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On continuous solutions of a functional equation

by M. Kuoczma (Krakdw)

The object of the present paper is the funetional equation .

1) ¢lf(@)] = @[z, p(x)),

where ¢ () denotes the required function, and f(z) and G(z, y) are known
funetions. We consider equation (1) in an interval {a, b), where ¢ and b
are two consecutive roots of the equation

2) f(z) = =.
Equation (1) with the function G(x,y) linear with respect to y,

®3) ¢[f(@)] = i(2)p(z)+F(2),

has been discussed in [2]. It has been proved there (under suitable
agsumptions) that

(%) If |A(b)| > 1, then equation (3) possesses at most one solution that
is econtinuous at the point & = b.

(x%) If 1A(D)] < 1, then every solution of equation (3) that is continuous
in the intérval (@, b) is also continuous ot the point @ = b.

A property analogical to property () has been proved for the equa-
tion of the general form (1) (under suitable assumptions) in [1]. The
purpose of the present paper is to prove for equation (1) a property ana-
logical to ().

‘We shall denote by f*(z) the n-th iteration of the function f(z), i. e.
we put

@) = fIf"(@)],
") = @),

(%) = =, n =0, 41, £2,...
One can prove the following

LEMMA. If the function f(z) is continuous and strictly increasing in
an interval (a,bd, where a and b are two consecutive roots of equation (2),
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and moreover f(x) > @ in (a, b), then for évery we(a,b) the sequences {f" ()}
and {f~"(z)} are monotonic, and
limf*(®) = b,
N300
The proof of the above lemma is to be found in [3].
In the sequel we shall assume that
(i) The function f(z) is continuous and strietly increasing in an inter-
val <a, b), where ¢ and b are two consecutive roots of equation (2),
and f(z) > = in (a, b).
(ii) The function G(z, y) is contmuous and has a continuous derivative
0G[dy = 0 in a region 2, normal with respect to the x- -axis.
Tor an arbitrary # we shall denote by £, the z-section of the set Q,

lim/™(z) = .

We shall denote by I, the set of values assumed by the function G¢(z, y)
on the set X 2, (the sign x denotes here the Cartesian product):

= E{Z:’/EQM 2 =Gz, y)}.
2 v
We shall suppose also (compare [1]) that
i) Q #0, wela, b.

Hypotheses (i)-(iii) guarantee the existence of continuous solutions
of equation (1) in the interval (a, b). Namely, it has been proved in [1]
(under the above hypotheses) that for every mye(a,b) and for every
function @(x) coutinuous in the interval (z,, f(%,)) and fulfilling the con-
ditions

Iy = 2y, for

g@)e, for wel@y, f(®0)),

lim ¢(@) = G{®,, (o)1,

Z—f(Zp)—~

there exists a function p(#) continuous in (a, b), satisfying equation (1)
and such that

z) = @(x) for welwo, f(m)).
Let numbers ¢ and d be roots of the equations

¢ =6G(a,0) and d=G0,d

respectively. We shall prove the following
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THEOREM. If hypotheses (i)-(iii) are fulfilled, and moréover

(4) l——(b a)

then equation (1) possesses infinitely many solutions that are continwous
in the interval (a, b>. Moré precisely, there exist numbers e >0 and >0
such that every solution ¢(z) of equation (1) that is continuous in the interval
{a, b) and fulfils the condition

(5) lop (@)

where x, 8 an arbitrary number from the interval (b—=n, b), is also con-
tinuous for x = b.

Proof. Let @(x) be a solution of equation (1) that is contlnuous in
the interval (a, b) and fulfils condition (5). We put
o
p(0) LE(@), 8, o@)E p@)—pla), ale) Ei—p().

The function ¢() is continuous in the interval (a, b), and the funections
y(z) and a(x) are continuous in the interval {a,b), and

y(0) =d, a(b) =0.
From condition (4) it follows that there exist positive numbers 8,

6 and 4, 3 < ¢ <1, such that |80G[dy| < ¥ for |¢—b| < B, ly—d| < 4.
Let us put ¢ = §/3 and let us choose n so that n < g and

—9

—dl <& for melm,, f(@)),

(6) e <t

for we(b—n, b).
We shall show at first that for xe(b—7, b) from the inequality

£

(7 ‘ lo(@)] < 2¢
follows the inequality
(8) le[f(=m)]l < 2e.

Let us take an arbitrary ze(b—»,d), and let us suppose that ine-
quality (7) holds. We have

olf(@)] = v[f(®)]—of ()] = Gz, d)—Gz, p(2))
=G|z, p(a)+0(2)(@— o @)]([@—¢(2)
= ,,[m,cp(a;)—[—0(w)(d—<p(w))]g(w)+G,,[m,<p(w)+0(w)(d—q:(m))]a(a:).

"We put

A(@) = Gy, p(@)+6(2) (@ — (@)
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Thus
(9) olf(2)] = A(@) o(#) + A(w) a ().

By (6) and (7) we have

lp(@)+6/(2) (d— (@) —d| = |1 —0(a)|lp(2)—d] < {¢(m)~d|
= |p(x) —p(@)+ @) —d| < le(®)+|al2)|
/"a+l_0e~s+~— 3e = 4.
K< 3
Consequently
(10) [A(z)| < ¥.
By (9), (10), (6) and (7) we have
lelf (@)1l < [A(@)| o (@)l + ()] la(@)] < 2ﬁ8+791—0 e = fete < 2,

which proves relation (8). .
Now we shall show that the function o(x) is continuous for z = b.

From inequality (5) it follows that

d+d—p@)| < lal@)|+|p@)—

le(@)] = lp(@)—e(x)] = |p(@)—

1—9 € )
< r a—l—a:§<2£

for @wel®w,, f(#,)). Thus, on account of the lemma and of the first part

of this proof, the inequality
(11) le(x)| < 2¢

holds throughout the whole interval {w,, b)
inequality

. Hence it follows that the

|o (2} + 0 ( (d-——(p(m )—d| < 8,

and then also inequality (10) hold throughout the whole interval <{wz, b).
The function g(2) is continuous in the interval (@, b) and satisfies equa-
tion (9).

It has been proved in [2] that if inequality (10) holds in a (left-hand)
neighbourhood of the point b and the functions A(x) and F(z) are continu-
ous in the interval (a, b), then every solution of equation (3) that is
continuous in the interval (a,b) is also continuous at the point » = .
In our case, however, the functions A(x) and: F(x) = A(w)a(z) are not
necessarily continuous in (@, b)(*). Nevertheless, the propf .of property

(*) As has been proved by S. Lojasiewicz [4], the functlon 0(x) is continuous
only if the function @(#,y) is convex with respect-to 'y,
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(»+) may be modified so as to be applicable in our case. We shall give
here an outline of that proof only.

Just as in [2] it can be proved that the inequality

1—o"
leL*(@)]l < M(e) T—5 +"lelo),

where
(12)

M(z) = suplA(t)a(t),

holds for zelzy, b) and all n. According to (11) and to tﬁe inequality
# < 1 we have .

lelf"@ <

(13) M(m) —}—2.919” for zelw,,b).

Since the function A(x) is bounded in a neighbourhood ‘of b, and the
function a(x) iz continuous and vanishes at the point # = b, we have
by (12)

(14) lim M(z) = 0.
Zb—
The relation
limg(z) =0
2—b—

follows easily from' (13) and (14), which proves that the function g(%)
is continuous for # = b. Consequently, also the function

p(@) = p(@)— @)

is continuous for » = b, which was to be proved.

Similarly one can prove that

If hypotheses (i)-(iii) are fulfilled, and moreover
oq
dy
then equation (1) possesses infinitely many solutions that are continuous in
the interval {a,b). More precisely, there ewist numbers ¢ > 0 and n > 0

such that every solution ¢(z) of equation (1) that is continuous in the
interval (a,b) and fulfils the condition

—(a,0)| > 1,

lp@)—ol <& for @eld, f(uo)),
where z, is an arbilrary number from the interval (a, a--7), is also con-

tinuous for m = a.

Remark. As W. Kraj has remarked, in the hypotheses of our
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theorem the existence of the derivative 8G[dy and relation (4) can be
replaced by the following eondition: ‘

The function G(z,y) is — with fixed # — monotonic with respect
to 4, and fulfils in 2 neighbourhood of the point (b, d) the Lipschitz con-
dition with respect to y:

6 (2, §)— 6z, )] < K(@)|7—Y,
with
K@) <#<1.
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