-

orem [5], we get
F@) = =2 -
=

Kb o 28;

p

F=F(o+0) = n(g2— i klbulze’”‘) S nez;
k=1

The equality sign in the last inequality holds iff g(z) = z+b,. On the other hand,
the length L(r) of I is given by
2r
L) = § 18@11dzl = | Igret)rao.
fz]=r 0
In view of the univalency of g, its derivative does not vanish throughout {|z] > g}.
Hence we can take a single-valued branch of g/2:
‘@ =1 ikb =) i
£ =1~ z7k= =14+ ) az7*,
= =
for which we have

2x 2 0
J lg'reidn = § /e apan = 2n (14 Y e, 2r-2%),
0 0 k=2

The image by g being a Jordan domain, g is continuous for {p < \
> 7] < o).
Hence the real-valued function defined by {e< 7 }

Gu(2) = i

u=1

, O = ean[m’

1
- (8(wh2) —g(wli'2))

is cc{nﬁlluous. am.:l\ subharmonic for {|z| > g} so that it attains its maximum at
a point z,, with |2,,] = . Thus we get Gn(2) < Gu(2,) < Ljo and, for r > o,
2

L > olimGo() = o | g/(re®)[d6 = 2 > ey -3t
OS g(re)| ﬂ:g(1+l;lck|2r 2),
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Consequently, we obtain for r -+ p+0 the evaluation
o0
L>2m (1 + Z Icklzg“z") > 2mp,
k=2

which, together with F < mp?, leads to the desired result.

Remark. Since the length functional is, in general, lower semicontinuous with
tespect to the strong convergence (in the sense of Fréchet’s écart), we have

0
L < lim L(r) = lim L(r) = 2=p|l + ¢ |20~ %),
< lim ) = tim L0) = 2ro(1-+ 3 ja0)

r+p-+0

whence follows the exact equality

L=2mp(1+ i leel2e™).
k=2

2.2. A related extremal problem. On the other hand, Bieberbach [3], [6]
showed a related extremal property of circle, for which a proof similar to above
applies.

THEOREM 2.2. Let F denote the outer measure of a plane set with diameter D.
Then the inequality 4F < mD? holds and the equality sign appears iff the set is a cir-
cular disk.

Proof. The given set may be supposed to be a continuum (and, moreover,
a convex region). Retaining the previous notations in the proof of Theorem 2.1,
put A(z) = g(z)—g(—z). Then, denoting by D(r) the diameter of I, we have

2n

oy 1 Ko 1 ( e
2o = 7.’T:—i-!zl-gqu z* o= E3 S) re? “
1 2 D( )
255 | 1sre—g(-remian < 22,

0
whence follows, after » - 9+0, 2p < D. This, combined with' F < mp?, leads to
4F < nD> The extremum assertion also follows readily.

Remark. The above inequality 20 < D is essentially a classical result due to
Landau-Toeplitz [45]; cf. also [4]. The equality sign here appears also iff E is
a circular disk. In fact, if it is the case, we must have g(z)—g(—z) = 2z so that
g(z)—z is an even function and JE is an oval of constant breadth 2¢. Thus, the
length of 4E being 2w, we have in turn

2 ©

2mp = S 18'(€"%)]0df = 27:9(1+ Z [C‘klze_zk);
6 =

=0 (k> 2),

g@D=1; g@=z+tb.
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2.3. Rengel’s lemmas. Here we change our topic. In relation to the isoperi-
metric problem, we shall deal with some variational problems of Grétzsch [28], [29]
which stand in close connection with conformal mapping of multiply-connected
domains. Original proofs by Grotzsch were based on lemmas concerning modulus
evaluation by the strip method which had been founded by himself [26], [27].
These lemmas have been subsequently proved by Rengel [50] in other ways. In the
following lines, we shall give alternative proofs [42] for some theorems of Grtzsch
by making use of Rengel’s theorems which have been used by Rengel [51] for
the existence proof of canonical mappings.

For the sake of convenience, we refer here to Rengel's theorems [51] with-
out proof, which will play the role of lemmas in the following lines.

LemmMa 2.1. Let the basic domain G be a circular slit disk, that is, a disk
{l2l < R} cut along finite number of concentric circular arcs. Let w = F(z) with
F(0) = 0and [F'(0)) = 1 map G conformally in such a manner that the image of {I2]
= R} separates O and co. Then the distance My of the farthest point on this image
Jrom the origin satisfies My > R and the equality sign appears iff F is a rotation:
F(2) = F'(0)z. )

LeMMA 2.2. Let the basic domain G be a radial slit disk, that is, a disk {lz < R}
cut along finite number of rays centred at the origin. Let w = F(z) with F0)=0
and [F'(0)] = 1 map G conformally in such a manner that the image of {|z| = R}
separates 0 and oo. Then the distances My and my of the farthest and the nearest
Ppoints on this image from the origin satisfy m3 < Mg R and the equality sign appears
iff Fis a rotation: Fz) = F(0)z. ,

2.4. Gritzsch’s variational problems. Now, let B be a domain given on the
z-plane which contains oo and is bounded by n boundary compornents R, (v =1, ...
w1 Let & denote the class of analytic functions f, which are univalent in B
and normalized by f(c0) = o0, f'(c0) = 1. Let further I, =TI,[f] denote the
boundary component of f(B) corresponding to R,. Suppose that R, with an assigned
suffix » is a continuum. The diameter D,[f] of T, is regarded as a positive func-
tional defined on &. The variational problems proposed and solved by Grétzsch
[28], [29] are to maximize and to minimize this functional.

TeEoREM 2.3. The maximum of D,[f]in & is attained iff I, is a rectilinear slit
and the remaining T, (u # v) are slits on confocal ellipses with both endpoints of
T, as foci.

Proof. Let Z = ¢(z) with ¢(c0) = 0 map B conformally onto a concentric slit
disk such that R, corresponds to {iZ] =1}. Then the absolute value of o
= [z¢(2)F=* is uniquely determined and

W= =o(p@)+9@), p(ew)= o0, p'(e) = 1,
maps B onto an extremal domain of the type mentioned in the theorem, of which
the endpoints of I,[p] lic at + 2¢ and hence D,[p] = 4|o|. Every other extremal
domain arises from p(B) by a motion, and ¢ itself is determined up to a rotation
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about the origin. Now, for any fe #, the unbounded simply-connected domain
bounded by I, alone is regarded as the image of {lw] > o} by a mapping of
the form

=g =0+ Y b (ol > o).
k=0

Since G(w) = (glew)—w'")/g with any fixed w' € I', vanishes nowhere throughout
{lw] > 1}, the branch defined by
G(w?) \? bo—w'
2y1/2 =
G(w®)'? = co( 5 o+ 200 + ..
is univalent in {lo| > 1}. In view of Bieberbach’s area theorem [5], we get
[bo—w'| < 20. The composite function

W=F2)= FO) =0, F'(0) = 1 (o] = 1),

oo
gtofeo g }(2)
maps the circular slit disk onto a subdomain of {|¥| < |o|/g} such that the outer
boundary circles correspond each other. By means of Lemma 2.1, we get |o| > o
and hence, for any w, w' eI},
[w—w'[ < [bo—w|+|bo—w] < 4p < 4lol,
whence follows the desired estimation D,[f]< 4|o| = D,[p]. If the equality sign
in this relation holds, then we have |o| = g and, again in view of Lemma 2.1, F(Z)
= Z, i.e. o = ao/p(z). On the other hand, the equality sign in the inequality con-~
cerning area theorem appears only when by—w' = 2ep (l¢| = 1), G(w?)/? = v+
+¢&jo, g(w) = w+by+ £%9*/w. Thus we have
f2) = g(@) = aop(z)™* +bo+ &*o]*(aop(z)"1) ™
= 70(yp(@+(rp() )+ bo,

where 9 = ¢elo|/o, y = é&|o|/ao and hence |y] = |y| = 1. Consequently, .it is veri-
fied that the maximum of D,[f] in & is attained only by p which is obtained from
y@(z) instead of ¢(z), followed by a motion.

THEOREM 2.4. The minimum of D,[f] in & is attained iff I, is a whole cir-
cumference and the remaining I, (u # ¥) are slits on rays centred at the center of I',.

Proof. Let Z = p(z) with p(co) = 0 map B conformally onto a radial
slit disk such that R, corresponds to {|Z] = 1}. Then the absolute value of
7 = [zp(2)]*== is uniquely determined and

w=gq(2) = @)™, gq(x)=owo, g'(0)=1,

maps B onto an extremal domain of the type mentioned in the theorem, for which
the radius of I, is equal to |z| and hence D,[g] = 2|7]. Every other extremal

domain arises from g(B) by a motion, and v itself is determined up to a rota-
tion about the origin. Now, for any f€ #, the unbounded simply-connected do-
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main bounded by I}, alone is regarded as the image of {lw| > ¢} by a mapping
of the form

=g =0t Y hot (o> o).
k=0

As shown in the proof of Theorem 2.2, we have D,[f] > 2¢. The composite func-
tion
av

glofoy™H(Z)
maps the radial slit unit disk onto a subdomain of {|W| < |z|/o} such that the
outer boundary components correspond each other. By means of Lemma 2.2 we
get 7] < ¢ and hence D,[f] > 2¢ > 2|7| = D,[q]. If the equality sign holds here,
then we have |7] = ¢ and, again in view of Lemma 2.2, F(Z) = Z,i.e. 0 = av/p(z).
On the other hand, since the diameter d,(r) (r > o) of the image curve of {lo| = r}
by w = g(w) tends to D,[f] as r — g+0, there exists for any assigned 8 > 0 an r
sufficiently near ¢ such that d,(r) < D,[f]+28 = 2(¢+5). Hence we get for A(w)
= g(w)—g(~w) the relation

W=F2= F@O) =0, F/(0) =1 (ol = 1),

2 o0
1 .
4(o+0)* > d,(r)? = —2—7:-8 1h(re®)|2d0 = 4(r2+ 1ba5-1 I"r‘z‘”“l’).

0 J=1
Since 6 > 0 may be chosen arbitrarily near zero, we get byy_1=0(@>=1) and
hence .g(co)—g( —®) = h(») = 20. This, combined with D,[f] = 20, implies that
I,[f] is an oval of constant breadth 2¢. Thus, as remarked in succession to the
proof of Theorem 2.2, we have g(w) = w+b, and hence

f(2) = g(w) = aryp(z)*+b,.
This shows the extremum assertion of the theorem.

2.5. A related variational problem. Finally,we supplement another variational
problem also dealt with by Grétzsch [29]. Suppose that the boundary component
T, of the image domain f(B) is a rectifiable Jordan curve with length L,[f]. The
problem is to minimize this functional.

‘ THBOREM 2.5. The minimum of L,[f] in & is attained iff fis an extremal map-
ping function mentioned in Theorem 2.4.

Praofi We begin with the case of n = 1. While Grétzsch has referred to a re-
sult of Bieberbach [6], we proceed here in a slightly modified way. Let o denote
?he outer mapping radius of the complement of B, Then S(B) is regarded as the
u’nage of {lw] > ¢} by a univalent mapping w = g(w) with g(co) = oo and
g'(0) = 1 As shown in the proof of Theorem 2.1, we get L,[f]> 2mo where
the eq‘uahty sign appears iff g(w) = w-+b,. The case n > 1 may be dealt with by
following the argument of Grotzsch. In fact, if I', is not a whole circumference,
we map the unbounded simply-connected domain bounded by I', alone onto the
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exterior of a circle by a function normalized at co. Then, as shown above, the
length of the assigned boundary component will decrease. Next, if I', is a whole
circumference but another I, is not a radial slit, we map the doubly-connected
domain bounded by I', and I}, onto a radial slit disk such that the mapping is
normalized at oo and I, corresponds to the circumference. Then, the radius of
the assigned boundary circle will again decrease. This establishes the desired result.

There will be some problems of similar nature which may be dealt with by
the method used here.

3. Iteration method for conformal mapping of a ring domain onto an annulus

3.1. Xteration procedure. Let a non-degenerate ring domain be given. Then,
it can be univalently mapped onto a conformally equivalent annulus. In order to
construct such a canonical mapping effectively, there are several methods as illus-
trated in detail in a book of Gaier [21]. Among them we shall explain in the fol-
lowing lines an alternating iteration method, which reduces the problem to a se-
quence of mappings on simply-connected domains. The purpose in the original
paper [36] aimed mainly at an existence proof of the canonical mapping. But
Gaier [17]-[23] has subsequently derived error estimations quantitatively and
shown that the method is useful also from practical standpoint.

‘We begin. with explaining the iteration procedure. Let a non-degenerate ring
domain D be given on the z-plane. Based on Riemann’s mapping theorem on
simply-connected domains, we may suppose that its outer boundary component is
{lz] = 1} and its inner one is a regular analytic curve y surrounding the origin.
The sequence of ring domains {D,}, laid on the respective z,-plane and of
corresponding univalent functions {F,}&, with' z, = F,(z): D — D, are defined
inductively as follows:

1. zy = z, Dy = D, Fy(2) = z and yo = y;

2. D, is a ring domain laid on the z,-plane of the same character as D, and
the distances of the farthest and nearest points from the origin on its inner bound-
ary component ¥, are denoted by m} and m,,, respectively;

3. The exterior of y, is mapped onto {|f,| > m#} by a function #, = h,(z,)
with h,(c0) = oo (the determination of radius m# serves only for fixing the dila-
tation of mapping at co), and the distances of the farthest and nearest points
from the origin on the outer boundary component I, = h({lz:| = 1}) of 4,
= h,(D,) are denoted by M} and M,,, respectively;

4, The interior of I, is mapped onto {|z,.1| < 1} by a function z,,; = gt
with g,(0) = 0, whence arise Dyy; = ga(4,) and ypyy = ga({ltu| = mF}).

5. Two mappings /, and g, are composed to a mapping f, = gno A of D, onto
D, ; which is for every n uniquely determined under the normalization L =1;

6. The mapping F,:D — D, is uniquely defined by F, = fi_y o Fa—2> F_i
being regarded as the identity, i.e. F, = fyq ofa—z o= ofo.

Every step of constructing D, from D,_, will be denoted by UA; in particular,

12 Banach Center t. 11
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we may write D, = A"D. In view 7of vthe inversion principle, we have 1@
= f(z)~! (z,€D,) and F,z™") = F,(2)"! (z € D). The last-mentioned property
has been later used by Gaier [21] for deriving effective estimations.

3.2. Convergence proof accompanied by existence theorem. Now, the original
theorem [36] was formulated in the following form:

TueoreMm 3.1. The sequence {F,} defined above converges uniformly in the wider
sense in D, and really in the ring domain bounded by y and its inverse image with
respect to {jz| = 1}. The limit function w = F(z) = im F,(z) with F(1) = 1 maps
D onto an anmulus R, = {g < |w| < 1}.

Proof. Suppose that D itself is not an annulus. We make repeated use of Schwarz
lemma. First, since A;*(v~*)"! satisfies the assumption of this lemma in {I=l
<mf~'} with the bound mzl, we get |A7'(v~)™| < (mzl/mE~Y)|7|. Putting
7 = h(z,)"* and observing a point on {|z,| = 1} with |h,(z,)| = M, we obtain
Myy < mi[M¥. Similarly, by considering gz'(z,+1) in {|z,4(] < 1}, hy(z~9)~2
in {7] <mF~'} and g,() in {It,| <1}, we obtain m¥/M* < Myng1s My > 1
and m¥,, < my¥, respectively. Thus, f{m,,} increases and {m#} decreases,
both strictly, so that we can put 0 < p = limm,, < limmg = g <1 and lim M3
= g/p. Now, {h;'(mfw/q)} and {g7'(¥)} form normal families in {lo| > ¢}
and {Iﬁ'] < 1}, respectively, and hence there exist subsequences convergent in the
wider sense in respective domains. Let their limit functions corresponding to a sub-
sequence {»,} of indices be denoted by K(w) and G~1(w), respectively. They sat-
isfy plg < [K'(0){ <1 and 1< |G~V(0)] < g/p. Let A, and D, denote the
ring domaAjns bounded by {lo| = ¢}, I, = K~*({{w| = 1}) and by ., = G({lo|
= q}), {Iw| =1}, respectively. Then K(.,) is the domain kernel D, of the se-
quence {D, }, that is, it is the intersection of {lw| <1} and the kernel of the
sequence which consists of the exteriors of Vim» While G"l(f)w) is the kernel of
{4,.} which is equal to 4,,. In particular, D,, contains R, and D,, coincides
with AD,,. Since {D,,} converges to D, {F,} converges uniformly in the wider
sense in D to a function F which maps D onto D,,. Hence F is analytically con-
tinuable across {jz| = 1}. Similarly, {F,.,} converges uniformly in the wider
sense in D to a function F Whicl} maps D onto f)m. Consequently,w = F o f““’(w)
maps D gnto D,, and satisfies FoF-%(1) = 1. If R, were a proper subdomain
of Dy, {I¥| = ¢} would be contained in UAD,,. This contradicts the fact that
D, = i’IPw has a boundary point on {|i%| = ¢}. Hence we conclude Dy = Ry,
so that D, = D, and F= F. In view of the above arguments, every conver-
gent subsequence of {F,} converges to a function which maps D onto R,. Since
the uniqueness of mapping function is readily established, it follows that the whole
sequence {F,} converges to the desired function.

3-3,. A flistorﬁ?n theorem. As noticed above, the sequences {myw} and {m}}
are‘ strictly increasing and decreasing, respectively, unless D is an annulus. Gaier
[19], 121] has shown that, for any initial domain D, the boundary curves Vu+1
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and I, with n > 0 are all starlike with respect to the origin. In fact, we see, for
instance, that g, satisfies an inequality due to Grunsky [30]

tagn(tn) 1 r
g &) l~—r2} =
whence follows more precisely Re(t,,g,’,(t,,)/g,,(t,,)) > 1/(1+m¥) for t,ed, and
hence y,i1 = ga({{t.] = mx}) is surely starlike; cf. also Lavrentieff~Chepeleff [47].
It is further shown that the curves y, are convex provided 7 is large enough.

On the other hand, Gaier [17], [18] has shown that the inner boundary com-
ponent y, becomes gradually near a circle in the sense that m§—m,, and x¥ are
both of order O(p*") as n — co where ¢ = (4/m)arctang and =¥ denotes the maxi-
mal angle between radius vector and the normal of y,, and further by means
of a theorem on conformal mapping of nearly annular domain that |F,(z)— F(z)|
= 0(¢*") holds uniformly in D. However, he has later shown that the last esti-
mation can be made more precise. For that purpose, a distortion theorem on
functions univalent in an annulus is referred to, which is in itself of interesting
nature.

THeOREM 3.2. Let & be the class of analytic functions f which are univalent
in a fixed anmuus Ry = {g < |w| <1} and satisfy |fW)]=1 on {w| =1},
0 < [fw)| <1 in R, and are normalized by f(1) = 1. Then any fe F satisfies

[fw)—w| <8 in R,

where the factor 8 cannot be replaced by any smaller number. The conclusion

may be stated in slightly precise manner that limsup |f(W)—w| < 5S¢ and
|wig+0

max |fiw)—w| < 8q hold where the factors 5 and 8 cannot be diminished.
[wj=1

(tal=r<1,

This theorem was proved by Duren-Schiffer [15] and Gaier-Huckemann [24]
and a little later independently by Gehring-af Hillstrsm [25]. By the way, it was
also proved that the factor 8 is replaced by 3 when the image f(R,) is symmetric
with respect to the origin.

3.4, Approximation order of iteration. Based on the distortion Theorem 3.2,
the approximation order of F, to F in Theorem 3.1 can be given in explicit manner
[21; cf. also [19].

THEOREM 3.3. The sequence considered in Theorem 3.1 tends to the limit function
in such a manner that

[F(2)—F(Z)] < 8¢ (n=1,2,..)
holds throughout D.

Proof. We retain the notations in the proof of Theorem 3.1 and denote further,
in general, by ¥ [£] the union of a ring domain X, its either boundary component
& and the inverse image of X with respect to & provided the inversion is possible.
Then, in view of the first step of iteration process, we see that z = F~*(w) is
analytically continuable across {|lw| = 1} by inversion and hence it maps {q
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< |w| < ¢!} onto D[{Iz[ . Consequenily, t=hoF~'(w) maps {g < |w|
< g} onto E = AT and hence it is analytically continuable across {[w] = 4}
by inversion so that it maps {g® < |w| < ¢~} onto El{lt] = m*})]. In particular,
hoF-!is analytic in {g® < |w| < 1} so that Fy o F"! = geh o F~! also so is.
In other words, F; o F~! is analytically continuable inward by successive two
times inversions across {/w| = ¢}. It is verified by induction that z, = F, o
o F-1(w) is analytically continuable inward by successive 2» times inversions across
{iw| = ¢} and hence it maps {g*"*' < |w| <1} onto a subdomain of {0 < |z
< 1} such that {[w| = 1} corresponds to {|z,| = L} and F, o F~(1) = 1. Thus
it follows from Theorem 3,2 that we have |F,o F=*(w)~w| < 8¢*"+%in R, = {g2+1
< |w| < 1}, that is, |F,(2)—F(2)| < 8¢*"*! in D.

3.5. Some remarks. It is noted that the validity of convergence of {F,} on
the closure D is especially assured by Theorem 3.3, since F, and F are continuous
on D. On the other hand, Gaier [19] states a supplement to Theorem 3.3 that
the factor 8 involved cannot be replaced by a number smaller than 4. To see this,
we observe, for instance, an eccentric circular ring D = /(R,; a) obtained from R,
by a linear transformation

1~awa

z=1w;a) = 1=¢ T—aw

where g is a fixed point satisfying |a| < ¢. It is readily verified that every D, is
also an eccentric circular ring and is really defined by D, = I(R;; ag®). The
maximum error is then given by

by = max|F,(2)—F(z)] = max|I(w; ag®)—w| = m'1x| I(w; ag®™) —w|,
26D weR,, Il

whence follows in particular case of @ = i|a|, after direct calculation, 8, = 4|alg*"+
+0(q*") as n— o0. Since the parameter @ is restricted only by the condition
la| < g, this leads to the desired result.

Finally, we remember that every step in the iteration process explained above
consists of a mapping of a simply-connected domain onto a circle, which is based
on Riemann’s mapping theorem, It has been shown by Albrecht [1] that the step
may be modified by making use of any osculating mapping (Schmiegungsabbil-
dung) instead of circular mapping. On the other hand, some variants of the above~
mentioned iteration process have been obtained subsequently by O. Hiibner (cf.
Gaier [19]) and Landau [46]. The point of these methods is to insert an inversion
in every step of the process. It is verified especially that the approximation is
then considerably accelerated.

The iteration method can be generalized to constructing a mapping function
of a multiply-connected domain onto a circular domain, that is, a domain bounded

by disjoint whole circles. The detail of such a mapping (Vollkreisabbildung) is
found in Gaier’s book [21].
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4, A one-parameter family of operators defined on analytic functions in a circle

As mentioned at the beginning of this report, the contents of this part appeared
as an original paper [43] in the Conference Proceedings. So suffice it to state
its title.
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