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On the notion of gradient
L. Essentiality of regularity suppositions

by 8. GoraB (Krakéw)

The gradient of a scalar field ¢ is well known to be defined as & vector
field the components of which are partial derivatives of the function o
with respeet to the independent variables z;. For a gradient to exist
the funetion o must be differentiable i.e. there must exist the partial
derivatives

1) do

a—mi=’U,; (z=1,2,,'n)

The existence alone of the derivatives (1) is not, however, sufficient for
a gradient o exist, since, should (1) represent a field of covariant vectors,

the eomponents v; ought to be, in going over to a new system of coordi-
nates, transformed in aceordance to the rule

Ox; R
(2) %=Zv,——’- (f=1,2,...,n),

if the transformation of coordinates

(3) % =g, (xh"'ymn) (i=1’21"':')7/)
is of the class C* (i. e. Op;/0my, 4,k =1, ..., 7, exist and are continuous),
and the jacobian o/ of the transformation (3) is different from zero
. a‘l’t)
J o= det [ —— 0.
(4) ( By =

These last assumptions, concerning the regularity of the allowable trans-
formations (3), are made with the view that the set of transformations
should form the so-called pseudogroup (see e. g. [1]).

Now, for the relations to arise (2), it is necessary and sufficient that

n
do ) do Oz .
(5) z—,i:.,:...zZ-_-f—_i (i=1,2...,m
0%; " Om;  0F;
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or simply that there should occur the classic formula for the differen-
tiation of composite functions of many variables, and for this purpose,

" a8 it is well known, differentiability alone will not do, whereas continuity
of the partial derivatives (1) or differentiability in Stolz-Fréchet sense
will already suffice. Differentiability in the Stolz-Fréchet sense is simul-
taneously, as I showed in 1937 [2], a necessary condition that there arise
formula (5) for every differentiable transformation.

Hence comes the conclusion that in order that, with an ecstablished
pseudogroup of transformations of the class Ct, formula (1) should. represent,
at a definite point (x;) the components of a (covariant) vector, &t is necessary
and sufficient for a function to possess at the point (v;) a differential in the
Stolz-Fréchet sense. ;

The majority of manuals treating of vector analysis are confined
only to mentioning the sufficient conditions (class O of the function o)
or agsume them tacitly without expressly giving a motivation for the
assumption accepted.

Although, in books on analysis, I have come across some examples
of differentiable functions for which formula (3) does not hold or which
even cease to be differentiable with respect to new variables %, yetb
I have not met, in manuals on vector analysis, an effective example
of a differentiable scalar field for which (1) would not represent a vee-
tor field.

It is the aim of this note to give just such a simple example for n = 2
(as a matter, of course, the generalization for an arbitrary » does not afford
any more difficulties), and along with it I have tried to choose the scalar
field ¢ so that it be continuous (as we know the differentiability does
not involve continuity for functions with the number of independent
variables greater than one), and moreover, that the partial derivatives
be bounded.

So let us assume

myz
2 f 2492 > 0
(®) o,y &) apy T TV
0 for o=y =0.

The function o thus defined is sure to be regular outside the origin of the
coordinate system, the only questionable thing being its regularity at
the point (0, 0).

Now let ¢ be an arbitrary positive number, and let us consider a neigh-
bourhood of the point (0, 0) satisfying the condition

224 y? < el
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Then we have l/am < ¢ and consequently
2l <e, |yl <e.
For #*+4-y2 > 0 we shall finally have the inequality
zYy?
-y

o] = — =L <l <e

iy

and from this it follows that the function o is continuous at the point
(0, 0). Since further

h,0)—a(0,0 —
o(h, 0)—o( » )20 and U(Oi_h) G(O—’-Qz()
h b !
we have
7}
g (52 (G =0
0% [z=y=0 ay B=Y=0
Later on, we have for z*+ 42 > 0
0o yiyr—a?) o 23y
oz (@922 Gy (@t
Hence we get first
do ¥ Y@+ %) ¥
(8) =——" 2 : <
G| = Tk VTS gy T <Y
and subsequently we have for |#| < |y|
fdo ! PAIE P 4
Doi _ 2WPlyl _ 2 2y —3,

| ~= < e
9y | (w2 y2)2 (w2 y2)2 ot
whereas for |z| > |y|
2t 2

<<
(w2+ :y2)2

Qv! S
I
(s}

or else. always

do
(9) !0—1/ <2
thus the function o possesses bounded partial derivatives not only in the
neighbourhood of the point (0, 0) but even all over the plane.
It will be shown now that the partial derivatives do not determine
the vector field all over the plane. Singularity will obviously arise at the
point (0, 0) only. If it were contrary to our assertion, then the vector
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fixed at the point (0, 0) would, concerning relations (7), be 4 null vector.
Let us now make some simple (affine) transformation of the coordi-

nates

(10) v =u,

where u, » are new variables. This transformation is allowable, since its

jacobian becomes

Y= ut+v

ou ou

” S ox oy =} 103=1#“.
v v | —1 1!
o oy

In the new coordinates the function ¢ will be expressed by a formula

u(u+v)?

—— w2 2 .
T 2w 2uot o2 wirt >0

= p(u,v) for

Obviously
@(h, 0) = h?[2h% = |2,
and so (since @(0,0) = 0 because for % = v = 0 we have @ = y = 0)

o, 0—9(0,0) 1

h 2

or else

12 (0"’) -1
12) 0 fu—vao 9’

thus, in the system of coordinates (u,v), the vector fixed at the point
(0,0) would have its first component different from zero, and thus it
could not be a null vector. In this way the property of the vector to be
a null vector would not be an invariant of the regular transformations
of coordinates, and we have come to a contradietion in assuming (9o [de,
do[0y) to represent a vector field all over the plane.

References

[1]1 8. Golab, Uber den Begriff der Pseudogruppe von Transformationen, Matl.
Ann. 116 (1939), p. 768-780.

[2] — Sur une condition nécessaire et suffisante pour Vewistence d’une différon-
tielle totale, Ann. Soo. Pol. Math. 16 (1937), p. 31-40.

Regu par la Rédaction le 23. 2. 1956

ANNALES
POLONICI MATHEMATICI
VIII (1960)

On the notion of gradient
II. A certain extremal property of direction of the gradient vector

by 8..,GoEAB (Krakéw) and M. KUCHARZEWSKIL (Katowice)

If for a given scalar field ¢ (having at a point p under consideration
w total differential or being at that point of the class (Y i. e. having at
that point continuous partial derivatives of the first order (see [1])) we
form a gradient » whose components are the partial derivatives

(1) _ v =00/dm; (1=1,...,m),

then if the gradient » at the point p differs from zero, the direction of
vector v defines that of the maximum increase of the field ¢. By this
the following is implied: If we take at the point p a tixed arbitrary radius r
and its current point m, and if by s we denote the distance m from p
and by ¢(s) the value of the function o at the point m, then the right-
side derivative of the function ¢(s) for s = 0 will be the greatest (and
at the same time positive) for the radius » passing through the vector v.
Tt is a well known fact and its proof is simple.

The aim of this note is to give some other similar property of the
veetor .

About the function ¢ we assume that

1. it is continuous in the neighbourhood of the point p,

2. has at the point p a total differential,

3. the vector » with components
v, = (0of0m;), (t=1,...,m)

iy different from zero, i. e.
n
Z i'vit > Uv
4=l -
4. there exists an infinite sequence of hypersurfaces 8, with the
tollowing properties:
(I) 8, is a closed (#-—1)-dimensional surface containing p internally;
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