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to y for each @wek, and that V, # @ for every wel, Also the congiders- IX (1961)

tions of § 5 remain valid, because the invertibility of the function & (s, y)
oceurs only for wel,.
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The present paper contains results regarding the existence of con-
e tinnous gsolutions of the functional equation

(1) F(w,tp(m),(p[f(m)],(p[fz(m)],...,(p[f"(w)]) =

in which the funetion ¢(#) is the unknown function, f(z) and F (@) Yo,
.y Yn) are given functions, and f’(x) denotes the »-th iteration of the
funetlon fl@), i.e. .

fo(m) =u,
(@) =f[fv_l(w)]; (@) =f_1[fﬁv+l<m):l: v=1,2,3,...
Bquation (1) is a generalization of the equation

(2) Fh(my @ (2), ‘P[f(m)]) =
which was discussed in [1], and iy a particular case of the equation

(3) F( » ¢(2), o [fi(®)], elfa(®)], . -7‘P[fn(a")]) =

(where the functions j,(m) (v =1,2,...,n) are known functions), which
was discussed in [2]. Equation (2) is a particular case of equation (3);
nevertheless the theorem on the existence of continuous solutions of
equation (3) does not, in the case of n = 1, pass into the corresponding
theorem for equation (2); the hypotheses made with regard to equation (3)
are stronger. M. Kuczma hag raised the problem of proving the existence
of continnous solutions of equation (1) under such assumptions (weaker
than the hypotheses on equation (3)) that in the case of n = 1 the theorem
should pass into the corresponding theorem for equation (2). The pre-
sent paper is a solution of this problem: we ghall show that under suitable
assumptions equation (1) possesses infinitely many continuous selutions.

We assume the following hypotheses regarding the function f(w)

(1) The function f(w) is defined, continuous and strictly increasing
in an interval <{a,b); moreover, let f(a) = a, f(b) =b, f(x) >z for
ve(a, b).
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Under these assumptions the following lemma (proved in [3]) is
valid:

Luviva I. If the function f(x)
we(a, b) the sequences {f"(x

Sulfils hypotheses (i), then for ecach
)} and {f7"(2)} are monotone and

imf(s) =b, lLimjf™

P00 P x00

(2) = a.

Let us assume further that:

(ii) The function F(w, vy, ..., ¥,) is defined in a certain set Q of
(n--2)-dimensional space of the variables (2, ¥, ..., Yu)-

Now we introduce the following notation:

F denotes the set of such points P (2, ¥o, ..., ¥,) that P2 and F(P) =
3 denotes the projection of the set F onto the subspace of the variables
(@5 Y1y +ovs Yu)- )

3" denotes the projection of the set F onto the subspace of the variables
(@) Yoy v 1 Yn-1)-
F. denotes the set of such points Q (v, ...
.., Y) belongs to F.
32 denotes the projection of the set F, onto the subspace of the variables

) Ya) that the point P(z,y,,

(Yay ey Yu)-
&, denotes the projection of the set F, onto the subspace of the variables
Yoy -+ 5 Yn)-

We assume further that:

(iii) For each wze(a,b) the set F, is non-empty.

It is apparent that then also the sets &, F° and " and for each
xe{a, b) the sets 3% and 7 are non-empty.

Lastly, let us suppose that:

(iv) For each we(a, b)
() Ty = B2 '
LeMma IT. Under the hypotheses (i)-(iv) equation (1) possesses at least
one solution o(x) defined in the interval (a, b).

Proof. From. the definition of the sets F" and F° it follows that
there exist at least one function G (xz, ¥, ..., Yu-,) defined in the set F"
such that

(8) F(@y Yoy ooy Yno1y G2, Yo, -+
and at least one function H(z, ¥, ..., ¥,) defined in the set F° such that
(6) Flo, B, Y1y oo Yn)y Yay ooy Y) =0  in G
Let @, be an arbitrary point of the interval (a, b). We put

%, =f"(@), »= +1,£2, 43, ...

1Yar)) =0 in G
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From hypothesis (iii) it follows that there exist functlons Yol), .

A yn—l ($)
defined in the interval <, f(,)) such that

(M (@ Yo(®)y -y Y (@) eF"  for @ e, £ (o).
We shall show that the formulae
BUT @] for weda, ), v =0,1,..., 01,
G(f (@), oIf @)1, o [f " @), ..., p[f(a)))
8) o) = for  wel®,, ®,.,), »=mn,n+1,,
Hiz, o[f(@)], p[f (2)], ..., o[f*(®)))
for  welm, ), »=—1,-2,

define the function g(z) for every ze¢(a, b) and that the function (.
thus defined satisties equation (1) in the interval (a, b).
On account of lemma I we have

(9) (a,b)

U $yy By41) = (@, @)+ (i 2) + {@ny b)

The proof of the existence of the function ¢(x) will be carried out inde-
pendently for each of the intervals (a, z,), (@, #,) and {&y, b). Proving
that the function ¢(x) is defined in the interval (z,, b) we shall show that
it satisfies the equation in the interval <z,, b), and proving that the function
®(x) is defined in the interval (a, @,) we shall show that it satisfies the
equation in the interval (a, x,).

I. Let us take an arbitrary me(wo, @y). There exists a » (0 <v < n)
such that @wedw,, x,,,). Since f~(2) ez, ), v.[f"(2)] has a meaning
and consequently ¢(2) has a meanmg Since # has been an arbitrary
point of the interval <{w,, «,), formulae (8) define the function @(2) in the
interval {(w,, z,).

IL. For the interval {w,, b) the proof will be by induction. Let us
take an arbitrary me{w,, #,.,,). Since for » =1,2,...,n

f—-”(w) € <.’&,,, vy Ty ]41) C <m07 wn)y

elf7(@)] (» =1, 2,...,n) has, on account of the first part of the proof,
a meaning and we have by (8)

e @] = yury [ (7 @)] = Yun [fM@)]  for v =1,2,..,m.
Hence we have according to (7), since F (@) e, @),
(@), o[ @)1, p LF " (@], .., o [F* (@))
= (F"(@), %[ ™@)], @), -y Yoa [ (@)]) B
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Since the function G is defined in the set F”,
Plf " @), ..., [f ' (@)]) has a meaning, and by (5)

Flf"@), ol (@)), ..o o U™ @)1, G(F (@), 9 @), .o, 0 0)]) =0,

Consequently, ¢(x) has a meaning and equation (1) is satisfied at the
point =" (w).
Since # has been an arbitrary point of the interval {s,,®,,,) and

fﬁn(<wm -7/'714.1)) = {@y, B1),

formulae (8) define the function ¢(#) in the interval (@, »,,,) and equa-
tion (1) is satisfied in the interval {w@,, @y).

Now let us suppose that formulae (8) define the funection ¢(v) in
an interval (@,, ®n,x) (k > 1) and that it satisfies equation (1) in the
interval {%,, xx). We shall show that formulae (8) define the function ¢(x)
in the interval (&, @) and that it satisfies equation (1) in. the inver-
val <a"07 wk+l)~

Let us take an arbitrary @ e{®n. i) ¥n x.1). Sincefory =1, 2, ...

G(f" (@), o[f ()],

y n+1
T (@) € {Bnpompy Brtog1—v) C Doy Tnyre) s

elf7 @] (» =1,2,...,n+1) has a meaning in view of the first part
of the proof and of the induetive hypothesis. Since f~" () e<{wy_y, )
C <@y, @) in virtue of the inductive hypothesis equa,tmn (1) is satisfied
at the point f™ '(») and we have

F(f" @), p[f " (@)]y @ [F (@), -.cp @[f 7 (@)]) = 0.
Consequently,
(" @), oL @)1, @I " (@)1 o0 @ [F 7 (2)]) € F
whence
(w[f‘"(w)], teey ‘P[f—l(w)])f 3_9»—1(;,,)-

On account of hypothesis (iv)

(@@, s of 7 (@)]) e F

e
1=me)?

(f ﬂv(m)7 @ [f_n(m)L
Consequently, &(f~" (@), [f"(@)], ...

o[ (@)]) e F™
» [f~}(@)]) has a meaning and by (5)
F(f‘”(w),qotf‘"(mn, ca o[ @], G @), o[ (@)1, . p[f (m)])) =0.

Thus ¢(x) has a meaning and equation (1) is satistied at the point f~"(2).
Since # has been an arbitrary point of the interval (%, i, nyxy1) 404

- (K @ngrey Bniesn)) = By Bioys) 5
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formulae (8), on account of the inductive hypothesis, define the fune-
tion ¢(#) in the interval (., Zy,,,.), and it satisfies equation (1) in the
interval <&, #z41). Thus, by way of induction, according to (9), we
conclude that formulae (8) define the function ¢(z) in the interval {@ay b)
and that ¢(z) satisfies equation (1) in the interval {&y; b).

III. Modifying slightly the second part of the proof we obtain the
proof for the interval (a, ).

Remark. If in the statement of lemma IT we require the existence
of a solution of equation (1) in an interval (¢, b), where ce(a, b), then it
would be sufficient to postulate in hypothesis (iv) instead of relation (4)
the inclusion

Fre) 0% for  wele, b).
Requiring the existence of a solution in an interval (e, ¢) it is enough
to postulate that

Sy C G5

Now let us assume additionally that: .

(v) There. exist at least one function G(z,y,, ..., y,_;) defined and
continuous in the set &, fulfilling relation (5), and at least one function
H(%, Y1y ..., Yn), defined and continuous in the set F°, fulfilling relation
(6), and, moreover, that at least one of the conditions

(10) Yn1y G(@, Yoy oo ny

for we(a, o).

Yo = H@, 45y, Ya 1)

» for every (, Yoy ... Yn_y)eF"
(11) ?/nEG(W’H(m;ylv~--7yn)7?/17--'7?/n—1)} ‘
for every (2,4, ..., ¥n)ed®
is fulfilted.
(vi) There exists an w,e(a, b) such that each two points of the set "
Py(@yy Coyoevy Cnor)y -PZ(f(mo)7017""cn)
can be joined by a continuous curve, passing within the set 3", of the
form
2 =1, .
Yo = Yo(1), ey, f(@)),

Yn—1 = Yn-1(t),

i e. the functions ¢,(t) (v =0,1,...
in the interval <w07 F(@0); ¥ (@) = €,y Yo [f (@)] = Copa (v =0, 1, ...
and

, n—1) are defined and continuous
yn—1)

P(t, Yo(t)y vens yn-l(t)) F™  for “(mo:f(%))-

Annales Polonici Mathematici IX 1
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Remark. Concerning the beginning of the formulation of hypothesis
(vi) it can be shown (which iy done in the proof of lemma III) that if
a point Py (&, ¢y, ..., ¢,1) belongs to F" then there exists a ¢, such that
the point Py (F(2), ¢y, ..., ¢u) belongs to F".

Remark. In hypothesis (vi) the set T can be replaced by the get G,
Both forms of hypothesis (vi) are equivalent: from the fulfilment of
hypothesis (vi) for the set 3" follows the fulfilment for the set 3, and
conversely.

Levma TIL. Under hypotheses (1)-(vi) equation (1) possesses at least
one solution ¢ (@) defined and continuous in the interval (a, b).

Proof. Buppose that in formulae (8) the functions & and H are those

" for which hypothesis (v) with condition (10) is fulfilled (if we supposed
the folfilment of relation (11), the proof would run analogically). Let
hypothesis (vi) be fulfilled for the point m,. We shall show that in the
proof of lemma IT the functions v, (z) (v = 0,1,...,n—1) can be chosen
in such a manner that the function @(x) defined by formulae (8) (and
satisfying equation (1)) be a continuous function.

From hypothesis (iii) it follows that there exists a point P, (,, ¢,
<oy Gn) €F7. Sinee the function ¢ is defined in the set F", (@, Coy ey Cyoy)
has a meaning, ‘and (according to (5))

Flag, oy oy 0y, G (@ Coyeenyy -1)) = 0.

Congequently

(moa Coyeony Cnyy G(mny Coy vevy ("n«l))eg;
whence

(cl, ooy Onyy G, G,y .oy 071_1))6320-
But on account of hypothesis (iv)

(("17 wr0s G G (g, 0y (’w,ml))fg}b(xo)y
i. e. the point

Pz(f(wo)y Cryovvy Ony,y G(wor Coyeeny Gn—l))egn-

According to hypothesis (vi) there exists a sequence of functions {y,(2)}
(v=10,1,...,n—1) defined and continuous in the interval (@, f(%)>
such that

Pz, yol@), ..., ya .,1(99))'55‘% for mf(mo,f(wo))
and .
Y, (%0) = ¢, for y=0,1,...,n—1,
(12) W) =041 for v=0,1,...n—2,
Yn-1[f(#)] = G (m, Cay evey Cpy)-
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1t follows by (8), on account of the continuity of the functions y,(),
@ and H, that the function ¢(z) is continuous for wels,,w,,,)
(v = 0,41, +2,...). It is thus enough to prove the continuity of the
function ¢(x) at the points @, (v =0, +1, £2,...).

Continuity for x,,®,,...,s, ; follows from relations (12). For
Dy Bng1y Bnsay «-- A Ty, ®_1, ® 5, ... the proof will be by induction.

For & = #, we have by (8) and (12), on account of the continuity
of the functions & and y,_, and of the function ¢(z) for ze!{w,, DBpi1)s

lim p(#) = Um go, [ (#)] = yu_i(2) = G (%o Coy vy Cn_1),

lim ¢(@) = ¢(@) = G(f " (@), p[f " (@), 9 [F " @)1, -5 9 [F (7))
Tosllg -

= G(.%, @ (o) s '--7‘77(wn—1)) = G(wu, YolBo)y -+ - f‘/n—l(wo))‘ =G (%, oy -5 Cn1)}

thus the function @(#) is continuous for z = =,.

Now let us suppose that the function ¢(x) is continuous for
Dy Bni1y ooy Bnpr (B = 0). We have by (8), on account of the continuity
of the function @, and of the function ¢(z) for @ e{@n. si11) Tuiriz)s

m @)= lm G(f"@),elf"@)],....e[f (@)
En 1T T k1T
= G(mk-y-ly O(@pg1)y «- -5 99($k+n))’
lim og(z)=¢ (mn+k+1) = G(f'n(mn-p-k+l) P [f—n(mn+k+1)] PEERTY A [f_l (mn+k+1)])
T Tptler1t '
= G($k+1, (p(mk—}-l)" ey ‘p(mk-m));
thus the function ¢(z) is continuous for ¥ = =, ,4.1. By way of induction
it follows that the function ¢(») is continuous for o, Tn.1, Tnisy---
Further, we have for # = x,, on account of (8), (10), (12), of the con-

tinuity of the functions H and v, and of the function ¢(z) for oy, #,, ..., ¥,
and for »e{a,, »,),

Hm ¢ (@) = @ (@) = Yo(®) = 6,

I ‘
im ¢(@) = lim Hlz,p[f(@)], ¢[f(2)], ..., o[f"(2))
2ty BBy

= Hlttgy €1y ++vy Onyy (@0 €1y .o tn1)) = Co;

thus the function ¢(#) is continuous for v = x,. - .
Now let us suppose that the funection @(x) is continuous ff)r o,
T_y,..., @ (K =0). We have by (8), on account of the continuity
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of the funection H and of the function ¢ (@) for @iy @._xy1, ...y @4 0o and
for wel®@_p_q, ®_z), '

lm (@) = @@, ) = Hiz q,0[f@ 1), e[ (2 s Dl el (e

R S

== H(atlcﬁl} P i)y PUEtogr) g ey P(Bs 9~n—1));
im  ¢(g) = lim H(m, e[f(@)], ‘Pl:f:(w)]’ ) W[fn(m)])

sl oy Trfyn]

=H (w-»-km-la ?”(m.-—lc)a PBotir1)y ooy P @pirm 1));

thus the function ¢(«) is continuous for # = @_;_,. By way of induction,
it follows that the function @(z) is continwous for wy, . ,,®_,,... This
completes the proof of the lemma.

Remark. If in hypothesis (v) we required the existence of the
function G or of the function H only, then we should obtain the existence
of a continuous solution of equation (1) in the interval <u,, b) or (a, I (w4))
regpectively. In that case we should not need to postulate relations (10)
and (11).

Now let us suppose that:

(ii') The funection F(x, ye,...,Y,) is defined and continuous in
a region £ and possesses in it continuous derivatives dF [dy, and IF /oy,
neither of which vanishes in the region .

(ii"”) One of the two sets F" and F° is a convex region.

-~ We shall prove the following

TaEOREM. Under the hypotheses (1), (i'), (ii"'), (iii) and (iv) equation (1)
possesses infinitely many solutions ¢(x) defined and continuous in the
interval (a,b). ) )

Proof. In view of lemma III it is enough to show that the hypotheses
(i), (v) and (vi) are fulfilled and that there exist infinitely many sequences
of functions {y,(®)} (» =0,1,...,n—1) for which hypothesis (vi) is
fulfilled.

The fulfilment of hypothesis (ii) follows from hypothesis (ii').

Moreover, from hypothesis (ii’) follows the existence of exactly one
function G(®, ¥y, ..., Yn-1), defined and continuous in the set F" and
fultilling relation (5), and exactly one function H(x, ¥y, ..., Yn), defined
and continuous in the set &° and fulfilling relation (6). Since in this case
the equations

F(@,) Yoy ey Yu) = 0, Yo=H{Z, Y1y -0y Yn)y  Yn =G®, Yoy -0y Yun-1)

represent the same set &, relations (10) and (11) are alyo fulfilled, and
thus hypothesis (v) is. fulfilled..
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Now let us suppose that, for instance, the set F* is a convex region
(if the set 3° is convex, wo reason in a similar way). Let us take an arbi-
trary @oe(a, b) and two points Py (@, ¢y «.-y 6ay) and Py(f(w), €1, ..y €0)
belonging to the sct F". Since F" is convex, there exists a continuous
curve of the form (12), passing within the region 3" and joining the points
P, and P,, and thus hypothesis (vi) is fulfilled.

Since 3" is an open set, there exist infinitely many such curves of
the form (12), and taking in formulae (8) all sequences {y,(x)} (» =0, 1,
...,n—1) determinig these cu:ves we obtain infinitely many continuous
golutions of equation (1). This completes the proof.
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