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Abstract. Two new applications of Λ2-representations of PDEs are presented:

1. Geometric algorithms for numerical integration of PDEs by constructing planimetric
discrete nets on the Lobachevsky plane Λ2.

2. Employing Λ2-representations for the spectral-evolutionary problem for nonlinear
PDEs within the inverse scattering problem method.

The geometric interpretation of PDEs linking their investigation to anal-
ysis of certain objects on the hyperbolic plane (Lobachevsky plane Λ2) was
introduced in [3–5]. According to this interpretation to each differential
equation f [u(x, t)] = 0 from a certain class under investigation (Λ2-class
or Lobachevsky class) one can associate a pseudospherical metric (of Gaus-
sian curvature K ≡ −1) defined on any regular solution u(x, t):

{f [u(x, t)] = 0, u ∈ Cn(R2)} ↔ {ds2[u(x, t)], K ≡ −1}.

The set of coefficients {E[u(x, t)], F [u(x, t)], G[u(x, t)]} of the pseudospheri-
cal metric ds2[u(x, t)] is called the Λ2-representation for the given equation
and is denoted by

Λ2[f [u(x, t)] = 0] = {E[u(x, t)], F [u(x, t)], G[u(x, t)]}.

The existence of the Λ2-representation for PDEs leads to the possibility
of using the Lobachevsky geometry methods for their investigation. In this
paper two different applications of Λ2-representations for the study of PDEs
are presented:
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1. Geometrical algorithms for numerical integration of PDEs (alterna-
tive to typical difference methods) by construction of special nets on the
Lobachevsky plane Λ2.

2. Employing Λ2-representations for the spectral-evolutionary problem
corresponding to a given nonlinear PDE in the frame of the inverse scattering
problem (ISP) method.

1. Discrete rhombic Chebyshev nets and geometrical method
of numerical integration of the sine-Gordon equation. In this section
on the basis of Λ2-representation theory a geometrical method of numerical
integration of the sine-Gordon equation is presented.

In general the geometric approach to integration of Λ2-equations amounts
to the following scheme:

1. Construction of the metric ds2[u(x, t)], K ≡ −1, for a given PDE
(finding the Λ2-representation).

2. Selection of key-characteristics (k -characteristics) of the coordinate
net T (x, t) associated with the pseudospherical metric: k -characteristics de-
termine a solution of the PDE.

3. Introduction of a discrete net T d ⊂ Λ2 (a discrete analog of the net
T (x, t) ⊂ Λ2) inheriting the k -characteristics of the smooth net T (x, t).

4. Finding algorithmic (recurrent) intrinsic relations in the net T d and
consequently calculation of the discrete analog ud of the solution u(x, t) at
the nodes of the net T d.

5. Investigation of the convergence of the resulting discrete algorithms:
the proof of the convergence of the discrete solution {ud} to the solution
u of the original Λ2-equation as the typical linear size a of the cell of the
discrete net tends to zero:

ud → u, T d → T as a→ 0.

1.1. Darboux problem for the sine-Gordon equation. Consider the Dar-
boux problem for the sine-Gordon equation:

uxt = sinu,(1.1)

u(x, 0) = φ(x), u(0, t) = ψ(t).

Equation (1.1) is generated by the pseudospherical metric

(1.2) ds2 = dx2 + 2cos u dxdt + dt2,

i.e.
Λ2[uxt = sinu] ≡ {1, cos u, 1}.

The metric (1.2) defines [3, 6] the Chebyshev coordinate net Ch(x, t) on
the hyperbolic plane Λ2. The characteristic property of the Chebyshev net is
equality of lengths of opposite sides in an arbitrary coordinate quadrangle.
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This property will be chosen as a k -characteristic of Ch(x, t). The solution
u(x, t) of equation (1.1) is interpreted as the net angle of the Chebyshev net
Ch(x, t).

The Darboux problem (1.1) is originally considered on the usual para-
metric plane E2(x, t) (Euclidean plane) with the uniform coordinate net
T0(x, t). The functions φ(x) and ψ(t) should be considered as the ini-
tial data prescribed on the characteristics of equation (1.1). Geometrically
these functions are the initial values of the net angles of Ch(x, t) on its el-
ements (x : 0) and (0 : t). The functions satisfy the conjugation conditions
φ(k)(0) = ψ(k)(0), k ∈ N0, which guarantee the desired smoothness of the
solutions of (1.1).

By virtue of the geometrical interpretation of (1.1) in the theory of iso-
metric imbeddings of certain domains on the Lobachevsky plane Λ2 into Eu-
clidean space E3 [7, 8], problem (1.1) is transformed from E2(x, t) into Λ2:

{T0(x, t), E
2(x, t)} → {Ch(x, t), Λ2(x, t), ds2[u(x, t)]}.

In addition the uniform coordinate net T0(x, t) ⊂ E2 is mapped onto the
Chebyshev net Ch(x, t) ⊂ Λ2.

Consider now the discrete counterpart T d(a) ⊂ Λ2 of the net Ch(x, t)
consisting of rhombuses R(a) with side a (the sides of the rhombuses are seg-
ments of geodesics on Λ2). The net T d(a) can be geometrically reconstructed
by using the initial data as follows: at every step, a standard planimetric pro-
cedure (in the sense of Λ2) is applied to construct a point on Λ2 (the vertex
of a rhombus) that is equally distant from two vertices of the already existing
adjoining sides of R(a). (On the planimetric constructions on the hyperbolic
plane see, for example, [11].) Thus, the present analysis of the Darboux prob-
lem (1.1) on Λ2 is focused on the discrete net T d(a) defined by two families
of piecewise geodesic polygonal curves with elements lx(a) and lt(a).

The geometric algorithm for obtaining a solution of the Darboux prob-
lem (1.1) defines the net angle u(x, t) of Ch(x, t) as the limit of a discrete
function zm,n as a → 0. The function zm,n is determined at nodes of type
(m,n) of the discrete rhombic net T d, which is originally specified in terms
of the polygonal (piecewise geodesic) elements lx(a) and lt(a) (the angles of
a discrete net are denoted by z). Therefore, the construction of a solution of
Darboux problem (1.1) for the sine-Gordon equation is reduced to an analy-
sis of a purely planimetric problem on the hyperbolic plane Λ2. Accordingly,
problem (1.1) for the net angles of a regular Chebyshev net is reformulated
in terms of the discrete net T d by setting

T d(a) :

zm,0 = φ(ma),

z0,n = ψ(na), m, n = 0,±1,±2, . . . ,

z0,0 = φ(0) = ψ(0).



264 A. G. Popov and S. A. Zadadaev

1.2. Basic recursive net relation for the discrete rhombic Chebyshev net

on Λ2. Consider the problem of recursive calculation of the angles zk,l of
the net T d(a) basing on their initial values on the polygonal elements lx(a)
and lt(a). For this purpose choose a fragment of the discrete (piecewise
geodesic) net T d(a) consisting of four rhombuses of type Rk,l(a) (here, the
indices denoting a rhombus correspond to the minimal values of the indices
of its vertices). Thus, these rhombuses adjoin the (m + 1, n + 1)th node
Am+1,n+1 (see Figure 1).

Fig. 1

Since on Λ2 the total angle is 2π, we have

(1.3) zm+1,n+1 = 2π − (γ1 + γ2 + γ3),

where γ1 = 6 Am+1,n+2Am+1,n+1Am,n+1, γ2 = 6 Am,n+1Am+1,n+1Am+1,n

and γ3 = 6 Am+1,nAm+1,n+1Am+2,n+1.
We now calculate the angles γ1 and γ3 which correspond to the rhom-

buses Rm,n+1 and Rm+1,n respectively. To do this, the cosine and sine laws
must be formulated for an arbitrary geodesic triangle on the hyperbolic
plane Λ2 with sides a, b, c and angles α, β, γ:

cosh a = cosh b cosh c− sinh b sinh c cosα,(1.4)
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sinα

sinh a
=

sinβ

sinh b
=

sin γ

sinh c
.(1.5)

From (1.4) and (1.5), it follows that opposite interior angles in an ar-
bitrary rhombus Rk,l(a) are equal (for example, γ2 = zm,n) and the diag-
onals of a rhombus are the bisectors of its interior angles (in particular,
b ≡ Am+1,n+1Am+2,n is the bisector of γ3). Using (1.4) and then (1.5) for
the triangle △Am+1,nAm+1,n+1Am+2,n ⊂ Rm+1,n one obtains

cosh b = cosh2 a− sinh2 a cos zm+1,n,(1.6)

sin(6 Am+1,nAm+1,n+1Am+2,n)

sinh a
=

sin zm+1,n

sinh b
.(1.7)

From (1.6) and (1.7) it follows that

sin(6 Am+1,nAm+1,n+1Am+2,n) =
sin zm+1,n sinh a

[(cosh2 a− sinh2 a cos zm+1,n)2 − 1]1/2
.

Introducing the symbol Ωi,j determined by the relation

sinΩi,j(zi,j , a) =
sin zi,j sinh a

[(cosh2 a− sinh2 a cos zi,j)2 − 1]1/2
,

one obtains
γ3 = 2Ωm+1,n,

and in a similar manner,
γ1 = 2Ωm,n+1.

Returning to (1.3), one obtains a recursion formula for the calculation
of net angles in T d(a):

(1.8) zm+1,n+1 = 2π − (zm,n + 2Ωm+1,n + 2Ωm,n+1).

Formula (1.8) is the basic recursion relation for the net T d(a). In the
next subsection, (1.8) will be used for proving that the presented algorithm
for integration of the Darboux problem (1.1) is convergent.

1.3. Convergence of the algorithm. We prove that the algorithm for
constructing a solution of (1.1) in accordance with (1.3) is convergent, i.e.
zm,n(a) tends to the exact solution u of the sine-Gordon equation as a→ 0.
Note that the recursion formula (1.8), which gives the values of zm,n(a) at
the nodes of T d(a), being defined entirely on the two-dimensional mani-
fold Λ2 of Gaussian curvature K ≡ −1, can be interpreted as a difference
scheme. Therefore, according to the general theory of difference schemes [9],
the convergence of the algorithm can be proved by analyzing the order of
approximation and stability of (1.8).

1.3.1. The order of approximation of the algorithm. To calculate the
order of approximation of the difference scheme (1.8) defined on Λ2, the
discrete function zm,n(a) is replaced by the exact solution u(x, t) of the
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sine-Gordon equation calculated at the (m,n)th node, and the residue is
evaluated.

We substitute into the left-hand side of (1.8) the value of the solution
u(x, t) of (1.1) at the (m+1, n+1)th node represented as a Taylor expansion
in powers of a at the (m,n)th node up to order O(a5):

um+1,n+1 = u∗ + u∗xa+ u∗t a+ 1
2
u∗xxa

2 + 1
2
u∗tta

2 + u∗xta
2 + 1

6
u∗xxxa

3(1.9)

+ 1
6u

∗
ttta

3 + 1
2u

∗
xxta

3 + 1
2u

∗
xtta

3 + 1
24u

∗
xxxxa

4 + 1
24u

∗
tttta

4

+ 1
6u

∗
xxxta

4 + 1
4u

∗
xxtta

4 + 1
6u

∗
xttta

4 +O(a5)

(here the value of u at (m,n) is denoted by u∗ = um,n).
To analyze the right-hand side of (1.9) one needs some properties of the

functions Ωm+1,n and Ωm,n+1; denote them by Ω for the moment.
Since Ω(z, a) is an even function of a we have

∂2p+1Ω

∂a2p+1

∣∣∣∣
a=0

= 0, p = 1, 2, . . .

In addition,

∂Ω(z, 0)

∂z
= −

1

2
,

∂lΩ(z, 0)

∂zl
≡ 0, l = 2, 3, . . .

Taking these properties into account and substituting the exact solution
of the sine-Gordon equation into (1.8), one obtains the following represen-
tations:

Ω(um+1,n, a) = Ω(u∗, 0) +Ωz(u
∗, 0)h1 + 1

2Ωaa(u∗, 0)a2(1.10)

+ 1
2Ωzaa(u∗, 0)h1a

2 + 1
4Ωzzaa(u∗, 0)h2

1a
2

+ 1
24
Ωaaaa(u∗, 0)a4 +O(a5),

where

h1 = u∗xa+ 1
2
u∗xxa

2 + 1
6
u∗xxxa

3 + 1
24
u∗xxxxa

4 +O(a5),

and

Ω(um,n+1, a) = Ω(u∗, 0) +Ωz(u
∗, 0)h2 + 1

2Ωaa(u∗, 0)a2(1.11)

+ 1
2
Ωzaa(u∗, 0)h2a

2 + 1
4
Ωzzaa(u∗, 0)h2

2a
2

+ 1
24Ωaaaa(u∗, 0)a4 +O(a5),

where

h2 = u∗t a+ 1
2u

∗
tta

2 + 1
6u

∗
ttta

3 + 1
24u

∗
tttta

4 +O(a5).

Calculation of the derivatives of Ω contained in (1.10), (1.11) gives

(1.12)

Ωz |a=0 = − 1
2 , Ωa|a=0 = 0, Ωaa|a=0 = − 1

2 sin z,

Ωzaa|a=0 = 1
2 cos z, Ωzzaa|a=0 = 1

2 sin z,

Ωaaa|a=0 = 0, Ωaaaa|a=0 = − 1
2

sin z (1 − 6 sin2(z/2)).
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Substituting (1.10)–(1.12) into the left-hand and right-hand sides of (1.8)
and invoking the differential consequences of (1.1):

uxxt = ux cos u, uxxxt = uxx cos u− u2
x sinu,

uttx = ut cos u, utttx = utt cosu− u2
t sinu,

one obtains

u∗xt − sinu∗ =
[

1
4 cos u∗ (u∗xx + u∗tt) −

1
4 sinu∗ (u∗2x + u∗2t )(1.13)

+ 1
48 sin z (1 − 6 sin2(u∗/2))

− 1
6 (cos u∗ (u∗xx + u∗tt) − sinu∗ (u∗2x + u∗2t ))

− 1
4
(sinu∗ cos u∗ − u∗xu

∗
t sinu∗)

]
a2 +O(a3).

We point out that the O(a0) terms arising in the process of derivation
of (1.13) vanish:

2u∗ − 2π + 4Ω(u∗, 0) ≡ 0.

Thus, the order of approximation (accuracy) of the difference scheme
(1.8) is determined by the estimate

(1.14) u∗xt − sinu∗ = O(a2),

which implies the second order of approximation of the Darboux problem
(1.1) for the sine-Gordon equation by its difference counterpart (1.8).

1.3.2. Stability of the difference counterpart of the Darboux problem. To
prove the stability of the difference counterpart of the Darboux problem
(1.1),

(1.15)
zm+1,n+1 = 2π − (zm,n + 2Ωm+1,n + 2Ωm,n+1),

zm,0 = φ(ma), z0,n = ψ(na), φ(0) = ψ(0),

consider a perturbed problem that corresponds to (1.15):

(1.16)
zm+1,n+1 = 2π − (zm,n + 2Ωm+1,n + 2Ωm,n+1) + a2Ym,n(a),

zm,0 = φ(ma), z0,n = ψ(na), φ(0) = ψ(0),

where Ωi,j = Ωi,j(zi,j , a).

Problems (1.15), (1.16) are analyzed in the domain

D = lx[0, B1] × lt[0, B2] ⊂ Λ2,

defined by the polygonal lines lx[0, B1] and lt[0, B2] of length B1 and B2

respectively. (The length of each polygonal line is evaluated by summing the
lengths of its components which are segments of geodesics on the plane Λ2.)

To prove the stability of the difference problem one has to establish the
existence of constants M1, M2 satisfying the following condition: for a suffi-
ciently small typical linear size a of the discrete net T d(a) any perturbation
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Ym,n(a) with ‖Y (a)‖ ≤M1 satisfies the estimate

(1.17) ‖z − z‖ ≤M2‖Y (a)‖.

Here, the norm of a discrete function qm,n(a) is defined on T d(a) in a stan-
dard manner as the uniform Chebyshev norm:

‖q(a)‖ = max
Am,n∈T d(a)⊂D

|qm,n(a)|.

By introducing a function Q(zi,j , a):

Q(zi,j , a) = π − 2Ωi,j(zi,j , a) − zi,j ,

it is easily verified that the recursion formulas in (1.15) and (1.16) can be
rewritten as

zm+1,n+1 = Q(zm+1,n, a) +Q(zm,n+1, a)(1.18)

+ zm+1,n + zm,n+1 − zm,n,

zm+1,n+1 = Q(zm+1,n, a) +Q(zm,n+1, a)(1.19)

+ zm+1,n + zm,n+1 − zm,n + a2Ym,n(a).

Now, let δzm,n be the difference of solutions of the perturbed problem
(1.16) and the original problem (1.15):

δzm,n = zm,n − zm,n.

Then, subtracting equations (1.15) from the corresponding equations in
(1.16), one obtains

δzm+1,n+1 = Q(zm+1,n, a) −Q(zm+1,n, a)(1.20)

+Q(zm,n+1, a) −Q(zm,n+1, a)

+ δzm+1,n + δzm,n+1 − δzm,n + a2Ym,n(a),

δzm,0 = 0, δz0,n = 0.(1.21)

In (1.20) the differences of the type

∆Q = Q(zi,j, a) −Q(zi,j , a)

are expressed by applying the Lagrange theorem as follows:

(1.22) ∆Q =
∂Q

∂z
(z0, a)(z − z) = −

[
1 +

∂Ω

∂z
(z0, a)

]
(z − z), z0 ∈ [z, z].

By taking into account the form of Ω (see Subsection 1.2) we can rewrite
(1.22) as

∆Q = R(z0, a)(z − z),

where

(1.23) R(z0, a) = −
1 − cosh a+ sinh2 a sin2(z0/2)

1 + sinh2 a sin2(z0/2)
.
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Hence

(1.24) cosh a− (1 + sinh2 a) ≤ R(z0, a) ≤ cosh a− 1.

Using the asymptotic representations holding for sufficiently small a:

cosh a = 1 +
a2

2
+O(a4), sinh a = a+O(a3), sinh2 a = a2 +O(a4),

one obtains

(1.25) |R(z0, a)| ≤
a2

2
+
ν

2
a4, ν = const ≥ 0.

Relation (1.20) is now rewritten as

(1.26) [δzm+1,n+1 − δzm+1,n] − [δzm,n+1 − δzm,n]

= R(z0
m+1,n, a)δzm+1,n +R(z0

m,n+1, a)δzm,n+1 + a2Ym,n(a).

For the initial conditions we get

δz0,n+1 − δz0,n = 0.

Set n = n∗ ∈ {0, . . . , [B2/a]} ([·] stands for integral part) and sum
over the first index in (1.26). Here, m runs from 0 to m∗, where m∗ ∈
{0, . . . , [B1/a]}. Then

(1.27) δzm∗+1,n∗+1 − δzm∗+1,n∗

=
m∗∑

m=0

[R(z0
m+1,n∗ , a)δzm+1,n∗ +R(z0

m,n∗+1, a)δzm,n∗+1 + a2Ym,n∗(a)].

In view of (1.25),

(1.28) |δzm∗+1,n∗+1 − δzm∗+1,n∗ |

≤ (m∗ + 1)(a2 + νa4)‖δz‖m∗+n∗+1 + a2(m∗ + 1)‖Y (a)‖.

This estimate involves the auxiliary norm

‖q(a)‖N = max
Am,n∈T d(a)⊂D:m+n≤N

|qm,n(a)|.

Using the estimate | · | ≤ ‖ · ‖N we rearrange the left-hand side of (1.28) as

(1.29) |δzm∗+1,n∗+1|

≤ (m∗ + 1)(a2 + νa4)‖δz‖m∗+n∗+1 + ‖δz‖m∗+n∗+1 + a2(m∗ + 1)‖Y (a)‖.

Introduce the numerical parameter N = m∗ +n∗+1. Note that inequal-
ities of type (1.29) hold for every pair of indices such that m+ n+ 1 ≤ N .
Furthermore, either the norm ‖δz‖N+1 is attained by |δzm+1,n+1| when
m+n+ 2 = N + 1 (in this case, the left-hand side of (1.29) can be replaced
by ‖δz‖N+1), or there exist m = m and n = n satisfying m + n + 1 ≤ N
such that

|δzm+1,n+1| = ‖δz‖N+1,



270 A. G. Popov and S. A. Zadadaev

and, therefore,

(1.30) |δzm+1,n+1|

≤ (m+ 1)(a2 + νa4)‖δz‖m+n+1 + ‖δz‖m+n+1 + a2(m+ 1)‖Y (a)‖.

Since ‖ · ‖m+n+1 ≤ ‖ · ‖N and (m + 1)a ≤ B1 the foregoing analysis
performed for (1.30) leads to the final recursive estimate

(1.31) ‖δz‖N+1 ≤ B1(a+ νa3)‖δz‖N + ‖δz‖N + aB1‖Y (a)‖,

where N = 1, . . . ,m+ n+ 1 or N ∈ {1, . . . , [B1/a] + [B2/a] − 1}.
To analyze (1.31) rewrite it as

(1.32) ‖δz‖N+1 ≤ ̺N+1,

where

(1.33) ̺N+1 = B1(a+ νa3)̺N + ̺N + aB1‖Y (a)‖.

Note that, since ‖δz‖0 = ‖δz‖1 = 0 the initial value is

(1.34) ̺0 = 0.

Using (1.34) we calculate ̺N+1 from (1.33):

(1.35) ̺N+1 = B1a‖Y (a)‖

N∑

p=0

[1 +B1(a+ νa3)]N−p.

The power terms in (1.35) can be estimated from above by the corre-
sponding exponents (i.e. (1 + t)k ≤ ekt, k ≥ 0, t > 0). Therefore,

̺N+1 ≤ B1a‖Y (a)‖

N∑

p=0

exp{(N − p)aB1(1 + νa2)}(1.36)

≤
(
aB1 exp{B1(B1 +B2)(1 + νa2)}

×

N∑

p=0

exp{−pa(1 + νa2)B1}
)
‖Y (a)‖.

The sum on the right-hand side of (1.36) can be interpreted (when the
elementary segment of a partition of [0, N ] is of unit length) as a lower Dar-
boux integral sum and estimated from above by the corresponding definite
integral:

N∑

p=0

exp{−pa(1 + νa2)B1} ≤ 1 +

N\
0

exp{−aB1(1 + νa2)p} dp,

Calculating this integral, one refines estimate (1.36):

(1.37) ̺N+1 ≤M‖Y (a)‖,
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where (since a ≤ B1)

M = (1 +B2
1) exp{B1(B1 +B2)(1 + νB2

1)} = const.

From (1.32) and (1.37), it follows that

(1.38) ‖δz‖N+1 ≤M‖Y (a)‖, M = const.

Inequality (1.38) holds for any value of N from the range {1, . . . , [B1/a]+
[B2/a] − 1}, including N = N = [B1/a] + [B2/a] − 1}. At the same time,
note that

‖δz‖N+1 = ‖δz‖.

By (1.38) this yields the final estimate

(1.39) ‖δz‖ ≤M‖Y (a)‖, M = const,

which proves the stability of the difference (discrete) counterpart (1.15) of
the Darboux problem (1.1) for the sine-Gordon equation.

1.3.3. Convergence. In Sections 1.3.1 and 1.3.2 the a priori estimates
(1.14) and (1.39) were proved for the approximation error and stability of
the difference scheme (1.8). According to the general theory of difference
schemes [9] these estimates establish the convergence of the presented algo-
rithm: the solution zm,n(a) of problem (1.15) tends to the exact solution u
of the Darboux problem (1.1) for the sine-Gordon equation as a→ 0. Since
the difference problem under consideration is well-posed, the result obtained
also proves that the presented geometric approach to numerical integration,
based on the concept of Λ2-representations of nonlinear equations [3–5], is
correct. From the geometric point of view, the convergence of the algorithm
is associated with a “process of smoothing” of the discrete net T d(a) as
a → 0. In the limit one obtains a regular Chebyshev net that generates
(according to the theory of Λ2-representations) the sine-Gordon equation.

2. Λ2-representations and inverse scattering problem (ISP). In
this section we announce a result associating the existence of a Λ2-represen-
tation for some PDE with the possibility of its integration by the method
of ISP [1, 12, 14].

2.1. General remarks on ISP. The ISP method of integration assumes
that with the PDE

(2.1) f [u] = 0

there is associated a certain linear system of differential equations of the
type

(2.2) ψx = Uψ, ψt = V ψ,
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where U , V are 2 × 2-matrix operators, and ψ is a vector-valued function
with components ψ1 and ψ2.

The system (2.2) is called a spectral-evolutionary problem for (2.1).
Namely, the consistency condition for the system (2.2),

(2.3) Ut − Vx + [U, V ] = 0 (where [U, V ] = UV − V U)

is equivalent [12] to equation (2.1).

Constructing a system of type (2.2) for (2.1) is an important starting
point for the possible integration of (2.1) by the ISP method. No general
methods to construct U and V are available.

In the next subsection we present exact formulas for U and V from the
Λ2-representation of the PDE considered.

2.2. Λ2-representations and the spectral-evolutionary problem. The fol-
lowing theorem links the pseudospherical metrics, generating a given PDE
(or Λ2-representation) with the operators of problem (2.2).

Theorem. Suppose that the PDE (2.1) allows some Λ2-representation:

Λ2[f [u(x, t)] = 0] = {E[u(x, t)], F [u(x, t)], G[u(x, t)]}.

Then the operators U and V from the corresponding spectral-evolutionary

problem (2.2) are given by the following expressions (up to gauge transfor-

mations):

(2.4)

U =

(
i
2 ã

1
2E

1/2eiΘ+

1
2
E1/2e−iΘ+

− i
2
ã

)
,

V =

(
i
2 b̃

1
2G

1/2eiΘ−

1
2
G1/2e−iΘ−

− i
2
b̃

)
.

Here, the functions ã, b̃, Θ+, Θ− are defined from the Λ2-representation as

ã =
1

2W 1/2

[
1

2

FGx

G
−

1

2

FEx

E
+ Fx − Et

]
+Θx,

b̃ =
1

2W 1/2

[
1

2

FGt

G
−

1

2

FEt

E
− Ft +Gx

]
+Θt (W = EG− F 2),

Θ± = Θ ±
1

2
arccos

[
F

(EG)1/2

]
,

where Θ = Θ(x, t) is an arbitrary C2 function.

Note that the arbitrary function Θ(x, t) in Θ± has the meaning of a gauge
transformation. In fact, as a result of the transform (ψ1, ψ2) 7→ (ψ1, ψ2)
determined by the matrix
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(
e−iΘ/2 0

0 eiΘ/2

)

new operators U, V independent of Θ(x, t) appear.
The validity of this theorem can be proved, for example, by the direct

substitution of the operators U and V of (2.4) into the consistency equation
(2.3).

It should be pointed out that to obtain (2.4) (see [13]), we apply the
general analogy of the basic structural equations of pseudospherical surfaces
(with metric ds2 = (ω1)2 + (ω2)2) in Euclidean space E3 [2, 10]:

dω1 = ω2 ∧ ω21,

dω2 = ω21 ∧ ω
1,

dω21 = −ω1 ∧ ω2,

where

ω1 = E1/2 cosΘ+dx+G1/2 cosΘ−dt,

ω2 = E1/2 sinΘ+dx+G1/2 sinΘ−dt,

ω21 = ãdx+ b̃dt,

with equations (2.1) (and respectively (2.3)).
Thus for the operators U , V presented in the Theorem the relation (2.3)

is equivalent to the Gauss equation b̃x − ãt = W 1/2 (or dω21 = −ω1 ∧ ω2)
generating the Λ2-representation for (2.1).
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Hermann, Paris, 1945.

[3] A. G. Popov, The non-Euclidean geometry and differential equations, in: Banach
Center Publ. 33, Inst. Math., Polish Acad. Sci., 1996, 297–308.

[4] E. G. Poznyak and A. G. Popov, Lobachevsky geometry and the equations of
mathematical physics, Russian Acad. Sci. Dokl. Math. 48 (1994), 338–342.

[5] —, —, Non-Euclidean geometry : Gauss formula and PDE’s interpretation, Itogi
Nauki i Tekhniki (VINITI), Geometry 2 (1994), 5–24 (in Russian).

[6] —, —, Geometry of the sine-Gordon equation, Itogi Nauki i Tekhniki (VINITI),
Problems of Geometry, 23 (1991), 99–130 (in Russian).

[7] —, —, The Sine-Gordon Equation: Geometry and Physics, Znanie, Moscow, 1991
(in Russian).

[8] E. G. Poznyak and E. V. Sh ik in, Differential Geometry , Moscow Univ. Press,
Moscow, 1990 (in Russian).

[9] A. A. Samarsk ı̆, Theory of Difference Schemes, Nauka, Moscow, 1977 (in Russian).
[10] R. Sasak i, Soliton equations and pseudospherical surfaces, Nuclear Phys. B 154

(1979), 343–357.



274 A. G. Popov and S. A. Zadadaev

[11] A. S. Smogorzhevsk i ı̆, Geometric Constructions on the Lobachevsky Plane, Gos-
tekhteorizdat, Moscow, 1951 (in Russian).

[12] L. A. Takhtadzhyan and L. D. Faddeev, Hamiltonian Approach in Soliton
Theory , Nauka, Moscow, 1986 (in Russian).

[13] S. A. Zadadaev, Λ2-representations of equations of mathematical physics and for-
mulation of the spectral-evolutionary problem, Vestnik Moskov. Univ. Fiz. As-
tronom. 1998, no. 5, 29–32 (in Russian).

[14] V. E. Zakharov and L. D. Faddeev, Korteweg–de Vries equation is a completely
integrable Hamiltonian system, Funktsional. Anal. i Prilozhen. 5 (1971), no. 4,
18–127 (in Russian).

Chair of Mathematics
Department of Physics
Moscow State University
Moscow, 119899, Russia
E-mail: popov@ap.phys.msu.su
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