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On the topological triviality along moduli
of deformations of Jk,0 singularities

by Piotr Jaworski (Warszawa)

Abstract. It is well known that versal deformations of nonsimple singularities depend
on moduli. However they can be topologically trivial along some or all of them. The
first step in the investigation of this phenomenon is to determine the versal discriminant
(unstable locus), which roughly speaking is the obstacle to analytic triviality. The next
one is to construct continuous liftable vector fields smooth far from the versal discriminant
and to integrate them. In this paper we extend the results of J. Damon and A. Galligo,
concerning the case of the Pham singularity (J3,0 in Arnold’s classification) (see [2, 3, 4]),
and deal with deformations of general Jk,0 singularities.

1. Introduction. Let f : (Cn, 0) → (C, 0) be a germ of an analytic
function with an isolated critical point at the origin. Let

F : U → C, (0, 0) ∈ U ⊂ X × Λ, X = Cn, Λ = Cµ,
be an analytic deformation of f (i.e. f(x) is the germ of F0(x) = F (x, 0)
at the origin) which is miniversal for right equivalence. Obviously Fλ(x) =
F (x, λ) is versal for V-equivalence. Furthermore if λ1 is a free term, i.e.
F (x, λ) = F ′(x, λ′) + λ1, where λ = (λ1, λ

′) ∈ Λ = C× Λ′, and the domain
U splits, U = C× U ′, U ′ ⊂ X × Λ′, then the unfolding

F : (U ′, (0, 0))→ (Λ, 0), F(x, λ′) = (−F ′(x, λ′), λ′),
is right-left stable.

Let T be the moduli set, i.e. the subset of Λ consisting of all λ such that
Fλ(x) has a critical point p of multiplicity µ = µ(f) (Milnor number) and
Fλ(p) = 0. Let π : (Λ, 0) → (T, 0) be an analytic projection (transversal
to T ).

We say that the deformation F (resp. the unfolding F) is topologically
trivial along T relative to π if there exists a projection π0 : Λ→ π−1(0) such
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that F (z, λ) (resp. F(z, λ)) is topologically equivalent to the deformation
F (z, π0(λ)) (resp. to the unfolding (F(z, π0(λ)), π(λ))).

Now let the germ f be quasihomogeneous (weighted homogeneous). Then
there exists a distinguished class of projections induced by quasihomogene-
ity. We consider a quasihomogeneous miniversal deformation:

Fλ(x) = F (x, λ) = f(x) +
µ∑
i=1

λiei(x)

where e1, . . . , eµ is a quasihomogeneous basis of the local algebra On/If ,
where If is the ideal spanned by the partial derivatives ∂f/∂xi, i = 1, . . . , n
(compare [1], §8). We say that the parameter λi is underdiagonal , overdiag-
onal or diagonal if the quasidegree of ei is less than, greater than or equal
to the quasidegree of f respectively. We remark that the number of basis
elements of a given quasidegree does not depend on the choice of a basis
(see [1], §12.2). In this case the moduli set T is a linear subspace of the base
Λ = Cµ spanned by the overdiagonal and diagonal λ’s. Moreover, there is a
canonical projection π onto T , “forgetting” the underdiagonal λ’s. For this
projection the restriction Fλ, λ ∈ π−1(0), is the part of the deformation con-
sisting of the underdiagonal terms, the so-called underdiagonal deformation
(also called the deformation of negative weight). Since quasihomogeneous
germs are germs of polynomials, Fλ is defined globally and we may put for
example U = Cn×Cµ. Nevertheless since the topological triviality depends
on the choice of domain where the deformation is defined, we restrict our-
selves to domains U such that the sum of the Milnor numbers of the critical
points of Fλ in Uλ = {x : (x, λ) ∈ U} is constant.

The goal of this paper is to show that in general quasihomogeneous
miniversal deformations of Jk,0 singularities are topologically trivial along
the moduli. The only exceptions are when k ≥ 3 and the singularity is
harmonic or aharmonic. That is, except the above two cases:

1. The underdiagonal part of the quasihomogeneous miniversal deforma-
tions of the Jk,0 singularity is topologically V-versal; or

2. The analytic miniversal deformations of (different) singularities be-
longing to the family Jk,0 are topologically V-equivalent.

The author would like to mention here that the problem of topological
triviality has also been investigated by A. du Plessis and C. T. C. Wall (see
[5, 6]).

2. Notation

2.1. Deformations and unfoldings. In the mathematical literature one
can find two different points of view on the theory of deformations of germs
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of analytic sets: analytical and geometrical. Since we are going to deal with
both of them, we have to differentiate the notation.

Let f(x) : (Cn, x0) → (C, z0) be a germ of an analytic function. By a
deformation of f we mean an analytic family of functions

F (x, λ) : (U, (x0, λ0))→ (C, z0), U ⊂ Cn × Λ,

such that f(x) is the germ of F (x, λ0) at x0 (compare [1]).
By an unfolding we mean a corank one mapping

F(x, λ) : (U ′, (x0, λ
′
0))→ (C× Λ′, (z0, λ′0)), U ′ ⊂ Cn × Λ′,

such that F−1(z0) = f−1(z0)× {λ′0}.
In the following the set Λ (resp. Λ′) will be called the base of the defor-

mation (resp. of the unfolding).
Let Π : Cn ×Λ→ Λ and Π ′ : Cn ×Λ′ → Λ′ denote the projections onto

the second factor.
Two deformations Fi(x, λ) : (Ui, (xi,0, λi,0))→ (C, 0), i = 1, 2, are topo-

logically V-equivalent if there exist functions

Φ(x, λ) : (U2, (x2,0, λ2,0))→ (Cn, 0),
Θ(λ) : (Π(U2), λ2,0)→ (Π(U1), (x1,0, λ1,0)),

H(x, λ) : (U2, (x2,0, λ2,0))→ C

such that Φ(x, λ2,0) and Θ(λ) are homeomorphisms, H and 1/H are locally
bounded and

F1(Φ(x, λ), Θ(λ)) = H(x, λ)F2(x, λ).

Furthermore we say that two unfoldings

Fi(x, λ) : (U ′i , (xi,0, λ
′
i,0))→ (C× Λ′, (0, λ′i,0)), i = 1, 2,

are topologically A-equivalent if there exist two homeomorphisms

Φ(x, λ) : (U ′2, (x2,0, λ
′
2,0))→ (U ′1, (x1,0, λ

′
1,0)),

Θ(z, λ) : (U3, (0, λ′2,0))→ (C× Λ′, (0, λ′2,0)), ImF2 ⊂ U3 ⊂ C× Λ′,

such that
F1 ◦ Φ = Θ ◦ F2.

Now assume that the base of a deformation (resp. of an unfolding) splits,
λ=(τ, s). We say that the deformation F (resp. unfolding F) is topologically
trivial along s if it is topologically equivalent to the deformation

G(x, λ) = F (x, τ, s0)

(resp. to the unfolding

G(x, λ) = (F(x, τ, s0), s)).
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2.2. Jk,0 singularities. We consider quasihomogeneous analytic functions

f(x, y) = y3 + βyx2k + γx3k, k = 2, 3, . . . ,

of type (1/(3k), 1/3), where 4β3 + 27γ2 6= 0. Each of them has an isolated
singular point at the origin. In Arnold’s classification (see [1], §15) such
singularities are called Jk,0. We remark that they are classified (up to both
right and V-equivalence) by the j-invariant :

j =
4β3

4β3 + 27γ2
.

Note that the j-invariant has two branching values: j = 0 (the harmonic
case) and j = 1 (the aharmonic case).

We remark that the Milnor number of a Jk,0 singularity equals 6k−2 and
the modality is k−1 (but only one modulus occurs in the quasihomogeneous
part, the other are overdiagonal).

3. The main result. With the exception of the case k = 2 the topo-
logical triviality is not possible for j = 0 or j = 1 since in these cases there
exist nontypical decompositions (see [8, 9]).

Therefore we restrict ourselves to the case when j 6= 0, 1 and put

f(x, y) = y3 + ux2ky + x3k, 4u3 + 27 6= 0 6= u.

We shall consider the following deformation of f :

F (x, y, τ, s) = y3 + ux2ky + x3k +
k−2∑
i=0

siyx
2k+i +

3k−2∑
i=0

τ0,ix
i +

2k−1∑
i=0

τ1,iyx
i,

and the associated unfolding

F(x, y, τ ′, s) = (−F (x, y, 0, τ ′, s), τ ′, s),

where τ = (τ0,0, τ ′) ∈ C5k−1 and s ∈ Ck−1. We remark that F becomes
a quasihomogeneous function of x, y, τ, s if we put qdeg si = −i/(3k) and
qdeg τj,i = 1− j/3− i/(3k).

Theorem 1. If u 6= 0 and u3 +27 6= 0 then there exist quasihomogeneous
neighbourhoods U and U ′ of the origin such that the deformation F restricted
to U and the unfolding F restricted to U ′ are topologically trivial along s.
Moreover if u is real then the above neighbourhoods and trivializations can
be chosen to be invariant under complex conjugation.

Remark. The case k = 2 was proved by Looijenga [11], and the next
one, k = 3, by J. Damon and A. Galligo [2, 3, 4]. Furthermore, it follows
from the results of Wirthmüller [12] that F and F are topologically trivial
along sk−2.
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4. Liftable vector fields. The construction of a topological trivializa-
tion is based on integration of certain vector fields.

We recall the basic definitions. Let F (x, λ) be an analytic deformation
of f(x) = F (x, 0). Let λ0 be a point from the fibre π−1(0), where π : Λ→ T
is the projection onto the moduli set. A continuous vector field

η =
∑

ηi(λ)
∂

∂λi
defined on some neighbourhood of λ0 is called liftable if there exists a neigh-
bourhood W of λ0 and a continuous vector field ξ defined on Π−1(W ) ∩ U
such that

ξ =
∑

ξi(x, λ)
∂

∂xi
+ η

and ξ(F ) = AF , where A(x, λ) is a locally bounded function. We call such
a vector field ξ lifted and denote its component tangent to Λ by Π#(ξ).
Note that ξ and η are linear combinations of analytic (holomorphic) vector
fields with continuous coefficients. Thus they annihilate all antiholomorphic
functions.

We denote by M(U) (respectively by L(U)) the O(Π(U))-module of
analytic liftable (respectively lifted) vector fields and byM(λ) (respectively
L(λ)) the C-linear space of their values at the point λ.

We recall that the tangent space to a V-equivalence stratum is spanned
by liftable vector fields. Therefore we apply the following definition (compare
the notion of a versality discriminant [2, 3, 4] and an instability locus [5]):

Definition. A point λ ∈ π−1(0) belongs to the versal discriminant
relative to the projection π if the moduleM of analytic liftable vector fields
is not transversal to the fibre π−1(0) at λ:

M(λ)⊕ Tλπ−1(0) 6= TλΛ.

5. Regular domains

5.1. Definition. Let the set of germs of analytic functions e1(x), . . . ,
eµ(x) be a basis of the local algebra of the germ at the origin of an analytic
function f(x). We consider its (right) miniversal deformation

F (x, λ) = f(x) +
µ∑
i=1

(λi − λ0,i)ei(x),

(x, λ) ∈ U ⊂ X × Λ, X = Cn, Λ = Cµ.
Moreover we assume that U is open and contains (0, λ0).

We say that the domain U is regular if:

• the analytic functions e1(x), . . . , eµ(x) span the factor algebra of an-
alytic functions on U modulo the ideal IF generated by the derivatives
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∂F/∂xi, as a module over the analytic functions on the projection Π(U),

O(U) = IF ⊕O(Π(U))〈e1(x), . . . , eµ(x)〉,

• for every λ ∈ Π(U) the analytic functions e1(x), . . . , eµ(x) are C-
linearly independent in the factor algebra of analytic functions on U ∩
Π−1(λ) modulo the ideal IFλ .

The first condition implies that the fibres U ∩Π−1(λ) are not too big,
i.e. they do not contain “additional” critical points of Fλ (not converging
to the origin as λ tends to 0). The second one means that these fibres are
not too small, i.e. the sum of the Milnor numbers of critical points of Fλ is
constant (equal to µ).

Now, let F be a miniversal deformation of a Jk,0 singularity defined as
in Section 3. As an example of a regular domain we can take the set

Uδ,ε,ω = {(x, y, τ0,0, τ ′, s0, s′) : (x, y, τ ′, s0, s′) ∈ U ′δ,ε,ω, τ0,0 ∈ C},
U ′δ,ε,ω = {(x, y, τ ′, s0, s′) : |s0| < δ, (|x|3k + |y|3) · ‖s′‖ < ε,

‖τ ′‖ · ‖s′‖ < ε · ω},
where δ, ε, ω are sufficiently small positive constants, and

‖s′‖ = max{|si|3k/i : i = 1, . . . , k − 2} for k > 2, ‖s′‖ = 0 for k = 2,

‖τ ′‖ = max{|τi,j |3k/(3k−jk−i) : (i, j) 6= (0, 0)}.
5.2. Properties. We state some basic properties of a regular domain U .

Lemma 1. For every λ ∈ Π(U) the mapping

(η1, . . . , ηµ) 7→
( µ∑
i=1

ηi
∂F

∂λi

)∣∣∣∣
λ=λ

mod IFλ

is a C-linear isomorphism of the tangent space TλΛ and the factor algebra
O(U ∩Π−1(λ))/IFλ .

P r o o f. Indeed, ∂F/∂λi = ei(x) and the ei form a basis of the above
factor algebra.

Furthermore, there is a canonical O(Π(U))-linear mapping

Υ : L(U)→ O(U), Υ (ξ) = ξ(F )/F.

Lemma 2. Υ is onto and kerΥ ⊂ kerΠ#.

P r o o f. The first assertion follows from the first regularity condition and
the second from the second one. Indeed, for every analytic function a on U
we have a decomposition

a(x, λ)F (x, λ) =
∑

ξi(x, λ)
∂F

∂xi
+
∑

ηi(λ)
∂F

∂λi
.
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We put

ξ =
∑

ξi(x, λ)
∂

∂xi
+
∑

ηi(λ)
∂

∂λi
.

Obviously ξ(F ) = aF . On the other hand if ξ is as above and ξ(F ) = 0 then∑
ξi(x, λ)

∂F

∂xi
+
∑

ηi(λ)
∂F

∂λi
= 0.

But ∂F/∂λi = ei(x) and for any fixed λ they are linearly independent
modulo ∂F/∂xi’s. Therefore all ηi must be 0. Hence Π#(ξ) = 0.

Lemma 3. M(U) is an O(Π(U))-module generated by the vector fields
Π#(ξi) where ξi(F ) = eiF .

P r o o f. Let ξ be a lifted vector field, ξ(F ) = aF . We decompose a as

a(x, λ) =
∑

βi(x, λ)
∂F

∂xi
+
∑

αi(λ)ei(x).

We put

ξ∗ = F ·
∑

βi(x, λ)
∂

∂xi
+
∑

αi(λ)ξi.

Obviously ξ∗(F ) = aF . Therefore

Π#(ξ) = Π#(ξ∗) =
∑

αi(λ)Π#(ξi).

We apply the above to a deformation F of a Jk,0 singularity restricted
to a regular domain. Basing on the results of [9] we obtain:

Proposition 1. The versal discriminant of the deformation F consists
of the parameters τ such that

Fτ = y3 + ud(x)2y + d(x)3,

where d(x) is a polynomial of degree k with at least one multiple root.

Remarks.. • Since Fτ is a subfamily of F , d is monic and the sum of
its roots is 0, d = xk + ak−2x

k−2 + . . .
• In [9] we also described the versal discriminant of the two cases omitted

here, j = 0, 1.

Basing on Lemma 3 one can also prove the uniqueness of quasihomo-
geneity.

Proposition 2. Let

F (x, λ), (x, λ) ∈ U ⊂ X × Λ, X = Cn, Λ = Cµ,
be a quasihomogeneous miniversal deformation of a quasihomogeneous or
semiquasihomogeneous singularity. If U is a regular domain then the quasi-
homogeneous C∗ action on the base Λ is invariant under analytic automor-
phisms of the deformation.
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P r o o f. The C∗ action on Λ is induced by the so-called Euler vector field

ε =
∑

qdeg(λi)λi
∂

∂λi
.

The orbits of the R+ and S1 actions are integral curves of the real and
imaginary parts of ε.

Next, ε is liftable and for its lifting we can take the Euler vector field on
X × Λ,

Ξe = ε+
∑

qdeg(xi)xi
∂

∂xi
.

Obviously Ξe(F ) = qdeg(F )F . The last condition is preserved by automor-
phisms:

Φ∗(Ξe)(F ) = Φ∗(Ξe)(F ◦ Φ) = Ξe(F ) = qdeg(F )F.

Due to Lemmas 2 and 3 the difference Φ∗(Ξe)−Ξe is tangent to the fibres
of the projection Π : X × Λ → Λ. Therefore Φ∗(Ξe) is also a lifting of ε.
Thus for any automorphism Φ,

Π#(Φ∗(Ξe)) = ε.

Hence ε is an invariant of the automorphisms. (For more details see [10].)

6. The structure of the versal discriminant

6.1. Critical points. For

F = y3 + ud(x)2y + d(x)3,

we have
∂F

∂y
= 3y2 + ud(x)2,

∂F

∂x
= (2uy + 3d(x))d(x)d′(x).

Let d1(x) be the greatest common divisor of d and d′. We put d′ = d0d1

and d = d2d1.
There are two types of critical points:

• d(x0) = y0 = 0,
• d(x0) 6= 0 but d′(x0) = 0.

We remark that due to the nondegeneracy condition 4u3 + 27 6= 0 the
intersection of the zero sets of ∂F/∂y and of the first factor of ∂F/∂x consists
only of the points (x0, 0) where d(x0) = 0.

The roots of d(x) give rise to singular points of F−1(0). Let

d(x) =
∏

(x− xi)αi ,
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where all xi are different. In the local coordinate system {x̃, ỹ} in the neigh-
bourhood of the point (xi, 0),

F = ỹ3 +ux̃2αi ỹ+ x̃3αi , where x̃ = (x−xi)
(∏
j 6=i

(x−xj)αj
)1/αi

, ỹ = y.

This gives the following singularity types:

• if αi = 1 then the point (xi, 0) has type D4;
• if αi = m, m ≥ 2, then it has type Jm,0, j = 4u3/(4u3 + 27). (We

remark that at least one αi is greater than 1.)

Furthermore the sums of the Milnor numbers and the modality of these
critical points are respectively µ1 = 6k−2 deg d2 and m1 = k−deg d2, where
d2 is the product of all prime factors of d, i.e. deg d2 equals the number of
different roots of d.

The roots of d0(x) give rise to the remaining critical points of F , which
are all of type A∗.

6.2. Parametrization of the stratum. We recall that a subset of the base
of a deformation is a µ-constant stratum if it is a connected component of
the set of parameters λ such that the sum of the Milnor numbers of the
singular points of the zero sets of the corresponding functions is equal to a
given value.

We consider the µ-constant stratum VF containing the function F =
y3 + ud(x)2y + d(x)3, which was investigated in the previous subsection.
Near F , VF is parametrized by the family

Fs = y3 + (u+ s(x))d(x)2y + d(x)3, s(x) = sk−2x
k−2 + . . .+ s0.

Indeed:

• Fs has the same singular points as F , (xi, 0), where xi is a root of
d(x). In the local coordinate system {x̃, ỹ} in the neighbourhood of the
point (xi, 0),

F = ỹ3 + (u+ s̃(x̃))x̃2αi ỹ + x̃3αi , where

x̃ = (x− xi)
(∏
j 6=i

(x− xj)αj
)1/αi

, ỹ = y.

Thus the whole family has the same singularity µ-type.

• The dimension of VF equals

m1 + µ2 = k − deg d2 + 2 deg d2 − 2 = k − 2 + deg d2.

Hence it is equal to the number of parameters of the family Fs; there are
k− 1 coefficients of c(x) and deg d2 different roots of d(x), which fulfill only
one condition: their sum (counted with multiplicities) equals 0.
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We remark that Fs, s 6= 0, has more critical points than F but the
additional ones lie outside the regular domain.

Lemma 4. The µ-constant stratum containing points from the versal dis-
criminant is transversal to the fibres of the projection π.

P r o o f. Since
∂Fs
∂si

= d(x)2yxi

the matrix of coefficients of the “vectors”

e1, . . . , e5k−2,
∂Fs
∂s0

, . . . ,
∂Fs
∂sk−2

in the base 1, x, . . . , x3k−2, y, yx, . . . , yx3k−2 of the factor algebra O(U ∩
Π−1(λ))/IFλ is triangular. Since the mapping η 7→ η(F ) is an isomorphism
of the above factor algebra and the tangent space to Λ (see Lemma 1), the
tangent space to the parametrization Fs is transversal to the fibres of π.

7. Multigerm splitting

7.1. Deformations of a multigerm. Let

F (x, λ), (x, λ) ∈ U ⊂ Cn × Λ, Λ = Cm,
be an analytic family of holomorphic functions. Let p be an isolated critical
point of F (x, λ0). Then the germ of F (·, ·) at (p, λ0) is a deformation of the
germ of Fλ0 = F (·, λ0) at p. Hence it is right-equivalent to the deformation
induced from the miniversal one (see [1], Vol. 1, §8). Furthermore we choose
a normal form of the germ (Fλ0)p, say Fλ0(gp(x)), where gp is a germ of a
diffeomorphism and gp(p) = 0. In such a way we construct a germ of an
analytic mapping Ψp from the parameter space Λ to the base Λp of the right
miniversal deformation Gp(x, λ) of the germ of Fλ0(gp(x)) at the point p,

Ψp : (Λ, λ0)→ (Λp, λp,0)

such that
F (x, λ) = Gp(gp(x, λ), Ψp(λ))

in some neighbourhood of (p, λ0), where gp is a holomorphic germ, and
gp(x, λ0) = gp(x). Let Critλ denote the set of critical points of Fλ . We
introduce a splitting mapping

Ψ = ×
p∈Critλ0

Ψp : (Λ, λ0)→ ×
p∈Critλ0

(Λp, λp,0)

from the parameter space Λ to the base of a miniversal deformation of the
multigerm (Fp(x, λ0)), p ∈ Critλ0 .

In the following we shall consider the case when F is a right miniversal
deformation of a germ with an isolated critical point of multiplicity µ.
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Proposition 3. If the domain U of the deformation is regular then the
splitting mapping

Ψ = ×
p∈Critλ0

Ψp : (Λ, λ0)→ ×
p∈Critλ0

(Λp, λp,0)

is a germ of a diffeomorphism.

P r o o f. We put fp(x) = F (gp(x), λ0). We recall that we may choose the
following miniversal deformations of the germ of fp at p:

fp(x)− fp(p) +
∑

bjej ,

where bj are complex parameters, ej form the basis of the local algebra of fp
at p and e1 = 1. We identify the tangent space to Λp with the local algebra
Qp. Hence the derivative DΨ is the composition

TΛ→ OΠ−1(λ0),λ0/IF →
⊕
p∈Crit

Qp,

∂

∂λi
7→ ∂

∂λi
F mod (∂1F, . . . , ∂nF )

π7→
(

∂

∂λi
fp mod (∂1fp, . . . , ∂nfp)Op

)
p∈Crit

.

The homomorphism π is an isomorphism of linear spaces. As a matter of
fact it is a splitting of a multilocal algebra into local components ([1], §5.8).
Hence DΨ|λ0 is also an isomorphism.

Thus Ψ is a germ of a diffeomorphism.

In the following sections we denote by the same symbol Ψ the analytic
diffeomorphism which represents it.

Example. Let λ be a point from the versal discriminant of a J3,0 sin-
gularity such that the curve Fλ = 0 has two singular points J10 = J2,0 and
D4. Then the 16-dimensional base of a right miniversal deformation of J3,0

is in some neighbourhood of λ the Cartesian product of:

• a 10-dimensional base of J2,0,
• a 4-dimensional base of D4, and
• two one-dimensional bases of A1 (there are two critical points with

nonzero critical values).

Obviously the 3-dimensional stratum containing the versal discriminant
is the product of:

• the 1-dimensional moduli set of J2,0,
• the origin of the base of D4, and
• the two one-dimensional bases of A1.
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7.2. Splitting and liftable vector fields. Let ηp’s be continuous vector
fields defined on some neighbourhoods of λp,0 in Λp, p ∈ CritFλ0 . If p is a
singular point of the curve Fλ0 = 0 then we assume that ηp is liftable and
ξp is the corresponding lifted vector field,

ξp(Fp) = ApFp.

We extend each ηp to an open subset of the Cartesian product×Λq, q ∈
CritFλ0 , ηp 7→ (0, . . . , 0, ηp, 0, . . . 0) ∈ T (×Λq).

Lemma 5. The vector field η = (Ψ∗)−1(
∑
ηp) restricted to some neigh-

bourhood of λ0 is liftable.

P r o o f. We construct the lifted vector field ξ in the following way. In a
suitable small neighbourhood Up of a singular point p we put

ξ̂p = (g∗p , Ψ
∗)−1

(
ξp +

∑
p′ 6=p

ηp′
)
.

We remark that for (x, λ) ∈ Up we have

ξ̂p(F )|(x,λ) = ξ̂p(Gp ◦ (gp, ψp))|(x,λ) =
(
ξp +

∑
p′ 6=p

ηp′
)

(Gp)
∣∣∣
(gp(x,λ),ψp(λ))

= (ApGp)|(gp(x,λ),ψp(λ)) = Ap(gp(x, λ), ψp(λ))F (x, λ).

The complement of the set of singular points is covered by n+ 1 sets:

U0 = {(x, λ) : F (x, λ) 6= 0},

Ui =
{

(x, λ) :
∂F

∂xi
(x, λ) 6= 0

}
, i = 1, . . . , n.

We put ξ̂0 = η on U0, and on Ui, i = 1, . . . , n,

ξ̂i =
−η(F )
∂F/∂xi

∂

∂xi
+ η.

The above vector fields are local liftings of η and

ξ̂0(F ) =
−η(F )
F

F, ξ̂i(F ) = 0.

Next we glue ξ̂’s using a smooth partition of unity to obtain a global lifting
of η:

ξ =
∑
p∈Sing

ζpξ̂p +
n∑
i=0

ζiξ̂i,

where ∑
p∈Sing

ζp +
n∑
i=0

ζi = 1, supp ζp ⊂ Up, supp ζi ⊂ Ui.
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7.3. Split-stratified vector fields. The aim of this subsection is to define
a category of continuous vector fields lifted from the base of a given (right)
miniversal deformation (of an isolated singularity S) which is closed under
addition and multiplication by smooth functions and furthermore contains
only integrable vector fields.

We recall that the so-called control functions are the basic tools used to
show the uniqueness of integral curves of continuous vector fields (compare
[2, 3, 4, 12]).

We associate with every (right, analytic) type S of a critical point a fixed
normal form fS and a fixed miniversal deformation FS ; if the singularity is
quasihomogeneous or semiquasihomogeneous then we choose a normal form
with the respective property and a quasihomogeneous deformation,

FS : US → C, US ⊂ Cn × ΛS , fS(x) = FS(x, λ0).

Let TS be the moduli set, i.e. the subset of Λ consisting of λ such that
FS,λ(x) has a critical point p of multiplicity µ = µ(S) and FS,λ(p) = 0.

We say that a smooth function

δS : Λ→ R+ ∪ {0}, δ−1
S (0) = TS ,

is an admissible control function if, for all singularities except the type Jk,0,
it is the sum of the squares of the moduli of holomorphic functions which
generate the ideal of holomorphic functions vanishing on TS , and for the
type Jk,0 it is the sum of the squares of the moduli of quasihomogeneous
holomorphic functions of the same positive quasidegree.

Let F : U → C, U ⊂ Cn × Λ, be an analytic family of holomorphic
functions.

Definition. A lifted vector field

ξ =
∑

ξi(x, λ)
∂

∂xi
+ η(λ), ξ(F ) = AF,

is split-stratified on U if for every µ-constant stratum E:

(1) η is tangent to E and smooth on E,
(2) ξ is tangent to SingF and

ξ

(
∂F

∂xi

)
= Ai,0F +

∑
Ai,j

∂F

∂xj

where Ai,j are locally bounded on U ∩Π−1(E),
(3) ξ restricted to Π−1(E) \ SingF is smooth,
(4) for every λ ∈ E, for every set of admissible control functions δp,

p ∈ SingFλ, and for every splitting mapping Ψ , there exists a constant C
such that
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p∈SingFλ0

δp ◦ Ψ
)∣∣∣ ≤ C( ∑

p∈SingFλ0

δp ◦ Ψ
)

in some neighbourhood of λ.

Remark. The above definition does not depend on the choice of a par-
ticular splitting mapping. Indeed, the composition of an admissible control
function and an automorphism of the miniversal deformation is still an ad-
missible control function (see Proposition 2 for the case of Jk,0).

Lemma 6. If a continuous lifted vector field ξ is split-stratified then Re ξ,
Im ξ, Re η and Im η are locally integrable.

P r o o f. From condition (4) it follows that any integral curve of Re η and
Im η lies in just one µ-constant stratum (compare e.g. [2]). Hence together
with (1) this implies the uniqueness of the integral curves of η’s.

Integral curves of Re ξ and Im ξ lie over integral curves of Re η and Im η.
The uniqueness outside the set of singular points follows from (3) while
the uniqueness at singular points comes from (2) and the fact that Fλ has
only isolated singular points. Indeed, over integral curves of η’s, SingF is a
disjoint union of smooth curves. Next we consider the control function

% = |F |2 +
∑∣∣∣∣ ∂F∂xi

∣∣∣∣2.
Then

ξ(%) = ξ(F )F +
∑

ξ

(
∂F

∂xi

)
∂F

∂xi

= A|F |2 +
∑(

Ai,0F +
∑

Ai,j
∂F

∂xj

)
∂F

∂xi
.

Therefore, since |ab| = |a| · |b| ≤ |a|2 + |b|2 we get

|ξ(%)| ≤ C%,
where C is the sum of bounds of the coefficients A and Ai,j . Hence no
integral curve of ξ can cross the set of singular points.

The above yields the continuous dependence on initial values, i.e. the
continuity of the flow (see [7], Ch. V, Th. 2.1).

Lemma 7. A linear combination, whose coefficients are bounded smooth
functions of λ, of lifted split-stratified vector fields is again split-stratified.

P r o o f. The first three conditions are obvious. We deal with the last
one. Let η =

∑
bi(λ)ηi, where |bi(λ)| ≤M . We have

|η(δ)| =
∣∣∣∑ bi(λ)ηi(δ)

∣∣∣ ≤∑ |bi(λ)| · |ηi(δ)| ≤
(
M
∑

Ci

)
δ.

Lemma 8. Every analytic lifted vector field ξ is split-stratified.
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P r o o f. The first three conditions are obvious. We deal with the last
one. If η = Π#(ξ) is analytic then so is Ψ∗(η). Let ηp be the component of
Ψ∗(η) tangent to Λp. Then

η
(∑

δp ◦ Ψ
)

= (Ψ∗η)
(∑

δp

)
=
∑

ηp(δp).

If δp is the square of the euclidean distance from the moduli set Tp,
to which ηp is tangent, then there is a local coordinate system {yi : i =
1, . . . ,m} such that T = {y1 = . . . = yk = 0} and

δp =
k∑

i,j=1

δi,j(y)yiyj , where δi,i(0) = 1, δi,j(0) = 0 for i 6= j.

Since ηp is tangent to T ,

ηp =
k∑

i,j=1

ηi,jyi
∂

∂yj
+

m∑
i=k+1

ηi
∂

∂yi
.

Thus ηp(δp) belongs to the square of the ideal generated by y1, . . . , yk and
ηp(δp)/δp is bounded.

If p has type Jk,0 then ηp is a linear combination of quasihomogeneous
liftable vector fields of nonnegative quasidegree with analytic coefficients
(see Lemma 3):

ηp =
∑

aiηi, qdeg(ηi(δp)) = qdeg(ηi) + qdeg(δp) ≥ qdeg(δp).

Indeed, if ηi = Π#(ξi), where ξi(F ) = eiF , then qdeg(ηi) = qdeg(ei) ≥ 0.
Therefore the quotients ηi(δp)/δp are bounded. The coefficients ai are also
bounded hence so is the quotient ηp(δp)/δp.

8. Construction of families Ξk of vector fields. Let f(x, y) and
F (x, y, τ, s) be as in Section 3, and let Π and π be the projections,
Π(x, y, τ, s) = (τ, s), π(τ, s) = s.

Proposition 4. There exists a (k − 1)-tuple Ξk = {ξk,i : i = 0, 1, . . . ,
k−2} of quasihomogeneous split-stratified lifted vector fields defined on some
quasihomogeneous neighbourhood of Π−1(π−1(0)) such that

Π#(ξk,i) =
∂

∂si
+
∑

ηk,i,j,l(τ, s)
∂

∂τj,l
, i = 0, 1, . . . , k − 2.

P r o o f. The construction of Ξk is by induction. We let Ξ1 be empty,
and assume that for all m < k the families Ξm are already constructed.

We proceed in three steps. First we show that for every point (τ0, 0) ∈ Λ
lying on the quasihomogeneous “sphere” ‖τ‖ = 1 there exists a neighbour-
hood Wτ0 ⊂ Λ such that one can construct ξk,i’s on Π−1(Wτ0). Next we
choose a finite covering and glue the vector fields using a partition of unity.
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The last step is to extend the vector fields by quasihomogeneity to some
neighbourhood of the set Π−1(π−1(0)) = {(x, y, τ, 0)}.

Step 1. If the point (τ0, 0) does not belong to the versal discriminant
V then for every i, i = 1, . . . , k − 2, we can find a neighbourhood Wτ0 and
a lifted analytic quasihomogeneous vector field ξi with

Π#(ξi) =
∂

∂si
+
∑

ηi,j,l(τ, s)
∂

∂τj,l

defined on Π−1(Wτ0).
Otherwise, when (τ0, 0) ∈ V , we apply induction. Let V (τ0) be the

µ-constant stratum containing (τ0, 0) (obviously it also contains a stratum
of the versal discriminant). First we show that the tangent space to V (τ0)
at (τ0, 0) is spanned by quasihomogeneous split-stratified continuous liftable
vector fields. We consider the multigerm splitting

Ψ : (Λ, (τ0, 0))→ ×
p∈Critτ0

(Λp, λp,0).

We notice that Ψ maps the µ-constant stratum V (τ0) to the product of the
overdiagonal and diagonal subspaces of Λp’s for p singular (we denote them
by Tp) and whole Λp’s for the other critical points:

Ψ(V (τ0)) =
(×
p∈Sing

Tp

)
×
(×
p 6∈Sing

Λp

)
.

The tangent space to Tp, p ∈ Sing, at the origin is (by induction) spanned
by continuous liftable vector fields such that their liftings are split-stratified.
(If p has type D4 then Tp = {0}.)

The tangent space to Λp for p 6∈ Sing is spanned by analytic vector fields.
The pull-backs of the above vector fields are liftable (see Lemma 5) and

span the tangent space to V (τ0) at (τ0, 0). Furthermore their liftings are
continuous and split-stratified.

Since the stratum V (τ0) is transversal to the fibres of the projection
π : Λ → T , the vector fields we are looking for are linear combinations of
the above with bounded continuous coefficients.

Step 2. Since the quasihomogeneous sphere ‖τ‖ = 1, s = 0, is compact,
we may choose from the covering {Wτ} a finite subcovering {Wτ}, τ ∈ I.
Let {ζ0, ζτ : τ ∈ I} be the corresponding smooth partition of unity:

ζ0 +
∑

ζτ = 1, supp ζτ ⊂Wτ for τ ∈ I,

ζ0 = 0 in some neighbourhood of ‖τ‖ = 1.
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Obviously the vector fields

ξ̃i =
∑
τ∈I

ζτξτ,i, i = 0, 1, . . . , k − 2,

are continuous, lifted and split-stratified. Furthermore

ξ̃i(sj) =
{

1 if i = j,
0 if i 6= j.

Step3. We restrict the vector fields ξ̃i to the preimage of the set ‖τ‖=1,
‖s‖ ≤ ε, where ε is positive and sufficiently small. Next we extend them
by quasihomogeneity (preserving the quasidegree) to a quasihomogeneous
neighbourhood of the origin minus the preimage of T . We obtain quasiho-
mogeneous vector fields ξi such that

ηi = Π#(ξi) =
∂

∂si
+
∑

ηi,j,l
∂

∂τj,l
.

Moreover the quasidegree of ηi equals − qdeg si, hence it is nonnegative.
The quasidegrees of ∂/∂τj,l’s are negative and thus the quasidegrees of the
corresponding coefficients are positive. Therefore these functions can be ex-
tended to continuous functions on the whole neighbourhood of the origin by
putting 0 on T . We denote the extended continuous vector field by the same
symbol ηi.

We cover the complement of the set {(0, 0)} × T by three sets:

U0 = U \Π−1(T ), U1 =
{
F 6= 0,

∂F

∂x
6= 0,

∂2F

∂y∂x
6= 0
}
,

U2 =
{
∂F

∂y
6= 0
}
.

U0 is the domain of the vector fields ξi, i = 0, . . . , k − 2. We define

ξ′i =
−ηi(∂F/∂y)
∂2F/∂x∂y

· ∂
∂x

+ ηi on U1, ξ′′i =
−ηi(F )
∂F/∂y

· ∂
∂y

+ ηi on U2.

Outside the set {(0, 0)} × T , we glue the three vector fields with the same
index using the quasihomogeneous partition of unity (ζ0, ζ1, ζ2). We obtain
quasihomogeneous continuous vector fields defined outside {(0, 0)}×T . Next
as above we extend them to the whole neighbourhood of the origin.

We thus obtain quasihomogeneous continuous vector fields ξk,i such that
ξk,i(F ) = AiF , where the Ai are bounded.

Furthermore the vector fields are split-stratified. Indeed, outside T we
base on the fact that the conditions of split-stratification are invariant under
analytic transformations of the deformation, hence also under quasihomo-
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geneous R+ action. Thus they are valid for ηi’s and ξi’s. Next, since

ηi|T =
∂

∂si
,

each ηi is tangent to T . Thus condition (1) is fulfilled.
Condition (4) is a consequence of quasihomogeneity. Both the vector field

ηi and the control function δ are quasihomogeneous. Furthermore
qdeg ηi ≥ 0. Therefore

qdeg
ηi(δ)
δ
≥ 0.

Hence the above quotient is bounded.
The coefficients of ξ′i and ξ′′i are smooth in x and y, hence condition (3)

is valid for ξk,i. Furthermore

ξ′i

(
∂F

∂x

)
=

H ′i
∂F/∂x

· ∂F
∂x

, ξ′′i

(
∂F

∂x

)
=

H ′′i
∂F/∂y

· ∂F
∂y

,

ξi

(
∂F

∂x

)
= A1F +A2

∂F

∂x
+A3

∂F

∂y
.

Thus, outside {(0, 0)} × T ,

ξk,i

(
∂F

∂x

)
= ζ0A1F +

(
ζ0A2 + ζ1

H ′i
∂F/∂x

)
∂F

∂x
+
(
ζ0A3 + ζ2

H ′′i
∂F/∂y

)
∂F

∂y
.

Next

ξ′i

(
∂F

∂y

)
= 0, ξ′′i

(
∂F

∂y

)
=

H ′′′i
∂F/∂y

· ∂F
∂y

,

ξi

(
∂F

∂y

)
= B1F +B2

∂F

∂x
+B3

∂F

∂y
.

Thus, outside {(0, 0)} × T ,

ξk,i

(
∂F

∂x

)
= ζ0B1F + ζ0B2

∂F

∂x
+
(
ζ0B3 + ζ2

H ′′′i
∂F/∂y

)
∂F

∂y
.

Note that since ζ0 is zero on the set Π−1(T ), ζ1 is zero on the set ∂xF = 0
and ζ2 on the set ∂yF = 0, and the coefficients of the above decomposi-
tions are quasihomogeneous with nonnegative weights, they are bounded
on Π−1(T ). Since for other µ-strata the coefficients Ai and Bi are locally
bounded by construction, the coefficients of the above decompositions are
bounded as well.

This proves condition (2) and finishes the proof of the proposition.

9. Proof of the Main Theorem

9.1. Deformations. To complete the proof of Theorem 2 for deformations
it is enough to integrate the vector fields Re ξk,i and Im ξk,i.
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We remark that each ξk,i is tangent to the subspace si+1 = . . . = sk−2

= 0. Thus:

• ξk,k−2 implies that F is equivalent to F |sk−2=0;
• ξk,k−3 implies that F |sk−2=0 is equivalent to F |sk−3=sk−2=0; . . .
• ξk,0 implies that F |s1=...=sk−2=0 is equivalent to F |s0=...=sk−2=0.

Hence F (x, y, τ, s) is equivalent to F (x, y, τ, 0).
Furthermore since the flows mentioned above are quasihomogeneous, the

equivalence holds on some quasihomogeneous neighbourhood of the origin.
If the singularity is “‘real”, i.e. u belongs to R, the vector fields can be

constructed in such a way that they are invariant under complex conjuga-
tion, hence so are the flows.

9.2. Unfoldings. The unfolding F associated with the deformation F is
the composition of two mappings

U ′
J→ U

Π→ Λ,

where Π is the projection and J(x, τ ′) = (x,−F (x, 0, τ ′), τ ′) is a paramet-
rization of the set F = 0. Since the flows constructed in the previous section
preserve the zero set of F , they induce the equivalence of unfoldings as well.
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