

ANNALES POLONICI MATHEMATICI VIII (1960)

The estimation of the third coefficient of the starlike function with a pole

by J. Zamorski (Wrocław)

Let us study the class of functions starlike(1) for the point 0 with expansion

$$F(z) = \frac{1}{z} + b_0 + b_1 z + \dots, \quad 0 < |z| < 1.$$

For this class we have the following

THEOREM. For the third coefficient of a function of this class the following inequality is true:

$$|b_3| \leq \frac{1}{2}$$
.

The sign of equation occurs only for the function

$$F(z) = \left(rac{1}{z^2} + \eta z^2
ight)^{1/2}, \quad |\eta| = 1.$$

Remark. This theorem is known (see [1], [2]) for the class of functions which are starlike for the point 0, and for which $b_0 = 0$. The class here discussed is really broader, because the addition of a constant changes the centre of starlikeness.

Proof. In the paper [4] it has been proved that the functional $\operatorname{re} b_n$ determined for the class of meromorphic starlike functions has its extremal value for functions of the form

$$F(z) = rac{1}{z} \prod_{k=1}^{n+1} (1 - \sigma_k z)^{eta_k}, \quad |\sigma_k| = 1, \quad eta_k > 0, \quad \sum_{k=1}^{n+1} eta_k = 2.$$

⁽¹⁾ The function F(z) is starlike in the ring 0 < |z| < 1, when the function f(z) = 1/F(z) maps the ring 0 < |z| < 1 on a starlike domain.

Moreover the numbers σ_k and β_k satisfy the following system of equations:

$$\sigma_k^{2(n+1)} + \frac{n+1}{n} \, b_0 \, \sigma_k^{2n+1} + \frac{n+1}{n-1} \, b_1 \, \sigma_k^{2n} + \ldots + \lambda \sigma_k^{n+1} + \ldots + \frac{n+1}{n} \, \overline{b}_0 \, \sigma_k + 1 = 0 \,,$$

(1)
$$2(n+1)\sigma_{k}^{2n+1} + (2n+1)\frac{n+1}{n}b_{0}\sigma_{k}^{2n} + \ldots + (n+1)\lambda\sigma_{k}^{n} + \ldots + \frac{n+1}{n}\overline{b}_{0} = 0,$$

(2)
$$b_{p} = \frac{(-1)^{p+1}}{(p+1)!} \begin{vmatrix} a_{1} & a_{2} & \dots & a_{p} & a_{p+1} \\ p & a_{1} & \dots & a_{p-1} & a_{p} \\ 0 & p-1 & \dots & a_{p-2} & a_{p-1} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1 & a_{1} \end{vmatrix}, \quad p = 0, 1, \dots, n,$$

(3)
$$a_j = \sum_{k=1}^{n+1} \beta_k \sigma_k^j, \quad j = 0, ..., n+1, \quad a_0 = 2.$$

Now let us put n=3 and let us suppose that the extremum $\operatorname{re} b_3$ is obtained for the function

$$F(z) = \frac{1}{z} \prod_{k=1}^{4} (1 - \sigma_k z)^{\beta_k}$$

where $\sigma_k \neq \sigma_j$ for $k \neq j$. It follows from this supposition that the equation

$$(4) \quad \sigma^{8}+\frac{4}{3}\,b_{0}\,\sigma^{7}+2b_{1}\,\sigma^{6}+4b_{2}\,\sigma^{5}+\lambda\sigma^{4}+4\bar{b}_{2}\,\sigma^{3}+2\bar{b}_{1}\,\sigma^{2}+\frac{4}{3}\,\bar{b}_{0}\,\sigma+1\,=\,0$$

has four different double roots $\sigma_1, \, \sigma_2, \, \sigma_3, \, \sigma_4$. Let us write

(5)
$$a_{j} = \sum_{k=1}^{4} \sigma_{k}^{j}, \quad j = 1, 2, 3.$$

Then using the formulae expressing the coefficients of a polynomial by its roots and from (2), (3), (4), (5) we obtain

(6)
$$a_{1} = \frac{3}{2}a_{1}^{\star}, \quad a_{2} = \frac{1}{4}a_{1}^{\star 2} + a_{2}^{\star}, \\ a_{3} = -\frac{1}{8}a_{1}^{\star 3} + \frac{3}{2}a_{1}^{\star}a_{2}^{\star} + \frac{1}{2}a_{3}^{\star}, \quad \varepsilon = \sigma_{1}\sigma_{2}\sigma_{3}\sigma_{4} = \pm 1.$$

From identity

$$\beta_1 + \beta_2 + \beta_3 + \beta_4 = 2, \qquad \beta_1 \sigma_1^2 + \beta_2 \sigma_2^2 + \beta_3 \sigma_3^2 + \beta_4 \sigma_4^2 = \alpha_2,$$

$$\beta_1 \sigma_1 + \beta_2 \sigma_2 + \beta_3 \sigma_3 + \beta_4 \sigma_4 = \alpha_1, \qquad \beta_1 \sigma_1^3 + \beta_2 \sigma_2^3 + \beta_3 \sigma_3^3 + \beta_4 \sigma_4^3 = \alpha_3$$

we get

(7)
$$\beta_1 = \frac{2\sigma_2\sigma_3\sigma_4 - a_1(\sigma_2\sigma_3 + \sigma_2\sigma_4 + \sigma_3\sigma_4) + a_2(\sigma_2 + \sigma_3 + \sigma_4) - a_3}{(\sigma_2 - \sigma_1)(\sigma_3 - \sigma_1)(\sigma_4 - \sigma_1)};$$

because

$$\beta_k = \bar{\beta}_k$$
 and $\bar{\sigma}_k = 1/\sigma_k$

we get

(I)
$$2\sigma_2\sigma_3\sigma_4 - a_1(\sigma_2\sigma_3 + \sigma_2\sigma_4 + \sigma_3\sigma_4) + a_2(\sigma_2 + \sigma_3 + \sigma_4) - a_3$$

= $-2\sigma_1^3 + \bar{a}_1\sigma_1^3(\sigma_2 + \sigma_3 + \sigma_4) - \bar{a}_2\sigma_1^3(\sigma_2\sigma_3 + \sigma_2\sigma_4 + \sigma_3\sigma_4) + \bar{a}_3\sigma_1^2\varepsilon$.

Then we exchange index 1 for 2, we subtract the resulting equation from equation (I) and divide by $\sigma_2 - \sigma_1$. As a result we get

$$\begin{split} \text{(II)} & \quad 2\sigma_3\sigma_4 - \alpha_1(\sigma_3 + \sigma_4) + \alpha_2 \\ & \quad = 2\left(\sigma_1^2 + \sigma_2^2 + \sigma_1\sigma_2\right) - \bar{\alpha}_1(\sigma_1^2\sigma_2 + \sigma_1^2\sigma_3 + \sigma_1^2\sigma_4 + \sigma_1\sigma_2^2 + \sigma_2^2\sigma_3 + \sigma_2^2\sigma_4 + \right. \\ & \quad + \sigma_1\sigma_2\sigma_3 + \sigma_1\sigma_2\sigma_4) + \bar{\alpha}_2(\sigma_1^2\sigma_2\sigma_3 + \sigma_1^2\sigma_2\sigma_4 + \sigma_1^2\sigma_3\sigma_4 + \sigma_1\sigma_2^2\sigma_3 + \sigma_2^2\sigma_3\sigma_4 + \varepsilon) - \\ & \quad - \bar{\alpha}_3\varepsilon(\sigma_1 + \sigma_2). \end{split}$$

Again we exchange the index 1 for the index 3, the resulting equation is subtracted from equation (II) and divided by $\sigma_3 - \sigma_1$. We get as a result

(III)
$$\alpha_1 = -\varepsilon \bar{\alpha}_3 + \bar{\alpha}_2 (\sigma_1 \sigma_2 \sigma_3 + \sigma_1 \sigma_2 \sigma_4 + \sigma_1 \sigma_3 \sigma_4 + \sigma_2 \sigma_3 \sigma_4) - \\ -\bar{\alpha}_1 (\sigma_1 \sigma_2 + \sigma_1 \sigma_3 + \sigma_1 \sigma_4 + \sigma_2 \sigma_3 + \sigma_2 \sigma_4 + \sigma_3 \sigma_4) + 2(\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4)$$

and also

(III')
$$\bar{a}_1 = \varepsilon \left[-a_3 + a_2(\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4) - a_1(\sigma_1 \sigma_2 + \sigma_1 \sigma_3 + \sigma_1 \sigma_4 + \sigma_2 \sigma_3 + \sigma_2 \sigma_4 + \sigma_3 \sigma_4) + 2(\sigma_1 \sigma_2 \sigma_3 + \sigma_1 \sigma_2 \sigma_4 + \sigma_1 \sigma_3 \sigma_4 + \sigma_2 \sigma_3 \sigma_4) \right].$$

Newton's formulae give

(8)
$$\sigma_{1}\sigma_{2}\sigma_{3} + \sigma_{1}\sigma_{2}\sigma_{4} + \sigma_{1}\sigma_{3}\sigma_{4} + \sigma_{2}\sigma_{3}\sigma_{4} = \frac{1}{6}(\alpha_{1}^{3} - 3\alpha_{1}^{2}\alpha_{2}^{2} + 2\alpha_{3}^{2}),$$
$$\sigma_{1}\sigma_{2} + \sigma_{1}\sigma_{3} + \sigma_{1}\sigma_{4} + \sigma_{2}\sigma_{3} + \sigma_{2}\sigma_{4} + \sigma_{3}\sigma_{4} = \frac{1}{2}(\alpha_{1}^{2} - \alpha_{2}^{2}).$$

Putting formulae (6) and (8) into equation (III') we get

$$a_3^{\check{}} = -\frac{7}{5}a_1^{\check{}}^3.$$

Since

$$\overline{a_1^{\circ}} = \frac{1}{6} \varepsilon (a_1^{\circ 3} - 3a_1^{\circ} a_2^{\circ} + 2a_3^{\circ}),$$

from (9) we have

$$\overline{a_1^{\check{}}} = -\frac{1}{2} \varepsilon a_1^{\check{}} (\frac{1}{4} a_1^{\check{}}^2 + a_2^{\check{}})$$

and from formulae (6)

$$\overline{a_1^{\vee}} = -\frac{1}{2}\varepsilon a_1^{\vee} a_2.$$

If $a_1 \neq 0$ then $|a_2| = 2$

$$\beta_1 \sigma_1^2 + \beta_2 \sigma_2^2 + \beta_3 \sigma_3^2 + \beta_4 \sigma_4^2 = 2e^{i\theta}$$

and since $\beta_k > 0$, $\sum_{k=1}^4 \beta_k = 2$, we have

$$\sigma_1^2 = \sigma_2^2 = \sigma_3^2 = \sigma_4^2$$

i. e. contrary to the supposition not all σ_k are different.

If $a_1^* = 0$ then from (9) $a_3^* = 0$. In order to denote a_2^* we take equation (II). Exchanging its indices successively and summing the equations thus obtained we get the equation

$$\begin{split} (\text{IV}) & \quad -a_1(\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4) + 2\alpha_2 = 2\left(\sigma_1^2 + \sigma_2^2 + \sigma_3^2 + \sigma_4^2\right) - a_1(\sigma_1\sigma_2\sigma_3 + \\ & \quad + \sigma_1\sigma_3\sigma_4 + \sigma_1\sigma_2\sigma_4 + \sigma_2\sigma_3\sigma_4 + \sigma_1^2\sigma_2 + \sigma_1^2\sigma_3 + \sigma_1^2\sigma_4 + \sigma_1\sigma_2^2 + \sigma_2^2\sigma_3 + \\ & \quad + \sigma_2^2\sigma_4 + \sigma_1\sigma_3^2 + \sigma_2\sigma_3^2 + \sigma_3^2\sigma_4 + \sigma_1\sigma_4^2 + \sigma_2\sigma_4^2 + \sigma_3\sigma_4^2\right) + \\ & \quad + a_2(\sigma_1^2\sigma_2\sigma_3 + \sigma_1^2\sigma_2\sigma_4 + \sigma_1^2\sigma_3\sigma_4 + \sigma_1\sigma_2^2\sigma_3 + \sigma_1\sigma_2^2\sigma_4 + \sigma_2^2\sigma_3\sigma_4 + \\ & \quad + \sigma_1\sigma_2\sigma_3^2 + \sigma_1\sigma_3^2\sigma_4 + \sigma_2\sigma_3^2\sigma_4 + \sigma_1\sigma_2\sigma_4^2 + \sigma_1\sigma_3\sigma_4^2 + \sigma_2\sigma_3\sigma_4^2 + 2\sigma_1\sigma_2\sigma_3\sigma_4\right) - \\ & \quad - a_3\sigma_1\sigma_3\sigma_3\sigma_4(\sigma_1 + \sigma_2 + \sigma_3 + \sigma_4). \end{split}$$

Using formulae (6) and the formulae expressing symmetrical functions by fundamental functions α_{k} and ε we get from the equation (IV) the following equation:

$$(12) \quad -\frac{5}{144} \alpha_1^{*6} + \frac{1}{16} \alpha_1^{*4} \alpha_2^{*} + \frac{1}{8} \alpha_1^{*2} \alpha_2^{*2} - \frac{7}{72} \alpha_1^{*3} \alpha_3^{*} - \frac{1}{18} \alpha_3^{*2} = \varepsilon (2 \alpha_2^{*} - \frac{5}{2} \alpha_1^{*2}).$$

If $a_1 = 0$ and $a_3 = 0$ then (12) gives $a_2 = 0$ and from formulae (6) it follows that

$$a_1 = 0, \quad a_2 = 0, \quad a_3 = 0.$$

Hence and from (2) we infer that the extremal coefficient

$$b_3=-\tfrac{1}{4}a_4.$$

 a_4 is a real quality for which $|a_4| \leq 2$. Hence

$$|b_3| \leqslant \frac{1}{2}$$
.

The equality occurs only when $a_4=\pm 2$, and thus when $a_k^4=1$ or $a_k^4=-1$. Hence

$$\sigma_1=1, \quad \sigma_2=i, \quad \sigma_3=-1, \quad \sigma_4=-i$$

or

$$\sigma_1 = e^{\pi i/4}, \quad \sigma_2 = e^{3\pi i/4}, \quad \sigma_3 = e^{5\pi i/4}, \quad \sigma_4 = e^{7\pi i/4}.$$

In both cases (7) gives $\beta_k = \frac{1}{2}$, and thus the extremal function for the functional reb, is of the form

$$F(z) = \left(\frac{1}{z^2} \pm z^2\right)^{1/2}$$
.

Turning the plane z we find that the function

$$F(z) = \left(rac{1}{z^2} + \eta z^2
ight)^{1/2}, \quad |\eta| = 1$$

gives the extremum for the functional $|b_3|$.

In order to conclude the proof of our theorem it is sufficient to prove that for all functions of the form

(13)
$$F_1(z) = \frac{1}{z} \prod_{k=1}^3 (1 - \sigma_k z)^{\beta_k}$$

we have the inequality $|b_3| < \frac{1}{2}$.

Let us study the function

$$\varphi(z) = -z \frac{F_1'(z)}{F_1(z)} = 1 + a_1 z + \dots$$

where $F_1(z)$ is the function (13).

This function maps a circle $|z| \leq 1$ on the semiplane $\operatorname{re} \varphi \geqslant 0$ once, twice or three times at most. This depends on how many different numbers there are among numbers σ_1 , σ_2 , σ_3 . The circumference of the circle is mapped on the line $\operatorname{re} \varphi = 0$. Hence we infer that the function

$$f(z) = \frac{1 - \varphi(z)}{1 + \omega(z)}$$

is a function bounded in the unit circle. This function transforms the unit circle in a unit circle once, twice or at most three times. From Schurr's known theorem [3] we know that all such functions are either of the form

(15')
$$f(z) = \frac{1}{h_3} \cdot \frac{h_1 z + (h_2 + h_1 \overline{h}_2 h_3) z^2 + h_3 z^3}{\overline{h}_3 + (\overline{h}_2 + \overline{h}_1 h_2 \overline{h}_3) z + \overline{h}_1 z^2}$$

where the parameters h_1, h_2, h_3 satisfy the conditions

$$|h_1| \leqslant 1, \quad |h_2| \leqslant 1, \quad |h_3| = 1,$$

or of the form

(15")
$$f(z) = \frac{1}{h_o} \cdot \frac{h_1 z + h_2 z^2}{\overline{h}_o + \overline{h}_1 z}$$

where the parameters h_1, h_2 satisfy the conditions

$$|h_1|\leqslant 1, \quad |h_2|=1$$

or of the form

$$f(z) = h_1 z$$

where $|h_1| = 1$.

With the help of the parameters which appear here we can express the coefficients of the expansion of the functions f(z), $\varphi(z)$ and finally $F_1(z)$.

We shall find for the function $F_1(z)$ that either

$$\begin{array}{ll} (16') & b_3 = \frac{1}{6} (1 - |h_1|^2) \{ h_1^2 h_2 - 2 \, |h_1|^2 \, h_2^2 - 3 \overline{h}_1^2 h_2^3 + \\ & + (1 - |h_2|^2) (2 h_1 h_3 + 6 \overline{h}_1 h_2 h_3 + 3 \overline{h}_2 h_2^3) \}, \end{array}$$

01,

$$b_3 = \frac{1}{6} (1 - |h_1|^2) (h_1^2 h_2 - 2 |h_1|^2 h_2^2 - 3 \overline{h}_1^2 h_2^3),$$

 \mathbf{or}

$$(16''')$$
 $b_3 = 0.$

We easily find from the above that always

$$(17) \qquad |b_3| \leqslant \frac{1}{6}(1-r_1^2)\{r_1^2r_2+2r_1^2r_2^2+3r_1^2r_2^3+(1-r_2^2)(2r_1+6r_1r_2+3r_2)\}$$

where $0 \leqslant r_1 \leqslant 1$, $0 \leqslant r_2 \leqslant 1$.

Let $0 \leqslant r_1 \leqslant 0.5$; then

$$r_1^2(1-r_1^2) \leq 0.19$$
, $r_1(1-r_1^2) \leq 0.375$, $1-r_1^2 \leq 1$,

$$|b_3| \leqslant 0.125 + 0.907r_2 - 0.062r_2^2 - 0.780r_2^3, \quad 0.59 \leqslant r_2 \text{extr} \leqslant 0.6,$$

i. e.

$$|b_3| \leqslant 0.489 < 0.5$$
.

Let $0.5 \leqslant r_1 \leqslant 1$; then

$$r_1^2(1-r_1^2) \leq 0.25$$
, $r_1(1-r_1^2) \leq 0.386$, $1-r_1^2 \leq 0.75$,

$$|b_3| \leqslant 0.129 + 0.803r_2 - 0.045r_2^2 - 0.636r_2^3, \quad 0.62 \leqslant r_2 \text{extr} \leqslant 0.63,$$

i. e.

$$|b_3| \leqslant 0.47 < 0.5$$
.

Thus the theorem is completely proved.

References

- [1] Г. М. Голузин, Некоторые оценки коэффициентое однолистных функций, Мат. сборник 3 (45) (1938), р. 321-330.
- [2] Z. Nehari and E. Netanyahu, On the coefficients of meromorphic schlicht functions, Proc. Am. Math. Soc. 8 (1957), p. 15-23.
- [3] J. Schurr, Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind, Jour. f. d. reine u. ang. Math. 147 (1917), p. 205-232.
- [4] J. Zamorski, Equations satisfied by the extremal star-like functions, Ann. Polon. Math. 5 (1958), p. 285-291.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK MATHEMATICAL INSTITUTE OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 9. 4. 1959