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How to get rid of one of the weights

in a two-weight Poincaré inequality?

by Bruno Franchi (Bologna) and Piotr Haj lasz (Warszawa)

To the memory of Bogdan Ziemian

Abstract. We prove that if a Poincaré inequality with two different weights holds on
every ball, then a Poincaré inequality with the same weight on both sides holds as well.

Introduction. By a two-weight Poincaré inequality we mean an inequal-
ity of the form

(1)
( <

B

|u − uB,ν |
p dν

)1/p

≤ Cr
( <

B

|∇u|p dµ
)1/p

,

which is supposed to hold for every ball B ⊂ R
n of radius r and every

u ∈ C∞(B). Here, 1 ≤ p < ∞, µ and ν are two positive Radon measures,
and the following notation is used for the average:

uB,ν =
<
B

u dν = ν(B)−1
\
B

u dν.

The aim of this paper is to prove that, if the above Poincaré inequality holds
on every ball and for every smooth function u, then we can replace ν by µ on
the left hand side. For a precise statement, see Corollary 1 below. In fact, our
present result can be viewed in the more general context of self-improving
properties of two-weight Poincaré inequalities that will be studied in [15];
nevertheless, we present here this direct proof because of its simplicity.
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Our main result, Theorem 1, is stated in the very general setting of
Poincaré inequalities on metric spaces endowed with doubling measures. The
theory of Sobolev spaces on metric spaces was basically originated in [20].
Dealing with such a general situation is justified by numerous applications
to Sobolev inequalities on Riemannian manifolds, analysis on graphs, and
Sobolev spaces associated with vector fields: see e.g. [10] and [22], where the
reader will find an exhaustive bibliography on the subject.

Let (X, d) be a metric space. We say that a Borel measure µ on (X, d)
is doubling if there is a constant Cµ > 0 such that for every ball B ⊂ X,
µ(2B)≤Cµµ(B). In addition we require that µ(B) > 0 on every ball B⊂X
and that µ is finite on all bounded sets.

Here and in the sequel we denote by λB, λ > 0, the ball concentric with
B and with radius λ times that of B. By Lp

loc(µ) we denote the class of
functions which are Lp integrable with respect to µ on every ball. By C we
denote a general positive constant; its value may change even in a single
string of estimates.

We would like to thank Dick Wheeden for many stimulating and fruitful
discussions, and for having generously shared his ideas with us. We also
thank Jan Malý for a fruitful discussion. The idea we earned from him
helped us simplify our original proof.

Main result. The main result of the paper reads as follows.

Theorem 1. Let (X, d) be a metric space endowed with two doubling

measures µ and ν, where µ is absolutely continuous with respect to ν. Let

u ∈ Lp
loc(ν) and 0 ≤ g ∈ Lp

loc(µ), p ≥ 1. Assume that on every ball B ⊂ X
the following version of the “two-weight Poincaré inequality” holds:

(2)
( <

B

|u − uB,ν |
p dν

)1/p

≤ Cr
( <

σB

gp dµ
)1/p

,

where r is the radius of the ball B and C > 0, σ ≥ 1 are fixed constants

independent of B. Then there is another constant C ′ > 0 such that on every

ball B ⊂ X we have the following “one-weight” inequality :

(3)
( <

B

|u − uB,µ|
p dµ

)1/p

≤ C ′r
( <

5σB

gp dµ
)1/p

.

Remarks. 1) If we replace the local integrability of u by a stronger
condition that u is continuous and bounded on every ball, then we do not
have to assume that µ is absolutely continuous with respect to ν.

2) Actually the same proof yields slightly more. Indeed, instead of (2) it
suffices to assume a weaker inequality
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B

|u − uB,ν | dν ≤ Cr
( <

σB

gp dµ
)1/p

,

and the conclusion remains the same.

3) The functions u and g are counterparts of a Sobolev function and the
absolute value of its gradient. One can prove that Poincaré type inequalities
like those in Theorem 1 imply that the function u inherits most of the
properties of classical Sobolev functions, as we can see in the references
cited above in connection with the Sobolev spaces on metric spaces.

Proof of Theorem 1. Let x ∈ B be a Lebesgue point of u with respect
to the measure ν. Put Bi(x) = B(x, 2i). Let i0 be the least integer such
that 2i0 ≥ diam B. Then B ⊂ Bi0(x). Since, by the Lebesgue differentiation
theorem [22, Theorem 14.15], uBi,ν → u(x) as i → −∞ for ν-a.e. x ∈ X, we
conclude that

|u(x) − uB,ν | ≤ |uB,ν − uBi0
,ν | +

i0
∑

i=−∞

|uBi,ν − uBi−1,ν |

≤
ν(Bi0)

ν(B)

<
Bi0

|u − uBi0
,ν| dν +

i0
∑

i=−∞

ν(Bi)

ν(Bi−1)

<
Bi

|u − uBi,ν| dν

≤ C

i0
∑

i=−∞

<
Bi

|u − uBi,ν | dν

≤ C

i0
∑

i=−∞

2i
( <

σBi

gp dµ
)1/p

≤ C
(

i0
∑

i=−∞

2i
)1−1/p(

i0
∑

i=−∞

2i
<

σBi

gp dµ
)1/p

≤ Cr1−1/p
(

i0
∑

i=−∞

2i
<

σBi

gp dµ
)1/p

.

Hence <
B

|u − uB,ν |
p dµ ≤ Crp−1

i0
∑

i=−∞

2i
<
B

<
σBi

gp dµ dµ = ♦.

Applying the doubling property of the measure µ and Fubini’s theorem
yields <

B

<
σBi

gp dµ dµ =
<
B

\
X

χB(x,2iσ)(z)

µ(B(x, 2iσ))
gp(z) dµ(z) dµ(x)
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≤ C
\
X

<
B

χB(z,2iσ)(x)

µ(B(z, 2iσ))
dµ(x) gp(z) dµ(z)

≤ C
\
X

χ5σB(z)

µ(B)
gp(z) dµ(z) ≤ C

<
5σB

gp dµ.

Hence we can continue:

♦ ≤ Crp−1
(

i0
∑

i=−∞

2i
) <

5σB

gp dµ ≤ Crp
<

5σB

gp dµ.

Now the elementary inequality
( <

B

|u − uB,µ|
p dµ

)1/p

≤ 2
( <

B

|u − uB,ν|
p dµ

)1/p

completes the proof of the theorem.

Remark. The absolute continuity of µ with respect to ν was employed
to deduce that µ-almost all points x ∈ B are Lebesgue points for u with
respect to the measure ν. If we assume that u is continuous, then all points
are Lebesgue points and hence we do not need to require that µ is absolutely
continuous with respect to ν.

The above result directly applies to two-weight Poincaré inequalities
in R

n.

Corollary 1. Let µ and ν be two positive Radon measures in R
n satis-

fying the doubling condition. Let 1 ≤ p < ∞ and C > 0 be fixed constants.

Assume that
( <

B

|u − uB,ν |
p dν

)1/p

≤ Cr
( <

B

|∇u|p dµ
)1/p

,

whenever B is a ball and u ∈ C∞(B) (here r is the radius of B). Then there

is another constant C ′ > 0 such that
( <

B

|u − uB,µ|
p dµ

)1/p

≤ C ′r
( <

B

|∇u|p dµ
)1/p

,

for all balls B and all u ∈ C∞(B).

P r o o f. Theorem 1 together with the remark gives the result with the
ball 5B on the right hand side. Now the fact that we can replace 5B by B
is standard; see for example [21] for a short proof. The proof is complete.

Remarks. 1) Corollary 1 can be easily generalized to the setting of
Poincaré inequalities associated with vector fields, as those in [23], [6], [8]–
[11], [13], [19], [22] and the recent [25].
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2) The method that allows one to reduce the size of the ball on the right
hand side is well known. It seems there are at least three basic techniques
to do that: the one developed by Boman, [4], [3], [5], [7], [9], [19], [26], [27];
the one developed by Kohn, [24], [23]; and the one recently discovered in
[21] and [22].

3) So far, we have proved a result for Poincaré inequalities such as (3). We
call them (p, p)-inequalities, because of the presence of the same exponent
p on both sides. One could ask whether it is possible to get a similar result
for (p, q)-Sobolev–Poincaré inequalities, with a larger exponent q on the
left-hand side. In fact, such a generalization can be easily obtained. Indeed,
it has recently been discovered that the (p, p)-Poincaré inequality like (3)
enjoys the so-called self-improving property, i.e. it implies the (p, q)-Sobolev–
Poincaré inequality with the optimal exponent on the left hand side: see [29],
[1], [2], [13], [14], [19], [21], [22], [28], so that there is no loss of generality in
taking the same exponent p on both sides of (3).

Suppose µ is the Lebesgue measure in R
n, and let X = (X1, . . . ,Xm) be

a system of Lipschitz continuous vector fields in R
n. If λ belongs to the class

A∞ of Fefferman–Stein and Muckenhoupt for the Carnot–Carathéodory
metric, then dµ = dx is absolutely continuous with respect to dν = λ(x)dx,
and both measures are doubling (cf. [18, IV.2]). We denote by uB,λ and uB

the average values of u over B with respect to the measures λ(x)dx and dx
respectively.

Now, if u is a continuously differentiable function, we denote by |Xu|2 =
∑

j |Xju|
2 the gradient associated with X. With these notations, the fol-

lowing result is an easy consequence of Theorem 1.

Corollary 2. Suppose λ ∈ A∞ with respect to the Carnot–Carathéodory

metric associated with X. If there are constants C > 0 and σ ≥ 1 such

that for any Carnot–Carathéodory ball B = B(x, r) and any continuously

differentiable function u we have

(4)
( <

B

|u − uB,λ|
pλ(x) dx

)1/p

≤ Cr
( <

σB

|Xu|p dx
)1/p

,

then (with a new choice of the constant C)

(5)
( <

B

|u − uB |p dx
)1/p

≤ Cr
( <

B

|Xu|p dx
)1/p

.

Indeed, in this case we can get rid of the enlarging factor 5σ that appears
in (3) by a Boman chain type argument as in [9].

The interest of the above example originates from the following situation:
suppose there exists a compensation couple (λ, s) for X (λ ∈ L1

loc, s > 1) in
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the sense of [17], i.e. there exist constants c, C > 0 such that

c(µ(B)/r)s ≤
\
B

λ(y) dy ≤ C(µ(B)/r)s

for any Carnot–Carathéodory ball B = B(x, r). In fact, the theory in [17]
is developed for smooth vector fields; nevertheless, the definition of com-
pensation couple and the arguments we develop require only the Lipschitz
continuity of the vector fields. If λ belongs to the class A∞ (as it happens
e.g. for smooth vector fields satisfying Hörmander’s rank condition), then
Corollary 2 above holds.
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