PARAMETRICES FOR A CLASS OF P. D. OPERATORS AND APPLICATIONS

C. Parenti
Istituto Matematico, Università di Ferrara, Ferrara, Italy

L. Rodino
Istituto Matematico del Politecnico, Torino, Italy

We consider a class of anisotropic P.D. operators defined in a region $\Omega \subset \mathbb{R}^n$, and degenerating on a symplectic submanifold of $T^*\Omega \setminus 0$, which is a generalization of certain well-known operator classes (see [6]). The results obtained are used in the construction of parametrices for degenerate operators.

1. Notation

Write $\mathbb{R}_n^\infty = \mathbb{R}_+ \times \mathbb{R}_+^{n-1}$ (1 \leq n < \infty) and let $(\zeta, \xi) = (\xi, \eta)$ be the points in $T^*\mathbb{R}^n$.

Let $M = (M_1, M_2)$ be a pair of positive integers and denote by \(\text{OPS}_M^N(\Omega) \) (\(M \in \mathbb{R}, \Omega \subset \mathbb{R}^n \)) the class of all P.D. operators of the form

\[
Pf(x) = (2\pi)^{-n} \int e^{i\xi \cdot \zeta} \phi(x, \zeta) d\zeta
\]

such that:

(i) the symbol $\phi(x, \zeta)$ belongs to $C^\infty(\Omega \times \mathbb{R}^n)$;

(ii) there exists a sequence $(p_{n-j})_{n-j \to 0}$ of C^∞-functions on $\Omega \times (\mathbb{R}^n \setminus \{0\})$ with the following properties:

(a) $p_{n-j}(x, y; \lambda^{M_1} \xi, \lambda^{M_2} \eta) = \lambda^{-j} p_{n-j}(x, y, \xi, \eta), \forall j > 0$,

(b) $\phi \approx \sum p_{n-j}$, i.e.,

$$\left| \frac{\partial^{\alpha} \partial^{\beta} \phi}{\alpha! \beta!} \left[p - \sum p_{n-j} \right] \right| = O((|\xi|^{M_1} + |\eta|^{M_2})^{n-N - |M_1| - |M_2|})$$

as $|\xi| + |\eta| \to \infty$, for all N, α, β, γ, locally uniformly in Ω.

[271]
The function \(p_\alpha \) is called the principal symbol of \(P \), and we set
\[
\text{Char}(\mathcal{D}) = \{(x, \xi) \in T^*\Omega \setminus 0 \mid p_\alpha(x, \xi) = 0\}.
\]

Operators in \(\text{OPS}^m_\phi(\Omega) \) extend by continuity to operators from \(\mathcal{E}'(\Omega) \) to \(\mathcal{D}'(\Omega) \).

For every \(f \in \mathcal{D}'(\Omega) \) we define:
\[
\text{WF}_M(f) = \bigcap_{P \in \text{OPS}^m_\phi(\Omega)} \text{Char}(P).
\]

\(\text{WF}_M(f) \) is a closed subset of \(T^*\Omega \setminus 0 \), stable under the dilations \((\tau, \eta) \mapsto (\tau^\alpha \xi, \tau^\beta \eta) \), \(\lambda > 0 \), and projects onto \(\text{supp}(f) \) under the natural mapping \(\pi: T^*\Omega \to \Omega \). It can be proved that for every \(f \in \text{OPS}^m_\phi(\Omega) \) we have
\[
\text{WF}_M(f) = \text{WF}_M(f) \cup \text{Char}(P), \quad \forall f \in \mathcal{D}'(\Omega).
\]

For a linear continuous operator \(A: \mathcal{C}_c^\infty(\Omega) \to \mathcal{D}'(\Omega) \) with distribution kernel \(K_A \in \mathcal{D}'(\Omega \times \Omega) \), we can define the wave front set \(\text{WF}_{M, k}(K_A) \in \mathcal{D}'(\Omega \times \Omega) \setminus 0 \) in the obvious way, and so we see that the first inclusion in (4) is a trivial consequence of the fact that for any \(f \in \text{OPS}^m_\phi(\Omega) \) we have
\[
\text{WF}_M(f) \subset \text{WF}_{M, k}(K_f).
\]

For any \(\omega \in \mathcal{D}'(\omega) \) we define \(H^s_{\text{loc}}(\omega) \) as the set of all distributions \(u \in \mathcal{D}'(\omega) \) such that:
\[
\int (1 + |\xi|^2 + |\eta|^2)^{-s} |\hat{u}(\xi, \eta)|^2 d\xi d\eta < \infty,
\]
for all \(\varphi \in \mathcal{C}_c^\infty(\omega) \).

We say that \(P \in \text{OPS}^m_\phi(\Omega) \) is hypoelliptic in \(\Omega \) with loss of \(r \) anisotropic derivatives, \(r \geq 0 \), if for any \(\omega \in \mathcal{D}'(\omega) \) and for all \(\varphi \in \mathcal{C}_c^\infty(\omega) \) the following implication holds:
\[
f \in \mathcal{D}'(\Omega), \quad Pf \in H^s_{\text{loc}}(\omega) \Rightarrow f \in H^{s-r}_{\text{loc}}(\omega).
\]

Operators with loss of \(\delta \)-derivatives are exactly those operators \(P \) for which \(\text{Char}(P) \) is empty. For most of the concepts introduced aboverefer, e.g. to R. Lascar [3].

2. A class of P. D. operators

Let
\[
\Sigma = \{(x, y; \xi, \eta) \in T^*\Omega \setminus 0 \mid x = \xi = 0\}
\]
and let \(k, l \) be positive rational numbers. By \(N^m_{k, l}(\Omega; \Sigma) \) we denote the class of all operators \(P \in \text{OPS}^m_\phi(\Omega) \) such that:
\[
(\text{i}) \quad \frac{\partial^k \partial^l p_\alpha}{\partial x^k \partial y^l} \mid_{x=y=0} = 0 \quad \text{if} \quad \{a, b, l, k \} < k
\]
and
\[
\sum_{\{a, b, l, k \} = k} \frac{1}{a!b!} \frac{\partial^k \partial^l p_\alpha}{\partial x^k \partial y^l} \mid_{x=y=0} r^p \neq 0 \quad \text{if} \quad (l, r) \neq (0, 0);
\]
\[
(\text{ii}) \quad \text{For} \quad j \leq kl/(1+l) \text{ one has:}
\]
\[
\frac{\partial^k \partial^l p_\alpha}{\partial x^k \partial y^l} \mid_{x=y=0} = 0 \quad \text{if} \quad \{a, b, l, k \} < k - \frac{j+1}{1-l}.
\]

Remark. When \(m = M = l = 1, k \in \mathbb{Z}_+ \), we obtain the classes considered by Sjöstrand [9] (written in a particular system of coordinates).

Various other classes, e.g. those considered by Menikoff [5], are included in \(N^m_{k, l}(\Omega) \).

Let us observe that \(\bigcup_{m \in \mathbb{Z}_+} N^m_{k, l}(\Omega) \) is an algebra with respect to composition and that it is closed under the involution \(P \mapsto P^* \).

Examples (Models of operators), \(m = 2 \):
\[
1) \quad P = a_1 \partial_x^2 + b \partial_x \partial_y + c \partial_y^2 \quad \text{if} \quad a, b, c \text{ are suitable functions}
\]
\[
2) \quad P = a_1 \partial_x^2 + b \partial_x \partial_y + c \partial_y^2 \quad \text{in} \quad C^\infty(\mathbb{R}^2).
\]

With any operator \(P \in N^m_{k, l}(\Omega; \Sigma) \) we associate a family of differential operators with polynomial coefficients in \(\mathbb{R}^2 \), depending on the parameter \(g \in \Sigma \). More precisely, for any \(g \in \Sigma \) we put:
\[
P^g; t, D_t \mid_{D_t} = \sum_{j=0}^{k+\frac{1}{l}} \sum_{\{a, b, l, k \} = k} \frac{1}{a!b!} (\partial^k \partial^l p_\alpha)(g) t^a D_x^b.
\]

It can be shown that \(P^g; t, D_t \mid_{D_t} \) has a finite index (ker \(P^g; t, D_t \mid_{D_t} \) has a finite index).

Main Theorem. Let \(P \in N^m_{k, l}(\Omega; \Sigma) \); then:

I. If \(P \) is hypoelliptic with loss of \(r \) derivatives in \(\Omega \), then \(r \vee k/(1+l) \).

II. If \(P \) is hypoelliptic with loss of \(kl/(1+l) \) derivatives, then
\[
\text{ker} P^g; t, D_t \mid_{D_t} = \{0\}, \quad \forall g \in \Sigma.
\]

III. Let \(\Sigma \) be satisfied (resp. let \(P^g; t, D_t \mid_{D_t} \) be, for any \(g \), a surjective map from \(\mathcal{D}'(\Omega) \) onto \(\mathcal{D}'(\Omega) \)); then there exists a linear operator
\[
R: H^s_{\text{loc}}(\Omega) \to H^{s-kl/(1+l)}_{\text{loc}}(\Omega),
\]
continuous for all \(t \), such that:
The isotropic principal symbol of \(P \) on \(\Gamma \) is \(\sigma^*(\mathcal{A}_\ell)(y, \eta) \), which vanishes exactly of order \(m_0 \) on the surface \(s = 0 \) and whose hamiltonian vector field is not collinear with the radial vector field. Let \(\mathcal{A} \) be a classical P.D. operator with principal symbol \(\sigma(\xi_1 + \eta_1)^{1/2} \); since \(\lambda_j \geq 2\lambda_j \) it is easy to see that we can find classical P.D. operators \(\mathcal{A}_\ell \) of order \(m_0 - m_1 \) such that \(P = \sum_{\ell} \mathcal{A}_\ell \lambda^\ell \) (Levi’s condition).

We can then apply a result of Chazarain [1] to conclude that not only the equality \(WF(f) = WF(Pf) \) fails to hold (though sing \(supp(f) = \text{singsupp}(Pf) \)), but, moreover, that there is a propagation of singularities in the fibers \(T^*_\mathbb{R}^n \cap \Gamma \). A typical example is given by the Kaniou operator \(iD_\xi - \xi D_\eta^\perp \).

3. Applications

We sketch only some of them.

A. Operators with symplectic characteristic manifold. Let \(M \) be a manifold and let \(P \in \text{OPS}^\infty(M) \) be a classical P.D. operator in \(M \) with symbol \(p \sim p_n + \ldots \). Let \(\Sigma \), \(\Sigma \) be two conic sub-manifolds of \(T^*M \times 0 \), of codimension \(n \), and such that

(i) \(\Sigma \) regular involutive (regular = radial vector field \(\mathcal{F}(\Sigma) \));

(ii) \(\Sigma_\perp \) is involutive;

(iii) \(\Sigma \cap \Sigma_\perp \neq \emptyset \) with transversal intersection, and such that \(\sigma \in \mathcal{S}(\Sigma) \) is not singular, \(\forall \not\in \Sigma \).

We impose on \(P \) the following hypothesis:

\[
\sum_{\ell} \sigma(\xi) \xi^{m - \ell} \psi = 0, \quad \forall \not\in \Sigma
\]

for some \(k < 1 \) or \(r < 1 \). In the cases \(k = 1 \) or \(r = 1 \) which imply \(s = 1 \), we obtain a parametrix (left or right) for a class of sub-elliptic operators. These results are well known, only the proof seems to be simple.

Example.

\[
D_\xi + i\varphi D_\eta, \quad D_\xi + i\varphi \psi D_\eta (r \text{ even}), \quad D_\xi + i\varphi \psi D_\eta
\]

When \(k \) and \(r \) are greater than 1, some hypotheses on the lower order terms in the symbol of \(P \) are needed to ensure e.g. hypoeellipticity. Suppose \(k = 2 \) and \(r = 2 \); and assume the hypothesis:

\[
| p_n(\xi, \eta) | \leq |\xi| \{ |D_\xi (\xi, \eta)| + \delta_\lambda (\xi, \eta) \}^{t_\lambda / r} + \delta_\lambda (\xi, \eta) t_\lambda = \max(0, \eta)
\]

where \(t_\lambda = \max(0, \eta) \). Note that conditions (11) and (12) are invariant under general homogeneous canonical transformations. Then for every \(p \in \Sigma \) we construct in \(N_\lambda = T^*M / T(M) \) a differential operator \(P_\lambda \) such that \(P \) is microlocally hypoeelliptic with loss of \(2\sigma/(\sigma + 2) \) derivatives iff \(P_\lambda \) is injective for every \(\not\in \).

\[\mathcal{I} = \{ (x, y; \xi, \eta) \in T^*\mathbb{R}^n \times 0 : \xi \neq 0 \}.\]
PARAMETRICES FOR A CLASS OF P. D. OPERATORS

EXAMPLE. $D^2_x + \omega^2D^2_y + \lambda x^{-1}D_y$.

The proofs of all the above results consist in reducing by a suitable canonical transform, to the case of

$$\Sigma = \{(x, y; \xi, \eta) = T^x (F^x \times F^y) \cap \{x = \xi = 0\}$$

so that, microlocally, P belongs to some $N^2_{\Omega}(\mathbb{R}^4; \Sigma)$ and recognizing that the hypotheses imposed on P allow to apply the main theorem.

B. Operators with involutive characteristic manifold. We make the same assumptions on M, Σ_1, Σ_2 as before. Suppose that $P \in \text{OPS}^\infty(M)$ and suppose that:

$$p_m(\zeta, \xi) = \langle \gamma^m \delta_3(\zeta, \xi), \xi \rangle^k, \quad k \in \mathbb{N}.$$

For well-known reasons we consider only the case $k \geq 2$ and define:

$$p_0(x, \xi) = p_{m-1}(x, \xi) + \frac{i}{2} \sum_{j=1}^{n} \frac{\partial p_m(\xi, \xi)}{\partial \xi_j}, \quad k \in \mathbb{N},$$

which is called the sub-principal symbol of P.

For every $q \in \Sigma_1$, let X be a smooth vector field on $T^x M$ which is transversal to Σ_1 at q and define:

$$I_p(q; X) = \frac{1}{h!} (X^p)_{p_m}(q) + p'(q).$$

Then if $I_p(q; X) \neq 0$ for every q and X, we get that P is microlocally hypoelliptic with loss of 1 derivative.

EXAMPLE. $D^2_x + \lambda x^{-1}D_y$.

Condition $I_p(q; X) \neq 0$ implies that $p'(q) \neq 0$. In the case where $p'(x)$ is identically zero (and $k = 2$), various results are known concerning propagation of singularities for the solutions of $Pu = f$ (see [7]).

We consider here the case of $k = 2$ and suppose that $p'(x)$ vanishes exactly of order r on $\Sigma_1 \cap \Sigma_2$. We make the following hypotheses:

(i) p_m takes values in a closed convex cone $\Delta \subset C$ (with opening $\leq \gamma$);

(ii) p'_m takes values in a closed convex cone $\Delta' \subset C$;

(iii) $\Delta \cap (-\Delta') = \{0\}$.

Under the above hypotheses P is microlocally hypoelliptic with loss of $(2r+3)/2$ derivatives (a two-sided parametrix can be constructed).

EXAMPLE. $D^2_x + i\omega^2D_y$.

Lascar [4] has obtained similar results by a different technique. We can also consider the case of $k \geq 2$, $r = 1$ (under some hypotheses on the range of p_m and p'_m) and obtain a two-sided microlocal parametrix.

REFERENCES
