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Quaternionic-Kähler geometry and
almost Kähler A-manifolds

by W lodzimierz Jelonek (Kraków)

Abstract. The aim of this paper is to give an easy explicit description of 3-K-contact
structures on certain SO(3)-principal fibre bundles over quaternionic-Kähler manifolds.

0. Introduction. It has been known since 1975 [K] that any quater-
nionic-Kähler manifold (M, g0) of positive scalar curvature admits a natural
SO(3)-principal fibre bundle p : P → M such that (P, g) is a 3-Sasakian
manifold and p is a Riemannian submersion. However for a long time the
analogous construction for quaternionic-Kähler manifolds of negative scalar
curvature was not given. Recently S. Tanno [T] proved that a natural SO(3)-
principal bundle also in the case of negative scalar curvature admits a struc-
ture similar to 3-Sasakian structure, called by him the nS-structure. Alexan-
drov, Grantcharov and Ivanov [A-G-I] study the almost complex structures
on the Salamon twistor bundle over quaternionic-Kähler manifolds. In par-
ticular they prove by generalizing results of Davidov and Muskarov [D-M]
that in the case of negative scalar curvature the twistor bundle (Z(M), g)
admits an almost Kähler non-Kähler structure J and the Ricci tensor of
Z(M) is Hermitian with respect to J . They also prove that (Z(M), g, J)
satisfies the symmetry condition G2 of A. Gray.

In this paper we prove the existence of a quasi 3-K-contact structure on
the canonical SO(3)-principal bundle over a quaternionic-Kähler manifold.
We use a method different from that of S. Tanno (who gave a more detailed
description of this structure). We construct explicitly a homomorphism
F : Q→ P− of principal fibre bundles where Q is the natural Sp(n) Sp(1)-
subbundle of the bundle SO(M) of oriented orthonormal frames of M .
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The class of A-manifolds (for definition see [G]) is an important class
of Riemannian manifolds which has appeared in a natural way during the
investigation of spaces with volume preserving local geodesic symmetries
(see [B], [D-N]). In our paper [J-1] we have explicitly constructed a family
of locally non-homogeneous A-manifolds parameterized by a real number
c > 0 such that each of these manifolds has a Ricci tensor with two con-
stant eigenvalues. These manifolds are SO(3)-bundles over self-dual Einstein
manifolds. In the present paper we consider a related problem and give ex-
amples of A-manifolds with two constant eigenvalues on SO(3)-bundles over
quaternionic-Kähler manifolds (M, g) generalizing our results from [J-1], [J-
3]. We also prove that the standard Riemannian structure (Z(M), g∗) on
the (generalized Salamon [S]) twistor bundle Z(M) of a quaternionic-Kähler
manifold M is a proper A-structure and that (Z(M), g∗) admits an almost
Hodge structure with Hermitian Ricci tensor.

1. Preliminaries. We start with recalling some basic facts concerning
the quaternionic-Kähler geometry (see [S], [Sw], [B]). We denote by X(M)
the Lie algebra of all local vector fields on M . If D is a vector bundle
over M then Γ (D) denotes the set of all local sections of D. We also write
Ak(M) = Γ (

∧k
TM∗).

Let (M, g) be an oriented Riemannian manifold, dimM = 4n, n > 1, and
P = P (M,SO(4n)) be the principal fibre bundle of oriented orthonormal
frames u : R4n → TM . We denote by ∇ the Levi-Civita connection of
(M, g). Let G ⊂ End(TM) be a 3-dimensional subbundle locally generated
by three almost complex structures {I, J,K} compatible with the metric
g and satisfying the additional condition I ◦ J = −J ◦ I = K. We shall
assume that the subbundle G is parallel with respect to ∇, i.e. ∇XA ∈ G
for all A ∈ Γ (G) and X ∈ X(M). A Riemannian manifold with a bundle
G satisfying the above conditions is called a quaternionic-Kähler manifold.
Every quaternionic-Kähler manifold is an Einstein manifold. If we regard
the curvature tensor of (M, g) as a self-adjoint endomorphism of

∧2
T ∗M

then

(R) R|G = α id|G
where α is a positive multiple of the scalar curvature τ of (M, g) (see [Sw],
[G-L]). Note that α = τ/(4(n+ 2)) (see [K] and [G-L]).

The (sphere) subbundle Z(M) = {A ∈ G : ‖A‖2 = 2n} of G is called the
twistor bundle of the quaternionic-Kähler manifold M . It will be useful to
consider Z(M) as a sphere subbundle of

∧2
TM (we identify the bundles∧2

T ∗M and
∧2

TM by means of g). With every ω ∈ Z(M) ⊂
∧2

TM we
associate an almost complex structure Jω on Tp(ω)M by the formula

g(X, JωY ) = g(X ∧ Y, ω).



A-manifolds 113

Let {1, i, j, k} be the standard basis of the quaternion field H. Let V =
Hn and {I0, J0,K0} be the complex structures on V defined by I0x =
−xi = (−x1i, . . . ,−xni), J0x = −xj = (−x1j, . . . ,−xnj), K0x = −xk =
(−x1k, . . . ,−xnk) where x = (x1, . . . , xn) ∈ Hn. On V we have the standard
scalar product 〈x, y〉 =

∑
xiyi. The group Sp(n) is Sp(n) = {A ∈ End(Hn) :

‖Ax‖ = ‖x‖ for x ∈ V }. The group Sp(n) Sp(1) = Sp(n)×Z2 Sp(1) acts on
V by the formula (A, q)x = Axq−1.

We shall identify the space
∧2 R4n with so(4n). The scalar product on

so(4n) is given by 〈A,B〉=− 1
2 trA◦B. Note that sp(n)⊕sp(1) ⊂ so(4n). Let

π : so(4n)→ sp(1) be the orthogonal projection with respect to this product.
The components of a vector X ∈ g with respect to the decomposition g =
sp(n)⊕sp(1) are denoted by X+, X− respectively, i.e. X = X+ +X− where
X+ ∈ sp(n) and X− ∈ sp(1). Note that X− = π(X) if X ∈ g. The algebra
sp(1) is spanned by {I0, J0,K0}. We have ‖I0‖2 = ‖J0‖ = ‖K0‖2 = 2n.

Let us define the 1-forms φI0 , φJ0 , φK0 on so(4n) =
∧2 R4n as follows:

φI(X) = 〈I,X〉 where I ∈ {I0, J0,K0}. Note that for simple bivectors X∧Y
we have

φI(X ∧ Y ) = 〈I,X ∧ Y 〉 = g(IX, Y )

where g is the standard scalar product on R4n = Hn. The projection π is
given by the formula

(1.1) π(A) =
1

2n
(φI0(A)I0 + φJ0(A)J0 + φK0(A)K0).

We shall use the following

Definition 1. Two vectors X,Y ∈ Hn are called H-dependent if

(1.2) Y ∈ spanR{X, I0X, J0X,K0X}.
Note that if Y ⊥ spanR{X, I0X, J0X,K0X} then

(1.3a) π(X ∧ Y ) = 0

and

(1.3b) ‖π(X ∧ Y )‖2 =
1

2n
‖X‖2‖Y ‖2

if X, Y are H-dependent and X ⊥ Y .
The bundle G determines a reduction of the SO(4n)-principal fibre bun-

dle P to the Sp(n) Sp(1)-principal fibre bundle Q(M) of orthonormal frames
u compatible with the almost quaternionic structure given by G, i.e. such
that uI0u−1 ∈ G, uJ0u

−1 ∈ G, uK0u
−1 ∈ G where we identify R4n with Hn

in the standard way. The bundle G has a natural scalar product defined by
〈I, J〉 = − 1

2 tr I ◦ J .
Let u ∈ Q. By αu we mean an isomorphism

(α) αu : so(4n)→
∧2
Tp(u)M
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defined by

αu(A) =
∑
i<j

Aijei ∧ ej

where u = (e1, . . . , e4n). The mapping αu is an isometry. For fixed u ∈ Q
we can define the projection πu :

∧2
Tp(u)M → G̃ = αu(sp(1)) by πu(γ) =

αu(π(α−1
u (γ)). Note that π = πu is just the orthogonal projection on G̃

and does not depend on u and that G̃ corresponds (under the isomorphism
given by the metric g) to the bundle G. If γ ∈

∧2
TxM then we write

γ− = γ− = π(γ). Note that if γ = αu(X) where X ∈ g = sp(n) ⊕ sp(1),
then γ− = αu(X−). Two vectors X,Y ∈ TxM are called H-dependent if
Y ∈ span{X, IX, JX,KX} where a quaternionic structure {I, J,K} is some
local basis of G. The relationships analogous to (1.3a) and (1.3b) hold for
any two vectors X,Y ∈ TM .

We let P− be the principal SO(3)-bundle of oriented orthogonal bases
{I, J,K} ⊂ Gx, x ∈M of G (I◦J = K = −J ◦I). We have a homomorphism
F : Q→ P− of principal fibre bundles defined by

(1.4) F (u) = (uI0u−1, uJ0u
−1, uK0u

−1),

which is equivariant with respect to the homomorphism

(∗) Φ : Sp(n) Sp(1)→ SO(3)

defined by Φ(A, q) = φq ∈ SO(3) ⊂ Gl(Im H) where φq(I) = Rq−1 ◦ I ◦ Rq
and Rq is right multiplication by q (Rq(x) = xq for x ∈ V ) for I ∈ Im H =
R{I0, J0,K0}. We denote by φ the related homomorphism of Lie algebras

φ : g = sp(n)⊕ sp(1)→ so(3).

Note that φ = φ++φ− where φ+ = φ|sp(n) = 0 and φ− = φ|sp(1) : g→ so(3).
Consider the mappings of fibre bundles

(1.5) Φi : P−(M)→ Z(M)

given by Φi(J1, J2, J3) = Ji. Note that Z(M) = P−(M)/SO(2)i = P−(M)
×SO(3) (SO(3)/ SO(2)) where SO(2)i = {φq ∈ SO(Im H) : φqJi = Ji} for
i ∈ {1, 2, 3} where J1 = I0, J2 = J0, J3 = K0, and that P−(M) is a
principal S1-bundle over Z(M).

Let (P, g), (M, g) be Riemannian spaces. A Riemannian submersion p :
P →M (see [O’N]) is a submersion which preserves the lengths of horizontal
vectors. We shall denote by V the distribution of vertical vectors (X ∈ V if
X is tangent to the fibre p−1(x) for some x ∈ M) and by H the horizontal
distribution which is an orthogonal complement of V . Let H and V denote
the projections of the tangent space TM of M onto the subspaces H, V ,
respectively. We denote by T and A the O’Neill tensors defined as follows
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(see [O’N]):

TXY = H(∇VXVY ) + V(∇VXHY ),
AXY = V(∇HXHY ) +H(∇HXVY ).

Finally, recall that a Riemannian manifold (M, g) is called an A-manifold
(see [G]) if its Ricci tensor % satisfies the condition ∇X%(X,X) = 0 for all
X ∈ TM . An A-manifold M is called proper if ∇% 6= 0 and M is locally irre-
ducible. An almost Hermitian manifold (M, g, J) is called an almost Kähler
manifold if its Kähler form Ω (Ω(X,Y ) = g(X,JY )) is closed (dΩ = 0).
An almost Kähler manifold is called an almost Hodge manifold if its Kähler
form defines a cohomology class which is a (real) multiple of an integral
class ([J-2]).

2. Killing tensors with two constant eigenvalues. By a Killing
tensor on a Riemannian space (M, g) with Levi-Civita connection ∇ we
mean a (1, 1) tensor S defined on M which satisfies the following conditions:

(a) g(SX, Y ) = g(X,SY ) for every X,Y ∈ X(M),
(b) g(∇S(X,X), X) = 0 for every X ∈ X(M).

Definition 2. A distribution D⊂TM is called geodesic if ∇XX∈Γ (D)
for every section X ∈ Γ (D).

Proposition 1. Let (M, g) be a Riemannian manifold and let TM =
D1 ⊕D2 where D1, D2 are orthogonal geodesic distributions on M . Define
the tensor S on M by

(2.1) SX =
{
λX if X ∈ D1,
µX if X ∈ D2,

where λ, µ are some real numbers. Then S is a Killing tensor. If λ 6= µ
and at least one of the distributions Di is not integrable then ∇S 6= 0.

P r o o f. It suffices to show (see [J-1]) that ∇S(X,X) = 0 if X ∈ Γ (Di)
where i ∈ {1, 2}. Assume for example that X ∈ Γ (D1). Then from (2.1) we
obtain

∇S(X,X) = −(S − λ Id)(∇XX) = 0

since D1 is geodesic. It is known that ∇S = 0 if and only if both distribu-
tions are integrable, which finishes the proof.

Corollary 1. Assume that p : P → M is a Riemannian submersion
with totally geodesic fibres. Denote by V, H the distributions of vertical and
horizontal vectors respectively. Then the tensor S defined by

SX =
{
λX if X ∈ V ,
µX if X ∈ H,
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is a Killing tensor. If λ 6= µ and the bundle p : P → M is not trivial (i.e.
the O’Neill tensor A 6= 0) then ∇S 6= 0.

P r o o f. Note that if p : P → M is a Riemannian submersion then the
distribution H is geodesic. Since the fibres p−1(x) are totally geodesic the
distribution V is also totally geodesic.

3. The structure of A-manifold on a principal SO(3)-bundle over
a quaternionic-Kähler manifold. Let P = P (M,G) be a principal fi-
bre bundle over a Riemannian manifold (M, g) with a compact, connected,
semisimple Lie structure group G. Let g be the Lie algebra of G. Suppose
that ω ∈ A1(P )⊗ g is a connection form on P . Define a metric gc on P by

(c) gc = −c2B(ω(X), ω(Y )) + p∗g(X,Y )

where B(X,Y ) = tr(adX ◦ adY ) is the Killing form of g. In [J-1] we have
proved the following theorem:

Proposition 2. The group G is a group of isometries of (P, gc). The or-
bits of the action of G on P are totally geodesic submanifolds of P isometric
to the group G with biinvariant metric given by −c2B.

Recall that a Riemannian manifold (M, g) with curvature tensor R is said
to have a harmonic curvature if δR = 0 (or equivalently if the Ricci endomor-
phism S ∈ End(TM) is a Codazzi tensor, which means that ∇S(X,Y ) =
∇S(Y,X) for all X,Y ∈ X(M)). Let now Q be the principal Sp(n) Sp(1)-
fibre bundle of orthonormal frames over (M, g). Assume that ω ∈ A1(Q)⊗
(sp(n)⊕ sp(1)) is a connection form associated with the Levi-Civita connec-
tion ∇ of the metric g. Define a metric gc on Q by formula (c). We denote
by H = {X ∈ TQ : ω(X) = 0} the horizontal and by V the vertical dis-
tribution of P . Note that every quaternionic-Kähler manifold is Einstein,
hence it has harmonic curvature tensor. Thus we have (see [J-1]):

Proposition 3. The Ricci endomorphism of (Q, gc) leaves invariant the
horizontal and vertical distributions of Q.

The homomorphism F : Q → P− given by (1.4) and the Levi-Civita
connection form ω on Q induce a connection form ω− ∈ A1(P−)⊗ so(3) on
the bundle P− such that φ−ω = F ∗ω−. Define the metric

(c∗) gc∗(X,Y ) = −1
2
c2 tr(ω−(X) ◦ ω−(Y )) + p∗g(X,Y )

on P−. Then (since (M, g) has harmonic curvature tensor and F ∗Ω−=φ−Ω
where Ω = Dω, Ω− = Dω− are the curvature forms of the connections Γ ,
Γ− on Q,P− respectively) we have exactly as in [J-1]:

Proposition 4. The Ricci endomorphism of (P−, gc∗) leaves invariant
the horizontal and vertical distributions of (P−, gc∗).
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Now we are in a position to prove:

Proposition 5. Let a Riemannian manifold (M, g), dimM = 4n, be a
quaternionic-Kähler space with non-zero scalar curvature τ∗. Then the prin-
cipal fibre bundle p : P− → M of oriented normed orthogonal bases of the
vector bundle G admits a one-parameter family P−c of proper A-structures
on P− such that p : P−c → M is a Riemannian submersion with fibres
homothetic to RP3 = SO(3) with the standard metric of constant curvature.

P r o o f. Let F : Q → P− be the homomorphism of principal fibre bun-
dles defined by (1.4). Define a metric gc∗ on P− by (c∗). Below we write gc
instead of gc∗. The natural projection p : P− → M is a Riemannian sub-
mersion of P−c = (P−, gc) onto (M, g). From Proposition 2 it follows that
O’Neill’s tensor T = 0 (the fibres of p are totally geodesic and homothetic to
SO(3)=RP 3 with constant sectional curvature K=1/(2nc2)). To compute
the tensor A recall that if X,Y ∈ TF (u)P

− are horizontal vector fields then

(3.1) ω−([X,Y ])Fu = −Ω−(X,Y )F (u) = −φ−Ω(X,Y )u = −(Ω(X,Y )u)−

where X, Y are horizontal vector fields on Q such that dF (X) = X ◦ F .
Hence AXY is a vertical vector field such that ω−(AXY ) = − 1

2Ω
−(X,Y ).

If V is a vertical vector field and dF (V ) = V ◦ F then

gc(AXV, Y )F (u) = −gc(V,AXY )F (u) = −1
2
c2 tr(ω−(V )F (u) ◦ ω−(AXY )F (u))

=
1
4
c2 tr(ω−(V )F (u) ◦Ω−(X,Y )F (u))

=
1
4
c2 tr(φ−ω(V )u ◦ φ−Ω(X,Y )u).

We can assume that X,Y are horizontal lifts of vector fields X∗, Y∗ ∈ X(M).
Consequently, we obtain

gc(AXV, Y )F (u) =
1
2
c2R(X∗ ∧ Y∗, αu(ω−(V )))

=
1
2
c2g(X∗ ∧ Y∗, R|G(αuω−(V )))

and thus, in view of (R),

(3.2) gc(AXV, Y )F (u) =
1
2
c2αg(X∗ ∧ Y∗, αu(ω−(V ))).

Let {V1, V2, V3} be an orthonormal basis of sp(1) and let {v1, v2, v3} be
the Killing vector fields corresponding (under the homomorphism F ) to Vi.
Then gc(vi, vi) = c2 and g(αu(Vi), αu(Vi)) = 1. Hence

(3.3) c2‖AXY ‖2 =
3∑
i=1

gc(AXY, vi)2 =
1
4
c4

3∑
i=1

g(X∗ ∧ Y∗, R|G(αu(Vi)))2.
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From (3.3) it follows that if ‖X‖ = ‖Y ‖ = 1, X, Y are H-dependent and
X ⊥ Y then (see (1.3a) and (1.3b))

‖AXY ‖2 =
1
4
c2α2‖(X∗ ∧ Y∗)−‖2 =

1
8n
c2α2

and ‖AXY ‖=0 if X ⊥ GY = R{IY, JY,KY }. Let {Y1∗, . . . , Y4n∗} be a local
orthonormal frame on M such that any four vectors Y4k+1, Y4k+2, Y4k+3,
Y4k+4 are H-dependent for k = 0, 1, . . . , n − 1. Let {Y1, . . . , Y4n} be its
horizontal lift. We can assume that X = Y1. Note that if X is horizontal
and ‖X‖ = 1 then for a vertical vector field V we have

‖AXV ‖2 =
4∑
i=1

gc(AXV, Yi)2(3.4)

=
1
4
c4

4∑
i=1

g((X∗ ∧ Yi∗)−, R|G(αu(ω−(V ))))2

=
1

8n
c4‖R|G(αu(ω−(V ))‖2

=
1

8n
c4α2‖αu(ω−(V ))‖2 =

1
8n
c2α2‖V ‖2

in view of the relation c2‖αu(ω(V ))‖2 = gc(V, V ). Hence we have (we assume
that ‖X‖ = ‖Y ‖ = 1, X⊥Y and PXY denotes the plane spanned by {X,Y })

K(Pvivj
) =

1
2nc2

if i 6= j, K(PXvi
) =

1
8n
c2α2,

K(PXY ) = K(PX∗Y∗)− 3
8n
c2α2 if X,Y are H-dependent,

K(PXY ) = K(PX∗Y∗) if X ⊥ span{IY, JY,KY } = GY.

Consequently, if V is a vertical vector field such that ‖V ‖ = 1 then

(3.5) %(V, V ) =
1
nc2

+
1
2
c2α2

and if X is horizontal and ‖X‖ = 1 then

(3.6) %(X,X) =
1

4n
τ∗ − 3

3
8n
c2α2 +

3
8n
c2α2 =

(n+ 2)α
n

− 3
4n
c2α2.

From Proposition 4 we get
%(ξ,X) = 0

for any vertical vector field ξ and any horizontal vector field X, i.e. the
Ricci endomorphism S of (P−c , gc) preserves the horizontal and vertical dis-
tributions. From (3.5) and (3.6) we deduce that S has exactly two constant
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eigenvalues

λ =
1
nc2

+
1
2
c2α2 and µ =

(n+ 2)α
n

− 3
4n
c2α2.

Note that λ=µ if and only if c2 = 2/α or c2 = 2/((2n + 3)α) and for those
values of c the manifold P−c is an Einstein space. Denote by H the horizontal
distribution of the submersion pc : P−c → M . Since for λ 6= µ the distribu-
tion D0 = span{v1, v2, v3} is an eigendistribution of the Ricci tensor which
is totally geodesic and the leaves of the foliation D0 are locally irreducible it
follows that if P−c were locally reducible we would have D⊥0 = H = D1⊕D2

where D0⊕D1 and D2 would be parallel distributions. For a Killing vector
field ξ = v1 ∈ D0 define T = ∇ξ. Then T is skew-symmetric, TD0 ⊂ D0

and TD2 ⊂ D1, TD1 ⊂ D1. Thus we would have TX = 0 for every X ∈ D2,
contrary to (3.4). It follows that P−c is locally irreducible. For c2 6= 2/α and
c2 6= 2/((2n + 3)α) from Proposition 1 it follows that (P−, gc) is a proper
A-manifold.

Hence we get

Corollary 2. Let (M, g) be a quaternionic-Kähler manifold with non-
zero scalar curvature τ∗. For c2 = 2/α or c2 = 2/((2n + 3)α) where α =
τ∗/(4(n+2)) the manifold P−c is an Einstein space. For other c2 the manifold
(P−c , gc) is a proper A-manifold whose Ricci tensor has exactly two constant
eigenvalues

λ =
1
nc2

+
1
2
c2α2 and µ =

(n+ 2)α
n

− 3
4n
c2α2.

If c2 < 4(n+ 2)/(3α) then (P−c , gc) has positive Ricci curvature.

4. Almost Kähler A-structure on the twistor bundle Z(M). Let
(P, g) be a Riemannian manifold and ξ be a unit Killing vector field on P .
Define a tensor field φ by φ(X) = ∇Xξ and a 1-form η by η(X) := g(ξ,X).
Then we call (P, g, ξ, φ, η) a K-contact structure if the following relation is
satisfied:

(K) φ2 = − id +η ⊗ ξ.
Assume that (P, g) is a circle bundle over a manifold M and that the

fundamental vector field of the action of the group S1 is a constant multiple
of a unit Killing vector ξ on P . If ξ gives a K-contact structure (ξ, φ, η) on
P then there is a unique metric g∗ and a unique almost complex structure
J∗ on M such that (M, g∗, J∗) is an almost Kähler manifold and

dη(X,Y ) = g(X,φY ) = p∗Ω(X,Y )

where Ω is the Kähler form of (M, g∗, J∗) (i.e. Ω(X,Y ) = g(X, J∗Y )). As-
sume that c2 = 1/(2n) (see (c∗)) and let g = g1/(2n) be the fixed metric
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on P−. Hence

g(X,Y ) = − 1
4n

tr(ω−(X) ◦ ω−(Y )) + p∗g0(X,Y )

where g0 is the metric on the quaternionic-Kähler manifold M . Then the
vector fields (V1, V2, V3) corresponding via F to v1 = I0, v2 = J0, v3 = K0 ∈
sp(1) ⊂ so(4n) are unit Killing vector fields (in view of Proposition 2). We
start with:

Proposition 6. Assume that (M, g0) is a quaternionic-Kähler mani-
fold with scalar curvature τ0 such that |τ0| = 16n(n + 2). Then the fields
V1, V2, V3 define on (P−, g) three K-contact structures. The tensors φi in-
duce on (Z(M), g∗) the almost Kähler structure J∗ which does not depend
on i.

P r o o f. It is clear that Vi is a unit Killing field. Define the 1-form ηi
by ηi(X) = g(Vi, X). We only have to show that φi = ∇Vi defines on
Hi = ker ηi an almost complex structure. Note that φi(X) = AXVi if X is
horizontal and that φi preserves the horizontal and vertical bundles. From
(3.2) it follows that the restriction of φi to the horizontal distribution is an
almost complex structure. In fact we have α = 4nε and

(4.1) g(AXVi, Y ) = 1
2c

2αg(X∗ ∧ Y∗, αu(vi)) = εg(X∗, Jαu(vi)Y∗)

where X, Y are horizontal with respect to the submersion p : P−→M , ε=
sgn τ0 and p(X) = X∗, p(Y ) = Y∗. On the other hand the restriction to the
vertical distribution also gives an almost complex structure (on the fibres,
Φi (see (1.5)) is just the Hopf fibration RP 3 → CP 1). The last statement of
the proposition follows from the fact that J∗ is one of the two natural almost
complex structures J+, J− on Z(M) whose definitions we recall below. The
theorem follows from the well known properties of K-contact structures (see
[J-2], [J-3]).

Below the following definition will be useful:

Definition 3. Assume that a Lie group G (G=SO(3) or G=SU(2)) acts
by isometries on a Riemannian manifold (M, g) in such a way that the orbits
orbG(x) of the action are totally geodesic submanifolds isometric to G with
its canonical metric of constant sectional curvature K=1. Let {ξ1, ξ2, ξ3} be
Killing vector fields corresponding to the generators of the Lie algebra so(3)
and denote by H the orthogonal complement of span{ξ1, ξ2, ξ3}. Assume
also that every vector field ξi gives a K-contact structure. Hence

(K1) [ξi, ξj ] = 2εijkξk and ∇ξi
ξj = εijkξk.

Let the fields ξ1, ξ2, ξ3 satisfy the condition (for pairwise different i, j, k)

(K2) Ji ◦ Jj = εεijkJk,
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i.e. (εJ1, εJ2, εJ3) is an almost quaternionic-structure on H, where φi = ∇ξi
and Ji = −φi|H . Then we call (M, ξi, φi, ηi) a 3-K-contact structure if ε = 1
and a quasi 3-K-contact structure if ε = −1.

Remark. Note that if ε= 1 then the above definition is equivalent to
the usual definition of a 3-K-contact structure (see [K], [Ku] and [J-3]). The
notion of nS-structure introduced by S. Tanno is stronger than the notion
of quasi 3-K-contact structure and the relation between these two notions is
similar to that between the 3-K-contact structure and 3-Sasakian structure
in the positive case. An nS-structure is a quasi 3-K-contact structure satis-
fying an additional condition similar to the condition of being Sasakian in
the positive case.

Proposition 7. Let an oriented Riemannian 4n-manifold (M, g) be
a quaternionic-Kähler manifold with scalar curvature τ0 such that |τ0| =
16n(n+ 2). Then the fibre bundle p : P− →M furnished with the metric g
admits a 3-K-contact structure if τ0 > 0 and a quasi 3-K-contact structure
if τ0 < 0.

P r o o f. We prove that the triple (V1, V2, V3) gives the required structure
on P−(M). Define Ψi = Φi ◦ F : Q(M)→ Z(M) (see (1.5)). Then Ψi(u) =
αu(vi). Note that p : (P−(M), g) → (M, g0) is a Riemannian submersion.
Let u ∈ Q and v = F (u) ∈ P−(M). Define Hv = {X ∈ TP− : η1(X) =
η2(X) = η3(X) = 0}. Then p : Hv→Tp(v)M is an isometry and Ji = −φi|Hv

is given by Ji = εJΨi(u), where we identify Hv with Tp(v)M via p and where
ε is the sign of τ0. Note that Ji ◦ Jj = εεijkJk (since vivj = εijkvk). Thus
the assumptions of Definition 3 are satisfied, which completes the proof.

Remark. The case τ0 > 0 of Proposition 7 is well known. Note that if
τ0 > 0 then our 3-K-contact structure is 3-Sasakian. The case τ0 < 0 was
proved earlier in a different way by S. Tanno (see [T], Th. B). In fact Tanno
proved more: he showed that our quasi 3-K-contact structure is in fact an
nS-structure. He also described the Ricci tensor of (P−, g).

Let (M, g0) be a quaternionic-Kähler manifold. We have two natural
almost complex structures J−, J+ on the twistor bundle π : Z(M) → M .
Both structures preserve the vertical and horizontal distributions of Z(M).
They are given as follows (see [E-S]):

(4.2) g∗(X, J+Y ) = g0(π(X), Jωπ(Y )) = g∗(X, J−Y )

if X, Y are horizontal with respect to π : Z(M) → M , hence on Hω ≈
Tπ(ω)M the almost complex structures J+ = J− are just Jω. Write ξ = V1,
Φ = Φ1. If X is a vertical vector then we define

(4.3) J+X = −dΦ(∇X∗ξ), J−X = dΦ(∇X∗ξ)
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where X∗ is the horizontal lift of X ∈ V Z(M) with respect to the Rieman-
nian submersion Φ : P− → Z. It is well known (see [B]) that the structure
J+ is integrable, while J− is not. In what follows we also write J1 = J+ and
J−1 = J−.

In my paper [J-2] I have proved that a regular K-contact manifold P (i.e.
P is a principal S1-bundle over M and p : (P, g)→ (M, g∗) is a Riemannian
submersion) is an A-manifold if and only if (M, g∗) with the induced almost
Kähler structure J∗ is an almost Kähler A-manifold whose Ricci tensor %∗
is Hermitian, i.e. %∗(J∗X, J∗Y ) = %∗(X,Y ) for all X,Y ∈ X(M).

Proposition 8. Let (M, g0) be a quaternionic-Kähler manifold with
scalar curvature τ0 = 16n(n + 2)ε where ε ∈ {−1, 1}. Then the manifold
(Z(M), g∗, Jε) is an almost Kähler A-manifold. If τ0>0 then (Z(M), g∗, J+)
is Kähler–Einstein and the 3-K-contact structure on (P−(M), g) is a 3-
Sasakian structure. If τ0 < 0 then (Z(M), g∗, J−) is a strictly almost Hodge
A-manifold whose Ricci tensor has two constant eigenvalues λ∗ = 4n + 4
and µ∗ = −4n − 12 of multiplicity 2 and 4n respectively. The Ricci tensor
%∗ of (Z(M), g∗) is Hermitian with respect to both structures J+, J−, i.e.
%∗(J+X, J+Y ) = %∗(J−X,J−Y ) = %∗(X,Y ). If M is compact then Z(M)
is a compact space.

P r o o f. Note that (P−, g) is an A-manifold (see [J-1]). Let Φ = Φ1 and
ξ = V1. Then the Killing field ξ defines on (P−, g) a K-contact structure
and Φ : P− → Z(M) is an S1-principal fibre bundle. Thus from Theorem 1
of [J-2] it follows that (Z(M), g∗, J∗) is an almost Kähler A-manifold with
Hermitian Ricci tensor. From (4.1)–(4.3) it follows that the almost Kähler
structure J∗ induced on Z(M) by φ = ∇ξ coincides with −J+ if τ0 > 0 and
with J− if τ0 < 0. Hence if τ0 > 0 then J∗ is integrable. Consequently,
(Z(M), g∗, J+) is a Kähler manifold. Thus every Killing vector field Vi gives
a Sasakian structure on (P−(M), g) and the triple (V1, V2, V3) defines a 3-
Sasakian structure on (P−(M), g) (see [K]). It is also an Einstein space since
from Corollary 2 it follows that for c2 = 1/(2n) and α = 4n the manifold
(P−, g) is Einstein. Thus (Z(M), g∗) is also Einstein in this case (see also
[B] and [S]).

If τ0 < 0 then the Ricci tensor S of (P−, gc) has two constant eigenvalues
whose eigendistributions are just the vertical and horizontal distributions. If
c2 = 1/(2n) and α = −4n then the eigenvalues are λ = 4n+2 and µ = −4n−
14. Hence it follows from [J-2] that the Ricci tensor S∗ of (Z(M), g∗) has
exactly two eigenvalues λ∗ = λ+2 = 4n+4 and µ∗ = µ+2 = −4n−12 whose
eigendistributions are the vertical and horizontal distributions respectively.
Since J+, J− also preserve the vertical and horizontal distributions it follows
that S∗ ◦ Jε = Jε ◦ S∗, which means that the Ricci tensor of (Z(M), g∗) is
Hermitian with respect to both structures. If τ0 < 0 then J∗ = J− is not
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integrable and from the construction it is clear that (Z(M), g, J∗) is a strictly
almost HodgeA-manifold. The scalar curvature τ∗ of (Z(M), g∗) is negative,
τ∗ = −8n(2n+ 5) + 8.

Remark. Note that all the above results are proved by different methods
in [A-G-I] (with the exception of the fact that Z(M) is an almost Hodge
A-manifold). Let us recall the Goldberg conjecture: A compact Einstein
almost Kähler manifold is Kähler, formulated by S. I. Goldberg [Go] almost
thirty years ago. This conjecture was proved by K. Sekigawa [Se] under the
assumption that the scalar curvature is non-negative. The case of negative
scalar curvature is still open. In relation to this conjecture, examples of
strictly almost Kähler Riemannian manifolds which are close to Einstein are
of great interest (see [D-M]). Compact examples are of particular interest.
Note that there are examples of compact quaternionic-Kähler manifolds in
any dimension 4n (for example compact quotients of symmetric spaces dual
to the symmetric spaces discussed by Wolf [W]). In that way we obtain
examples of compact almost Hodge A-manifolds with Hermitian Ricci tensor
in every dimension 4n+ 2 (see also [J-2]). These examples indicate that the
Goldberg conjecture may be false in general.
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