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On the functional equation F(z,p(x), [fi(2)], ..., ¢[f(2)]) =

by J. KorDYLEWSKI and M. Kvozma (Krakéw)

In the present paper we show that the functional equation

(1 F(‘”;‘P(“")"P[h(w)]: 1‘P[fn(w)]) =0,

where ¢(x) denotes the required function and F(»,y,,...,%,) and
f1(@)y ..., fu(®) are known functions, possesses infinitely many conti-
nuous solutions under suitable assumptions regarding the functions F
and f;. '

Analogous properties of the equation

Flo, (@), p[f(#)]) = 0

were proved in our previous paper [2], as also partially by T. Kitamura
[1]. The present paper is a direct generalization of those results.

Given an invertible function f(x), we denote by f*(») its k-th itera-
tion, i. e. we put

@) = (@),
7 (@) = 171" (@),

One can prove the following lemmas:

Lemma I. Suppose that the function f(z) is continuous and strictly
increasing in an interval {a,b>. In order that f({a,bd) = {a, b) &l is ne-
cessary and sufficient that & and b be roots of the equation

(@) Ha) = .

Lmmwa II. Let the function f(x) be continuous and sirictly increasing
in an nterval {a,bd>. If & and b (& < b) are two consecutive roots of equa~
tion (2) and if f(x) > @ in (@, b), then, for every ze(a,b), the sequences
{™(®)} and {f™(@)} are monotone and

(@) = @, k=0,41,+2,...

limf*(x) = b, lLmf™@) =a.
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The proofs of these lemmas are to be found in [3].

Lemma IIT. Let functions g(x) and hix) be continuous and strictly
increasing in an interval {a,by. If g{e) = h(a) =a, g(b) = (b)) =b

“and g(z) > h(z) > % in (a,d), then the function J(x) L gh ()] is also
continuous amd strictly increasing in the interval {a,b>, and k(a) = a,
k(b)) = b, k(x)—2 >0 in (a,b).

Proof. The function h~'(x) is, like h(#), continuous and strictly
increasing in (a, b>, h™*(a) = a, h~'(b) = b. Then the function k(s) is
continuous and strictly increasing in <a, b) as a superpesition of conti-
nuous and increasing functions; moreover we have

ka) = glha)] = gla) = a, k() = gh™*(®)] = g(b) = b,
and, for we(a,b),
k(@)—z = g[h™ @) ]—a > h[h  (@)]—2 = 0,

which was to be proved.

In the sequel we shall assume that:

(i) The funetions f;(x) (¢ =1,...,n) are defined, continuous and
strictly increasing in an interval (a, b), f;(a) = @, f;(B) =b (4 =1,..., %),
and

z < fi(@) for io=2,..., n—2.

< (@) < faa (@) < ful2) we(w, b),

(ii) The function F(w, Yy, Y1y---)Ys) is defined and continuous
in a set 2 of (n+ 2)-dimensional space of the variables (@, ¥, Y1y ...y ¥n)-

(iii) The set F of the points P = (2, Yo, Y1, --+, Yn) Such that PeQ
and F(P) = 0 is not empty, and the projections 2, and 2, of the set F
on the subspaces of the variables (©, 4o, Y1) ...y Yn—1) a0d (2,9, ..., ¥s)
respectively are the cubes

a<z<b c<y<d, t=0,..,n-1,

and
a<a<b, e<y<d,

f=1,..,n

respectively.
(iv) The equation F (2, ¥y, ¥y, --
respect to y, and y,:

. Ya) = 0 I8 solvable in £ with

Yn =G @ Yoy oy Yno1)y Yo =H (@, Y1y .0y Yn)-
LemmA IV. Under suppositions (ii)-(iv) the funciions G and H are
defined and continwous in , and 2, respectively, and satisfy there
the inequalities

s<<d, c<H<.
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Proof. Lebt (%, %, ..., 7,_1) be an arbitrary point of the set £,.
Thus there exists a number 7, such that the point (z, Toyvvvy Juory Jn)
belongs to 7. On account of (iv) the relation F(z, 7, ..., Yno1yTn) = 0
is equivalent to the relation 7, = ¢(z, 7,, ..., Yn-1). And since the pro-
jection of the point (Z,,, 71, ..., Fny, Fx) on the subspace of the va-
riables (@, ¥y -5 Yn—1, ¥x) belongs to 2,, we have in particular ¢ < 7, < d.
Thus the function G2, yo, ..., ¥u_,) is defined on 2, and satisfies there
the inequalities ¢ <& < d. The continuity of the function @ follows
from the continuity of the function F in Q.

The proof for the function H is quite analogous.

TeworEM. Under suppositions (i)-(iv) equation (1) possesses infi-
witely many solutions that are continuous in the open interval (a,b).

Proof. Let us take an arbitrary Zge(a, b) and let us put

o F T (g )] ;
(3) By = fn(wo), Ly = fn,[fv-n—l(mz—l)Ja 7‘> 17
s = 1), i>o0.
Writing k(@) £ £, (#)] Wwe have
g =k(mi—1)=ki_l(m1)1 t=2,3,..

On account of (i) and lemma IIT the functions k(x) and f,(2) fulfil the
hypotheses of lemma II. Thus the sequences #; and x_; are monotone
and

limay; = b,

lime_; = a.
{00 B0

Consequently

@) (@, 0) = U <y ).

Let @ (@) be an arbitrary function, defined and continuous in the
interval <o, #;) 80 that the following conditions are satisfied:
(5) for

c< @@ <d 2 e{@g, By),

(6) lim @('I;) == (wﬂr @ (@), @[fr(mo)], .. 3 ¢[7‘n—1(m0)“-

B>y

The above conditions are not contradictory, fér, according to (i), fi(w,)
e(@, @) (i = 1,...,n—1), whence there exist values @[f;(mo)]e(c, d),
i =1,..., n—1, and thus the function G is defined at the point Py (zo, 3 (%),
# (@)1, ..., @[fa-r(@0)]), and satisfies the inequalities ¢ < G(P,) < d.
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Now let us put
¢ (@) for we<wo, #41),

a |6 @), ol @) el @) - iz @)])

- for med®, Byp1)y 0 = 1,2, ...,
Hz, ol @], s o [fa(@)])  for aeo_i; @ _upa)y=1,2, ..

i i fined and continuous in the

We shall show that the function @(w) Is de: . .

whole interval (a, b), and that it sabisties equation (1) and the inequa-

lities

(8) ¢ <olo) < d,

(1) o)

ze(a, b).
According to relation (4) it is enough to show that the Eunctio;rl () is
defined, continuous, and satisfies inequalities (8) in each of the intervaly
g, @5y and (W_gy1y 1) 1 =1,2, ... . . .
o Fior the intervals {®,, #;) the proof will be by induction.

For ¢ = 1 the theorem is evident. . . '

Let us suppose now that the function (o) is defined, eoninpuous,
and satisties condition (8) in an.interval {ay,®p), P = 1. According to
(T) we have for we{2p; ¥p41)

9 el =& @, U@ elflH @) - o [fumr(fa @))])-

On account of the monotonity of the function fol(x), the monotonity
of the sequence wz;, and by relations (3) we have for @@y, Tpy1)

(10) 1 @) = ft (@) > fa (1) = @

and o
;1(50) < f;! (mp+l) = fﬂ-—l(mﬂ)'

Since 171 (z) < @, we have f7'(#) < #,. Then, for @ el@p, Tps)

(11) fa () €y, Wp)-
We bave also by (10)
@] > f @) > mg,  for  wedlp, Wpp), 4=1,...,n—1,
and by (3)
Lilfat(@)] < filfat @pan)] < fuca fa (@p10)] = 2
for  @melBp, Tpia)y b =1, .oy L.
Then also

fi[ﬁ;l (@)]e<moy wp)  for @ ey, Ppya)y T =1, .0y n—1.
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Hence, by (11), on account of our inductive hypothesis, for ze{x,,
the values

plfa(@)] vl @),
are defined and we have the inequalities
e <olfa'@]<d ¢ <olfilfs*(@)] < d,

Then, on account of lemma IV and relation (9), the function p(x) is de-
fined, continuous, and satisfies relations (8) in the interval gy Byr)e
Now we arc to show that the function ¢(w) is continuous for » = @y
We have

#(ap) = F(1 @0, o155 @)L, plfalf @), s o lfua i @],

lim (@) = @(x,)
L

Fpy1)

and t=1,...,n—1,

and t=1,..,n-1.

on account of the continuity of the function () in the interval (i, Dpy1)-
For p>1

lim ¢(@) = lim G(f;'(2), [f2@)], glf (fa2@)], .-, 9 [fums(fat @))])
Ty Tty —

= G(]‘E'(@‘p)y el @)1, elh(fa @) -, (p[f”_l(f;l(mp))]) = p(#,)

on account of the continuity of the function g(») for xe(xy, xy) and the
continuity of the function @.
For p =1

lim ¢ (@) = ()
Taptpy

on account of relation (6). The proof for the intervals <w_;,,, #,) is similar.

That the function p(x) satisfies equation (1) follows immediately
from relations (7).

Taking as ¢(w) all functions continuous in the interval <z, #;) and
tulfilling conditions (5) and (6) we obtain all solutions of equation (1)
that are continuous in the interval (¢, b) and pass through .

Remark I. If we take as @(x) all functions defined in {w,, #,) and
tulfilling condition (5), then formulae (7) will define all solutions of equa-
tion (1) (passing through Q) in the interval (a, b). The hypothesis of the
continuity of the function F will then be superfluous. .

Remark II. Hypothesis (iv) can be replaced by the following
hypotheses:

(iv*) The set & is a simply connected piece of hypersurface.

(iv**) The derivatives Fy, and Fy, exist and are continuous in &,
Fy, #0 and Fy, 50 in Q.
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Remark ITL If in hypothesis (ili) only the set 2, (or only £2)
occurs, and in hypothesis (iv) we postulate only the possibility of solving
the equation F' = 0 with respect to the variable y, (or only with respect
to ), then the solution of equation (1) can not exist in the whole inter-
val {a, b). Anyhow, as is obvious from the proof, we can then infer the
existence of continnous solutions of equation (1) in the interval {a-¢, b)
(or in the interval (a, b—&)), where ¢ is an arbitrary positive number.
In this case we must choose @, < a-¢& (or @ = fal(b—¢)) in the proof
of the theorem.
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A simple proof of a certain result of Z. Opial

by . OnecE (Krakéw)

1. Suppose that (1) is of class (" for te{0, s> (h > 0), and that
the following condition holds:

(1) ' 2(0) = a(h) = 0.
Under the assumptions given above Z. Opial [2] has proved the inequa-
lity

3 h

(2) | le@e i@ < b [ @) a.

¢

The purpose of this note is to present a siraple proof of this result
of Opial.

In order to do so we shall use the following consequence of a well-
-kmown inequality of Buniakowski (see for example [17], p. 146):

b b :
(3) (fmmmfgw—mfwmw

Let us observe that Opial, in his proof of (2), also used (3).

2 )
ZDmWHwym:JWMWaMIWz@:[WWW.WeMw

the following obvious relations:

(4) ¥ =g’ ® = —2'0),

(8) e <y, le@) <e), 0<t<h


GUEST




