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Pour un tenseur antisymétrique il en résulte, en particulier, la non-
existence de comitants scalaires ainsi que, pour un espace & nombre impair
de dimensions, la non-existence des comitants-densités non triviaux,
car dans ce cas nous avong D = 0.
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On some linear functional equations

by J. KoRDYLEWSEI and M. KuczMa (Krakow)

Introduction. In the present paper we discuss some particular
cagses of functional equations of the type

(€8] Ay(@)p[f* (@) ]+ A, (@) [f" 7 (@)]+ ...+ Au(@)p(2) = F(2),

where g(x) is the required function, and f(»), F(») and 4;(z) are known
functions. f*(x) denotes here the k-th iteration of the function f(z), i.e.

fo(m) =,
(@) = fIff (@)1,
@) = @),

We call the number » the order of equation (1).
Equations of type (1) were treated by M. Gherminescu 1, 2l
However, we consider different problems from those he dealt with.
We shall discuss equation (1) in an interval {a,d) where a and b
are two consecutive roots of the eqiation

@) fla) = o.

We shall assume that the function () is a homeomorphism of the interval
{a, b> onto itsclf, and the functions F(x) and 4;(x) are complex-valued
functions of the real variable, continuous in the interval {a, b).

The object of our research will be the number of solutions(*) of equa-
tion (1) that are eontinuous in the intervals (e, d), (a, by, or {a,b). It
turng out that although equation (1) always possesses infinitely many
solutions continuous in the interval (a, b), in some cases there may oxist
at most one solution continuous in the interval (a,b) or <a,b). These
results are a continuation of our previous research ([3], [4], [3], [6]).

k=0, 41, +2,...

(%) By a solution of equation (1) we shall understand a complex-valued function
@ () of the rcal variable, difincd in a ecrtain interval and sat’sfying equation (1)
in this int.rval. In the case of a real-valued function we shall always wi.te
¢real solution”.
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I. Equation of the first order. In this section we shall discuss the
equation of the first order:

(3) Ay@elf@) ]+ A (@) p(@) = Flz), wela,b).

We assume that Ay(s) %0 and A4,(x) 5% 0 in the interval {a, b>. Then
equation (3) can be written in the form

(4) p[f()]—A(@)p(2) = G(2),

where A(z) & —A,(®)/Aq(m), and G(x) = F(2)/A,(x). Since A,(w) #0,
then also A(z) %0 in <a, b).

One can prove the following

LevmA I. If the function f(®) is continuous and strictly increasing
in an interval {a, bd, where @ and b are two consecutive roots of equation (2),
and moreover f(x) >z in (a, b), then for every we(a, b) the sequences {f"(x)}
and {f™™(x)} are monotone, and

lim f*(z) = b,

N —>00

Iim f(x) = a.
P> 00

A proof of this lemma iy to be found in [6].

We shall now prove the following

ToaeorEM I. If the function f(x) fulfils the hypotheses of lemma I,
and the functions G (x) and A(x) are continuous in the interval (@, b), A(x) # 0
i (a,b), then equation (4) possesses infinitely many solutions that are con-
tinuous in the open interval (a,b).

Proof. Let us fix an arbitrary , <(a, b) and let us put , L ().
Let ®(x) be an arbitrary function continuous in the interval {wx,, #),
and fulfilling the condition
(8) Lm ¢ (@) = G{wo)+ A(20) P (o) -

:B——)Zl—
Then the formulae
®(x) for
G @) ]+ AL (@) e[ (x)]  for

Pf(@)]—6()
Az)

@e @y, q),

o(@) =' m€<wmmn—|-1),

for @@ opy¥_pa), n=1,2,..
define, as we can easily verify on account of lemma I, a function ¢(») in
the whole interval (a, b) so that it is continuous and satisfies equation (4).
Taking all functions ¢ (x) that are continuous in the interval <m,, z,),
and fulfil condition (5), we get all solutions of equation (4) that are contin-
uous in the interval (a,b). There are infinitely many such solutions.
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However, these solutions are not always continuous for z — b. We
shall show that in some cases at most one of the solutions of equation
(4) is continuous for x = b.

Lpywa I1. If the fumction f(m) fulfils the hypotheses of lemma I, and
the function 2(z) is continuous and distinct from zero in the interval {a, b>
and fulfils the condition

(6) A@)] =1 for wze(b—n,b),
resp.
(7 A@) <1 for we(a,atn),
where 7 is a positive number, then the unique solution of the equation
(8) elf(@)]—Az)g(x) = 0
that fulfils the condition
® il_rg ple) =0,
resp.
(10) lim ¢ (x) = 0,
z—sa

is the fumction (x) = 0 in (a, b).

Proof. Let us assume that condition (6) is fulfilled and that the
function ¢(z) satisfies equation (8) and condition (9). Let us suppose
further that there exists @, «(a, b) such that ¢ (a,) = 0. Let us put a, & I (o).
We have

‘P(mn—}-l) =2("”‘n)‘p(mn): n =07172""

Then, since A(x,) %0, @(z,) # 0 for every n.
On account of lemma I z, — b as n — oo, and thus there exists an N
such that z,¢(b—n,b) for n» > N. We thus have, according to (6)

[A@,)] 21 for @« >N,

whence

(@) Z lp(@)l 2 lp(ay)] >0 for n >N,

and thus relation (9) cannot hold.

If we assume condition (7) and relation (10), the proof is analogous.

Now we shall prove

TuHEOREM IL. Let the function f(x) fulfil the hypotheses of lemma I,
and let the function A(x) be continuous, () = 0 in the interval {a, b>. More-
over, let condition (6) with A(d) # 1, resp. condition (7) with A(a) #1
be fulfilled. Then there exists at most one solution of equation (4) that is con-
tinuous in the interval (a,b) resp. {a, b).
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Proof. Lot us assume that condition (6) is fulfilled and A(d) # 1.
Let us suppose that there exist two distinet funetions ¢,(2) and
@, (), continuous in the interval (a, b} and satisfying equation (4):

1)  @lf@]—A@)e(®) = G@), ef@]—i@)e:(0) = G(@).

Then the function <p(m)§ @,() —@,(2) 18 continuous in (a, d) and sa-
tistics equation (8). Putting @ = b in (11) wo obtein

whence
(12) @(b) = 0.

Consequently, on account of the continuity of the function (s} at the
point # = b we have
lim ¢(z) =0,

z—>b

and, on account of lemma II and relation (12)
(a, b,

which contradicts the supposition @, (®) 5= @.(x).

If we assume that relation (7) is fulfilled and A(a) # 1, the proof for
the interval (a, b) is analogous.

THEEOREM III. Let the function f(z) fulfil the hypotheses of lemma I, and
let the function A(x) be continuous, A{x) = 0 in the interval {a, b)>. Moreover,
let condition (6) with A(b) = 1, resp. condition (T) with A(a) = 1 be fulfilled.
Then there exists at most one solution of equation (4) that is continuous in the
interval (a, b> resp. {a, b), and assumes a given value for ¥ =Db resp. » = a.

The necessary condition of the eistence of such a solution is the relation
G(b) = 0 resp. G(a) = 0.

Proof. Let us assume that condition (6) is fulfilled and A(d) = 1.

Let us suppose that there exist two distinet functions ¢,(x) and
@, (), continupus in the interval (a, b), satisfying oquation (4) and the
condition

p(x)=0 in

P1(b) = @a(b).

Then the function @ (x) i(pl(m)——tpz(m) is continuous in the intorval
(a, by, satisfies equation (8) and the condition
(23) @(b) = 0.

Consequently
lim ¢(2) = 0,

z—b
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and on account of lemma II and relation (13)

(2,55,
which contradicts the supposition g,(x) 5= @,(x).

Putting # = b in equation (4) we obtain, according to A(h) = 1,
G(b) = 0. Thus the relation G(d) = 0 is a necessary condition of the
existence of a solution of equation (4) that is continuous in the whole
interval (a, b).

If we assume that relation (7) is fulfilled and A(a) = 1, the proof for
the interval <a, b) is analogous.

CororLrAry. If A(z) =1 in {a,b), then the general solution of equa-
tion (4) continuous in (a, by resp. {a, b) has the form

p@) = ¢(@)+o,

where @(z) is a solution of equation (4) continuous in (@, bd> resp. {a, b),
and ¢ is an arbitrary constani.

In the above theorems condition (6) resp. (7) is essential. If condition
(6) (condition (7)) is not fulfilled, the uniquness of the solutions of equa-
tion (4), continuous in the interval (a, b) (in the interval {a, b)) will not
occur. Moreover, if in place of inequality (6) resp. (7) we put the converse
inequalities, then every solution of equation (4) that is continuous in the
interval (a, b) is also continuous in the interval (a, by resp. <@, b). The
corresponding theorem will be preceded by two lemmas.

LemmA III. If the fumction f(x) fulfils the hypotheses of lemma I,
and the function A(w) is continuous, A(x) 7 O in the interval (a, b), and ful-
fils the condition

@) =0 in

(14) MA@ <L in  (¢,b), oce(a,d), IL#1,
resp.
(15) A@)| >1/L  in  (a,0), ce(a,b), L#1,

then every function g(x) satisfying equation (4) fulfils the inequality
1—-I"
1-L

16 el (@] < Mo(@) +Lp(@)] for wme(e,b), n=1,2,...

resp.
741

L—L
an @1 < Nal@) =——+Tp@) for ve(a,0), n=1,2, ...

where
f

M.(2)= sup |G(),
<, M@))

Nu(z) = sup
@),z

G, xe(a,d).
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Proof. Let us assume that relation (14) is fulfilled.
Equation (4) can be written in the form

elf(w)] = G(@)+A(n)p(@).
Hence we obtain
18)  lelf@)] <16@)+A@)llp@)| < My (@)+Lip@),

Putting f(z) in place of & in relation (18) we obtain

xe(c, b).

19)  lp[fA@1 < My[f(#)]+ Llplf (@)1 < Ma[f(@)]+LM; (@) +Lp(@)l
we(c, b).
The functions M;(x) fulfil the inequalities:
Ml f (@)] < Miyy(@).
Hence we have, by (19),
lp[f ()] € My()+LM, (2)+Lg@)l, z<(c,d).

By induction we obtain from (18)

lplf* @) < ML (@)]+Lip [ (@)

:éMWM+LM_Am+»u+ﬂ“%LWHJWWWN, we(o,b)

For a fixed # the sequence

{M,(#)} is increasing:
Mi(w) = My

y  for 4 >j;

consequently
wlf" (@] < My (@) [1+L+ ... +L" 71+ L o (w)]
L’Vl,

1—
= My@) 5

+ I p(@)l,  @ele, b)),

which was to be proved.
The proof of relation (17) under assumption (15) is analogous.
COROLLARY. Under the hypotheses of lemma IIL we also have the ine-
quality

20)  lplf" @]l < M(a) IMe(@)| for we(o,b), n=1,2,...
resp.
L—I+t
21)  lplf @I SN (@) ——7— +I"p(@)| for we(a,e), n=1,2,...
where
(22) M () iisug aG@®l, N(x) d=f(su1>>\(}(vt)\, ze(a, b).
{x, @,
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Relations (20) and (21) follow from relations (16) and (17) in view
of the inequalities

Mo (z) < M(@), Ny@) < N(z),
Levua IV. Let the function f(x) fulfil the hypotheses of lemma I,
and let the function A(x) be continuous, A(x) £ 0 in the interval (a, b), and

Sfulfil the condition

ze(a,d), n=1,2,...

(23) ) A@)<®<1 dn (b—n,b),
resp.
(24) @) >1/% >1 in  (a,a+7),

where 7 is a positive number. Further, let the function G(x) be continuous in
the interval (a,b) resp. {a,b). Then every function p(z) satisfying equa-
tton (4) and bounded in an interval {@,, f(x,)>, where x, is a number from
the interval (a, b), is also bounded n an interval (c, b) resp. (a, ¢) for every
ce(a, b).

Proof. Let us assume that relation (23) is fulfilled and that
@ e{@y, (@)},

and let ¢ be a number from the interval (a, b). We can assume that ¢ < x,.
We put

(25) lp(@)| <C for

oS @), n=0,£1,£2,..
On account of lemma I there exist indices u and » such that
(26) w,,e(f(b—n), b) for

Since the function A(x) is continuous and distinet from zero in the interval
(@, b), there exists a number L > 1 such that

n=py, Z_pe(a,c) for mn>=9.

L <|A@)| <L for wmelw_,,s,).

Now, let us take an arbitrary x<{(x_,, b). We shall consider four cases,
depending on the position of the point # in the interval (w

1° zelm_,, z,).
Then there exist 2*e(®,, f(#,)> and an index n such that

@ = f"(a").

< ». On account of lemma III

3 D).

Evidently 0 <

n+1

LI
lp@) = lp[f ™ @]l < Nn(W*)—ET‘FL"l!P(W*)[-
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N.(z") < N,(z%), and thus
-1

_I .
)] < F(0") e T (o),

whence, pubting

¥E sup N,(2),

<o, 1(z0)>
we have by (25):
p-1

I—I )
lp(@)] < NT:E"‘ +I0,

which proves that the funetion ¢(x) is bounded in the interval {w_,, @,).

2° wel@y, f(0)).

In the interval <{u,, f(z,)> the funetion ¢(z) is assumed to be bounded:

lp(z)] < C.

3° we(f (@), @, .
Then there exist #* ey, f(a)> and an index n such that

z = " (z*).
Evidently 0 << n < gu. By relation (20)
1-I*

9@ = lp @ < M@ = +I"lp(a)],
whence, putting
b7 g sup M(x),
<o, f(z0)>
we have by (25):
— Tk
p@I < M 7 +I*0,
which proves that the funetion () is bounded in the interval (f(a,), @,>.
4° pe(m,, b).
Since, according to (26), @, >f(b—1), ©,-, >b—7, and hence
Al <d <1 for yelw,,,b).
There exist @*e{®,.,, 7,5 and an index n >0 such that
@ = f*(a*).
Consequently, according to (20):
* * 1—9" n *
lp@@) = lp[f* (@)1 < M (") =g T lel@)l.
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On account of the proceding part of the proof the function ¢(y) is bounded
in the interval (, ;, #,> C (f(2,), #,>:

e <K for yelw,,w,).
Consequently, putting
TE sup M),
Ey—1s Tpd
we have
I 1
lp(@)| < M 17 +9"K <M1_:5 + K,

which proves that the function @(x) is bounded in the interval (@, B).

Thus we have proved that the function @ () is bounded in the inter-
vals (@_,, %), {Toy F(@)D, (f(mo),a;,,> and (w,,b). Then it is bounded in
the interval {_,, ) and thus also in the interval (¢, b)C<w._,, b).

The proof for the interval (a, ¢) under assumption (24) is analogous,

TeeorEM IV. Leét the function f(x) fulfil the hypotheses of lemma T,
and let the functions G(x) and A(x) be continuous én the interval (a, bD, resp.
{a, b). Moreover, let the function A(w) be distinct from zero in the interval
(a, b) and fulfil condition (23) resp. (24). Then every function p(x) satisfying
equation (4) and bounded in an interval {m,,f(z,)>, where z, is a number
Jrom the interval (a,b), is continuous at the point © = b resp. & = a.

Proof. Let us assume that relation (23) is fulfilled and that the
function ¢ (x) satisfies equation (4) and is bounded in an interval {Boy @)D
Moreover we shall assume, at first, that G(b) = 0.

On account of inequality (20)

11—

le[f* (@)1 < M (=) 13 +p(@)]  for we(b—n,b).

According to lemma IV
(@)l <K for we(b—1n,b);
consequently,
1—9
Pl @) < M(@) T— +"E  for  ae(b—n, b).

Hence we have, since ¢ < 1,
@) W@ < M@) g5 K for  we(b—y,D).

Lot us toko an arbitrary ¢ > 0. Since the funetion G(») is continuous
for # = b and @(b) = 0, we have by (22)

lim M(z) = 0.

zb
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Thus there exists a number &, 0 < &; < 7, such that
Mx) < 3(1—3)e for @e(b—38y,0).
Since © < 1, there exists also an index N such that
9 < ef2K for nZ=N.

Consequently, for ze(b — 8, b) and n > N, we have by (27)

lplf* @)1 <&,
and in particular
(28) ¥ (@)]| <& for wme(b—dy,0b).
v Let us put
Lo (b—4y)

Since 1~ (#) > @,
0<8=b—f"(b—5) <b—b+8 = 6.
And since f¥((b— 6y, b)) = (b— 6, b), for every we(b—4,b)
* dff__ (b 61, )
Hence, by (28)
o[ (@)1l < e,

i e.

lp(x)] <e for we(b—4,D),
which proves that
(29) lim @) = 0.

o->b

On the other hand, putting # = b in equation (4), we have, since
G(b) =0 and A(b) # 1:

(30) @(b) = 0.

Relations (29) and (30) prove that the function ¢(x) is continuous for
oz =0>b.

Now let G(b) be arbitrary. If the function ¢ (#) is an arbitrary solution
of equation (4), bounded in the interval (@, f(w,)>, then the function

G(b)
31 = —_
(31) @ Sol@) -
satisfies the equation
rUf(@)—2()y(@) = G(m)————ij‘(“;; @),
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and is also bounded in the interval <{#,, f(#,)>. The funetion

1— A(w)

H@) = 6@ — 150

— @)
is continuous, like the function G (), and moreover H (b) = 0. Consequently,
on account of the first part of the proof, the function y(») is continuous
for # = b. Hence, by (31), also the function ¢(z) is continuous for # = b.

If we assume condition (24), the proof of the continuity of solutions
of equation (4) at the point # = a is analogous.

' CoROLLARY 1. Under the hypotheses of theorem IV every fwnctwn

@ (x) satisfying equation (4) and continuous in the interval (a, b) 48 also con-
tinuous in the interval (a, by, resp. {a,b).

COROLLARY 2. Under the hypotheses of theorem IV equation (4) possesses

infinitely many solutions that are continuous in the inlerval (a, b), resp.
{a, b).

II. Equation with constant coefficients.
discuss the equation

(32)  Awp[f" @)1+ A1p "7 @)1+ -+ dup ()

where A; are constant complex coefficients. We shall agsume that 4, = 1
and that A, 0. The latter assumption can be made without loss of
generality of our considerations, for if

In this section we shall

—F@), wea,b),

Ay ;=0 for i=0,...,k k<n,
and
-A‘n—-k—l ¢ 07
then the transformation
Yy ~fk+l(m) me(a,b},

changes equation (32) into equation

A [ W1+ Aup [T W A Au i e () =
in which 4,_;_, #0.
We shall now introduce some notions.
DerFINtTION. The polynomial

W(A) = A A"+ A 2"+ .+ 4,
will be called a characteristic polynomial of equation (32). The roots of
polynomial (33) will be called characteristic roots of equation (32).

Thus equation (32) always has n characteristic roots (not necessarily
distinet). All those roots are distinet from zero.

Annales Polonici Mathematici IX. 9

Fi(y);, yela,b),

(33)
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Let A, be an arbitrary characteristic root of equation (32). There exists
a polynomial

W) = Bd* + By .. Buyy Bo=1, By #0,

such that
W () (A—2p) = W(4).

The numbers 4;, B;, and A, are connected by the formulae:

4y=B, =1,
(34) 4;=Bi—hBi,, i=1,...,n—-1,
A, = —4By;.

We shall prove

LeMMA V. If the function ¢(x) satisfies equation (32), then the
Sfumction

(35)

satisfies the equation

p(@) 2 p[f (@) ]— Aop (@)

(36) Byy[f* @)1+ Bup[f** (@) 1+ ...+ Buyp (@) = F(a),

and conversely, if the function y(x), defined by (35), satisfies equation (36),
then the function p(x) satisfies equation (32).

Proof. Let us suppose that the function ¢(x) satisties equation (32).
Making use of formulae (34) we can write equation (32) in the form

(37)  Boplf™(@)]+ (Bi—ABo)p[f" ' (@)]+...+

+(Br1— A Bua) p[f(@)]+ (— 4 Bu-1)p (@) = F(a),
ie.
(38) Bo(‘P[fn(m)]—lo?’[fn_l(m)])+Bl(‘P[fn_l(m)]*‘lo?’[f"_z(w)])‘[‘---+

+ B [p[f(#)]—ho@) = F (o),

which means that the function y(w) satisties equation (36).

Now let us suppose that the function y(»), defined by relation (35),
satisfies equation (36). Then the function ¢(w) satisfies equation (38),
and thus also equation (37). Hence it follows immediately, according to
relations (34), that the function ¢(») satisfies also equation (32), which
was to be proved.

As an immediate consequence of lemma V we obtain
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THEOREM V. Equation (32) is equivalent to the system of equations

elf(@)] —ho@) = p.(2),
1 [f(#)]— Ay () = pa(@),

Y1 [f(@)]— Anpn_s (%) = F (),

where Ay, ..., Ay are a full sequence of characteristic roots of equation (32).

In the above theorem equivalence is understood in the following
manner: If the function () satisfies equation (32), then there exists
a system of funections

(39)

P1(®); oy Y (@)
such that the system of functions

(40) @), P1(®); vy Puar (@)

satisfies the system of equations (39), and conversely, if the system of
functions (40) satisfies the system of equations (39), then the function
(o) satisfies equation (32).

Theorem V enables us to discuss equations of the first order

plf(@)]—Ag(@) = G(=),

instead of equation (32). Equations of type (41) have been dealt with in
the first part of the present paper. In the sequel we shall deduce from the
properties of equation (41) theorems which determine the nmumber of so-
lutions of equation (32) that are continuous in the intervals (a, b), (@, b),
or {a,b).

ToaroREM VI. If the function f(x) fulfils the hypotheses of lemma I,
and the function F(x) is continuous in the interval (a, b), then equation (32)
possesses infinitely many solutions that are continuous in the open interval
(@, b).

If, moreover, the coefficients A; are real and the function F(x) assumes
real values only, then equation (32) possesses infinitely many real solutions
that are continuous in the open interval (a, b).

The first part of the above theorem follows immediately from theorems
I and V. The second part follows from a general theorem on the existence
of an infinite number of (real) solutions that are continuous in the interval
(a, b) for the equation

Flo, ¢@), lfi(@)]; ..., p[fa(®)]) = 0.
This theorem is to be found in [5].

(41)
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The number of solutions of equation (32) that are continuous in the
interval (@, b) resp. {a,b) is determined by the following
TaEOREM VII. Let the function f(x) fulfil the hypotheses of lemma 1,
and let X, i=1,...,n, be o full set of characteristic roots of equation (32).
I. Let us assume the function F(x) to be continuous in the inierval
(a, b>.
1° If

<1, i=1,..,n,

then equation (32) possesses infinitely many solutions that are continuous
in the interval (a, b). More precisely, every solution of equation (32) that is
continuous in the interval (a,b) is also continuous in the interval (a,bd.
2° If
|4l = 1,
then equation (32) possesses at most one solution that is continuous in the
interval (a, by.
30 If ’

h#EL i=1,..,mn

Il =1,

but some of the characteristic roots are equal to one, then equation (32) possesses
at most one solution, up to an additive constant, that is continuous in the in-
terval (a, b). The necessary condition of ewistence of such a solution is the
relation F(b) = 0.

4° If there ewist indices 4, and k, such that

[l <1 1Al =1,

then equation (32) either has no solution that is continuous in the interval
(a, b, or has infinitely many such solutions.

II. Let us assume the function F(x) to be continuous in the interval

<a, b).
1° If

1=1,...,n,

and

|4 >1,

t.hen eq'.uation (32) possesses infinitely many solutions that are comtinuous

in the :mter'va,l' {a, b). More precisely, every solution of equation (32) that

18 continuous in the interval (a, b), is also continuous in the interval {a, b).
2° If

i=1,...,mn,

Al <1, X4 #1,

t‘hen equation (32) possesses at most one solution that is continuous in the
interval (a, b).

t=1,...,m,
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3° If

A <1, i=1,...,m,

but some of the characteristic roots are equal to one, then equation (32) possesses
at most one solution, wp to an additive constant, that is continuous in the in-
terval {a, b). The necessary condition of the ewistence of such a solution s
the relation F(a) = 0.

4° If there ewist indices i, and k, such that

Wyl <1

then equation (32) either has mo solution that is continuous in the interval
{a, b), or has infinitely many such solutions.

If the coefficients A; are real and the function F(x) assumes real values
only, then all the assertions of the present theorem remain valid if the word
“solution’ 1is replaced by “‘real solution’.

Proof. We shall prove the first part of the theorem. Let us assume
that the function F(x) is continuous in the interval (a, b).

1° It is the immediate consequence of theorems IV, V and VI.

2° It is the immediate consequence of theorems II and V.

3° Since the order of roots in system (39) is not essential, we can assume
that

and |k >1,

My
4l =1,

A #1,
From theorem II it follows that the system of equations

Wi [F (@) ]— A1 92 (2) = Yr42(9),

Yu 1 [f(@)]— Ay (@) = F(2)

has at most one solution such that the function u;(«) is continuous in the
interval (a,b). On account of theorem IIT the equation

e "—‘lk=1,
i=k+1,...,n

Yo [F(@)]— Ay () = pr(®),
i. e. the equation
(42) Ve [f(@) ] — pp—1 (@) = v (@)

has at most one solution continuous in the interval (a, b), up to an addi-
tive constant. Consequently, equation (42) has at most one solution con-
tinuous in the interval (a, b) and fulfilling the condition

Yr-1(b) = 0.
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Further, the equation
(43) Yu—2 [F(0) ]~ ppa (@) = 11 (@)

has no continuous solution in the interval (a, b) at all, when y;_,(b)# 0,
and has at most one (up to an additive constant) in the case yy_,(b)= 0.
Thus equation (43) has at most one solution that is continuous in the in-
terval (a,d)> and fulfils the condition

Y2 (D) = 0.
Reasoning in this manner, we come to the conclusion that the equation
plf(@)]—o(@) = pi(2)

has at most one solution that is continuous in the interval (a, b, up to
an additive constant.

. Supposing that equation (32) has a solution @(s) continuous at the
point # = b, and pubting # = b in relation (32), we obtain

o(b) ) 4; = F(b).
i=1

But, since 2 =1 is a characteristic root of equation (32),
n
Z.A.i = 0,
i=1
whence

(44) F(b) = 0.

?hus rela,tion. (44) is the necessary condition of the exigtence of a con-
tinuous solution of equation (32) in the interval (@, b>.

. 4° As in the preceding case, we can assume that
Al <1 for
A4 =1 for

The system of equations

t=1,...,k,
. 0<k <m.
t=k+1,...,n,

Vel F@) ] — Ay i (@) = Prga (@),

Y [f ()]~ Ly (@) = F(a),

either has no continuous solution in the interval (@, b>, or has a solution
Pe(®)y oy P ()

such that the function ¢,(s) is continuous in the interval (a, b>.

(45)
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In the first case, on account of theorem V, equation (32) bas no so-
lution continuous in the interval (&, b)>. In the second case the system
of equations

p[f(@)1— ho(z) = v (),

Y1 [F(@)]— Aeypr1 () = Pr(2)

possesses, according to theorem IV, infinitely many solutions that are
continuous in the interval (a, b)>. Hence, on account of theorem V, equa-
tion (32) possesses infinitely many solutions that are continuous in the
interval (a, b).

In this last case a separate proof has to be given for the assertion
that if the coefficients A; are real and the function F(x) is real-valued,
then equation (32) has either no real solutions (that are continuous in the
interval (a, b)), or infinitely many such solutions.

Since the coefficients 4; are real, the characteristic roots 1; are either
real, or form complex-conjugate couples. Conjugate-complex numbers
have equal modulus, so if a complex root ocours in system (46), then also
its complex-conjugate must occur there (for in system (46) occur those
and only those characteristic roots whose absolute values are smaller
than 1). Consequently, on account of theorem V, system (46) is equiv-
alent to an equation

o[ @)1+ [ @)1+ ... +-Orp (#) = Pul®)

with all coefficients C; real. Besides, all characteristic roots of equation
(47) have absolute values smaller than 1. Thus, if the function Pr(x) is
real-valued, then equation (47) has infinitely many solutions that are
continuous in the interval (a, ). And if the function §,(») is not real-
valued, then equation (47) eannot have a real solution at all, for otherwise
the function (%), a8 & linear combination of real functions with real
coefficients, would have to be also real-valued. Thus also equation (32)
either possesses no real solution (that is continuous in the interval (a, b3),
or hag infinitely many such solutions.
The proof of the second part of the theorem is anaicgons.

(46)

(47)
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Regu par la Rédaction lo 2. 7. 1959 On the asymptotic behaviour of harmonic functions

in the semi-space

by W. Bacr (Krakéw)

Let f(#, y) be a continuous and bounded function in the open plane,
say {f(@, ¥)| < M, and let u(x, y, 2) be a solution of the Dirichlet problem
for the upper semi-space z >0 with f(z,y) as its boundary value. It is
known [1] that in the class of functions u(x, v, 2) satistying the condition

lu(@,y, 2)| < Myllol*+ly[*+ l2I*+1]  for 220, —oo <@,y < oo,

where M, and a < 1 are positive numbers, this solution is unique and
is expressed by the formula

1 F ag
o)== [ [1emS asan

where G is Green’s function for the upper semi-space z > 0 i. e.
4

p=p@,y,2), P=0p@,y,—2), ¢=q(&7,0

1
pq g’
and d@/dn is the inner normal derivative. Next w(x, v, 2) will denote the

solution of the above-mentioned Dirichlet problem.
Let us consider the semi-line

1) o =otat, Y =1y+bt, 2=2zg+ct, 1e(0,00),

a and b being the arbitrary real, ¢ a positive number and (x,, ¥,, 2,) an
arbitrary point in the semi-space z > 0. Then, we shall prove
THEOREM 1. If (2,y,2) 3 oo (Y), then meither limu(w,y,z2) mor

]?H.’M(CL‘,’! y 2) depend on (2, Yo, %).

(Y) The symbol (z, vy, 2) rl>) oo denotes that a point (x, y, 2) tends to oo along
the semi-line (1).
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