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On implicit Lagrangian differential systems

by S. Janeczko (Warszawa)

Bogdan Ziemian in memoriam

Abstract. Let (P, ω) be a symplectic manifold. We find an integrability condition for
an implicit differential system D′ which is formed by a Lagrangian submanifold in the
canonical symplectic tangent bundle (TP, ω̇).

1. Introduction. Let P be a smooth manifold. A submanifold D′ of
the tangent bundle TP is considered as a first order differential equation.
If D′ is not transversal to the tangent bundle fibration then D′ is called an
implicit differential equation. This type of equation may be written locally
in the form

ẋi = gi(x, λ), 0 = fj(x, λ),

where gi, fj : Rn × Rk → R (1 ≤ i ≤ n, 1 ≤ j ≤ k) are smooth functions
and the parameter λ cannot be “eliminated” from the second equation (cf.
[12]). There is an interesting question concerning the local integrability of
such equations (cf. [2, 12, 13, 7]).

As an example we can take the equation

ẋ = λ, 0 = x+ (λ− a)2,

where (ẋ, x) ∈ TR. We see that D′ is a parabola tangent to the fiber of
TR at (a, 0) and no differentiable solution of the above equation can pass
through (a, 0) unless a = 0. This observation suggests that there are some
local properties of the singularity set of D′, i.e. the set of singular points of
the projection τP |D′ : D′ → P (cf. [1, 8]), where τP : TP→P is the tangent
bundle projection, that assure integrability.
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In this note we formulate the integrability problem for generalized Hamil-
tonian systems (cf. [3]), i.e. for D′ being Lagrangian in the canonical sym-
plectic structure of TP if P is symplectic. We prove a necessary condition
and a sufficient condition for complete integrability and show their connec-
tion to abnormal curves in the geometry of distributions.

2. Implicit differential systems. Let (P, ω) be a symplectic manifold.
The tangent bundle TP is isomorphic to the cotangent bundle T ∗P by the
vector bundle morphism β : TP 3 u → ucω ∈ T ∗P . Let πP : T ∗P → P be
the cotangent bundle projection and θP be the Liouville one-form on T ∗P .
The corresponding canonical symplectic structure on TP is defined by

τP = πP ◦ β, κ = β∗θP ,

and we define
ω̇ = dκ = β∗dθP .

Let (xi, yj), 1 ≤ i, j ≤ n, dimP = 2n, be local coordinates on P such
that

ω =
n∑
i=1

dyi ∧ dxi.

We use the canonical coordinates (xi, yj , ẋk, ẏl), 1 ≤ i, j, k, l ≤ n, on (TP, ω̇)
and write κ in these coordinates:

κ =
n∑
i=1

(ẏidxi − ẋidyi).

Definition 2.1. A submanifold D′ of TP is called a first order dif-
ferential system. A differentiable mapping γ : I → P is called an integral
curve of D′ if the vector γ̇(t) tangent to γ at γ(t) belongs to D′ for each
t ∈ I = [α, β]. A differential system D′ ⊂ TP is said to be integrable (com-
pletely integrable) if for each element u ∈ D′ there is an integral curve γ of
D′ such that γ̇(0) = u.

Definition 2.2. A first order differential system D′ is called an infinites-
imal symplectic relation or integrable Lagrangian differential system if it is
integrable and is a Lagrangian submanifold of the symplectic space (TP, ω̇).
If, at some point u ∈ D′, the Lagrangian differential system (i.e. Lagrangian
submanifold of (TP, ω̇)) D′ is not transversal to the fibre TτP (u)P , then D′

is also called an implicit Lagrangian differential system.

Any Lagrangian submanifold of (TP, ω̇) is locally generated by a generat-
ing family (Morse family [14]) in the cotangent bundle structure (TP, τP , κ)
on TP . In local terms this means that there is an open neighbourhood of
every point of D′ such that in the above introduced Darboux coordinates
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around the chosen point, the differential system D′ is described by the fol-
lowing system of equations, where κ|D′ = −dF :

ẋi =
∂F

∂yi
(x, y, λ), 1 ≤ i ≤ n,

ẏj = − ∂F
∂xj

(x, y, λ), 1 ≤ j ≤ n,(1)

0 =
∂F

∂λk
(x, y, λ), 1 ≤ k ≤ m,

where F : R2n × Rm → R is a smooth function in a neighbourhood O of
zero in R2n × Rm.

Example 2.1. Let X be a connected smooth manifold, dimX = n,
and let V be a smooth k-dimensional distribution on X. Let {X1, . . . , Xk}
be a local basis of vector fields generating V . We say that V satisfies the
Hörmander condition at x ∈ X if these vector fields together with all their
commutators span TxX. If this condition is satisfied at every point of X
then V is called a nonholonomic distribution (cf. [10, 4, 5, 11]). We denote
by ΩV the space of horizontal (absolutely continuous) curves γ : [0, 1]→ X
(γ̇ ∈ V ). The subset of all paths starting at x0 ∈ X is denoted by ΩV (x0).
The endpoint map

endx0 : ΩV (x0)→ X

assigns to each curve its endpoint endx0(γ) = γ(1). The horizontal curve
γ ∈ ΩV is called singular if it is a singular point of the map endγ(0). The
singular curves are integral curves of the implicit Lagrangian differential
system D′ generated by

F : T ∗X × Rk → R, F (x, y, λ) =
k∑
i=1

λi〈y,Xi(x)〉,

(1′)

ẋj =
k∑
i=1

λiXij(x),

ẏj = −
k∑
i=1

λi

〈
y,
∂Xi

∂xj
(x)
〉
,

0 = 〈y,Xi(x)〉,
where Xi =

∑n
j=1Xij∂/∂xj , 1 ≤ j ≤ n, 1 ≤ i ≤ k.

The integrability of this system will be considered in the next section.
A sufficient condition for integrability will be a specialized version of the
corresponding integrability theorem 3.1.

Example 2.2. LetX be the 4-dimensional space-time manifold of general
relativity (cf. [11]). The cotangent bundle T ∗X represents the phase space of
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a relativistic particle of mass m. Its dynamics is represented by the implicit
Lagrangian differential system D′ ⊂ T (T ∗X) generated by the generating
family

F (x, y, λ) = λ
(( 4∑

i,j=1

gijyiyj

)1/2

−m
)
,

where gij denote the components of the contravariant metric tensor. We
easily see, by Proposition 3.2, that this system is integrable.

3. Integrability condition. Let D′ be a first order differential system,
dimD′ = dimP . If D′ is Lagrangian then we denote by CD′ the set of
critical values of the projection τP : D′ → P . We call this set the differential
(or Hamiltonian) caustic of D′. By a straightforward check we obtain the
following necessary condition for integrability of D′:

Proposition 3.1. Assume D′ is an integrable Lagrangian differential
system and CD′ is a stratified set. Then

TCkD′ ⊂ D′, k ∈ J,

where TCkD′ is the tangent bundle to the stratum CkD′ and CD′ =
⋃
k∈J C

k
D′ .

Now we formulate a sufficient condition for integrability. Let Ms denote
the space of all m×m symmetric matrices over R. For each r ∈ N∪{0}, let
Σr denote the subset of Ms consisting of all matrices of rank r. Then Σr is
a submanifold of Ms of codimension

(m− r)(m− r + 1)
2

.

We view H(x, y, λ) =
(

∂2F
∂λk∂λl

)
(x, y, λ) as a smooth mapping of O into

Ms. Also we denote by EOs the space of all smooth mappings of O into Ms

endowed with the C∞-Whitney topology.
Let D′ ⊂ (TP, ω̇) be a Lagrangian submanifold.

Theorem 3.1. Assume that for every point of D′ there exists a generating
Morse family F : R2n × Rm ⊃ O 3 (x, y, λ) 7→ F (x, y, λ) ∈ R such that

(i) H : O→Ms is transverse to all Σr, r = 1, . . . ,m (i.e. H is a generic
mapping in the space EOs ).

(ii) The linear equation

(2) H(x, y, λ)µ(x, y, λ) =
{
∂F

∂λ
, F

}
(x, y, λ)

has a solution µ(x, y, λ) for every (x, y, λ) ∈ O.

Then D′ is an integrable Lagrangian differential system.
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P r o o f. Assume that I 3 t 7→ (x(t), y(t), λ(t)) is a smooth solution
of (1). By differentiation of

∂F

∂λk
(x(t), y(t), λ(t)) = 0, 1 ≤ k ≤ m,

with respect to t, we obtain an implicit equation for µ ∈ Rm (which has a
sense of λ̇),

0 =
∑
i

∂2F

∂λk∂λi
(x, y, λ)µi +

∑
i

∂2F

∂λk∂xj

∂F

∂yj
(x, y, λ)

−
∑
i

∂2F

∂λk∂yi

∂F

∂xi
(x, y, λ),

which we can rewrite using the Poisson bracket notation:

(3) Hµ =
{
∂F

∂λ
, F

}
.

It is easy to see that if we can find a smooth solution of equation (3) with
respect to µ, i.e. smoothly depending on (x, y, λ) on O, then the system of
ordinary differential equations

ẋi =
∂F

∂yi
(x, y, λ), 1 ≤ i ≤ n,

ẏj = − ∂F
∂xj

(x, y, λ), 1 ≤ j ≤ n,

λ̇k = µ(x, y, λ), 1 ≤ k ≤ m,

is locally integrable. In fact using Mather’s theorem (cf. [9], p. 185), the as-
sumption of H being a generic matrix on the open domain O (such matrices
form an open and dense set) and the existence of a formal solution of (3)
we obtain the result of the theorem.

Remark 3.1. The condition of Theorem 3.1 is sufficient but not necessary
for integrability. Consider the differential system generated by the smooth
family F : R2n × R→ R,

F (x, y, λ) = Φk(x, y, λ) + φ(x, y)Φ2(x, y, λ),
∂Φ

∂λ
(0, 0, 0) 6= 0.

One may check, by Theorem 3.1, that the corresponding differential system
is integrable if dφ(0, 0) 6= 0. In fact this system is equivalently generated by

F̃ (x, y, λ) = λk + φ(x, y)λ2,
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so we find equation (3) in the form

(k(k − 1)λk−2 + 2φ(x, y))µ =
{
∂F

∂λ
, F

}
= 0,

and the matrix

H : (x, y, λ) 7→ k(k − 1)λk−2 + 2φ(x, y)

is transversal to Σ1 if dφ(0, 0) 6= 0 in some neighbourhood of zero. We easily
see that this system is integrable also if the transversality condition is not
satisfied for the matrix H.

Example 3.1. Consider a particle subject to a simple restoring force
whose centre of attraction is allowed to move freely on the circle x2

1 + x2
2

= r2. The dynamics of the system is described by the implicit Lagrangian
differential system generated by the family

F (x1, x2, y1, y2, θ) =
1

2m
(y2

1 + y2
2) +

k

2
[(x1 − r cos θ)2 + (x2 − r sin θ)2].

It is easy to check that the system has an unstable differential caustic which
is a 2-dimensional surface {(x, y) : x = 0}. We find

∂F

∂θ
= kr(x1 sin θ − x2 cos θ),

∂2F

∂θ2
= kr(x1 cos θ + x2 sin θ),

and get
H : (x, y, θ) 7→ kr(x1 cos θ + x2 sin θ).

We see that F satisfies both assumptions of Theorem 3.1, so it is an inte-
grable Lagrangian differential system.

Remark 3.2. The integrability condition (ii) of Theorem 3.1 becomes
sufficient for the Lagrangian differential system of Examples 2.1 and 2.2,
and its weaker version gives the following condition for the existence of
nontrivial singular curves:

∃λ ∈ Rk, λ 6= 0 :
{
∂F

∂λi
, F

}
= 0, i = 1, . . . k,

which may be rewritten in the form of a system of linear equations
k∑
j=1

λj〈y, [Xi, Xj ](x)〉 = 0,

or equivalently
k∑
j=1

λj{Hi, Hj} = 0,
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where Hi(x, y) = 〈y,Xi(x)〉. Define C = {(x, y) ∈ T ∗X : Hi(x, y) = 0, i =
1, . . . , k}. Then β(D′) is a conormal bundle of C in T ∗P , and we have the
following result.

Proposition 3.2. The Lagrangian differential system D′ given by (1′) is
an integrable Lagrangian differential system if and only if C is a coisotropic
submanifold of (T ∗X,ωX). In this case all singular curves are integral curves
of the coisotropic distribution

C` = {u ∈ T (T ∗X) : ωX(u, v) = 0 ∀v ∈ TC} ⊂ TC.
P r o o f. We repeat the arguments from the proof of Theorem 3.1. But

in this special case of systems the existence of the integral curve γ passing
through any point of D′ is equivalent to the system of equations{

∂F

∂λi
, F

}
(x, y, λ) =

k∑
j=1

λj{Hi, Hj}(x, y) = 0,

satisfied for every (x, y, λ) ∈ O. But this is the condition for C to be a
coisotropic submanifold of (P, ω).

We can easily see that all constant rank vector subbundles of D′ given
by the condition {∂F/∂λ, F} = 0 are integrable, so they are integrable
sub-Lagrangian (isotropic [6]) differential systems.

If H0(x, y) = det({Hi, Hj})(x, y) = 0 defines a hypersurface in C, then
the integrable sub-Lagrangian differential systems are defined as constant
rank subbundles by the system of equations

k∑
j=1

λj{Hi, Hj} = 0, i = 1, . . . , k,

k∑
j=1

λj{H0, Hj} = 0.

In general, if C =
⋃
j∈J Cj is a stratification of C by rank of the matrix

({Hi, Hj})(x, y), then a necessary and sufficient condition for the integra-
bility of a sub-Lagrangian differential system D′′ defined as the subsystem
of D′ described by (1′) is the inclusion

TCj ∩D′ ⊂ D′′, j ∈ J.
Remark 3.3. Theorem 3.1, in an analogous formulation, is also true in

a more general situation if D′ is not Lagrangian. We show easily that it is
not true if the genericity hypothesis (i) is dropped. Then smoothness of the
solution of (3) may not be obtained. This can be illustrated by the equation
λ2µ = λ, for which there is not even a continuous solution, though the
equation has a solution for each λ.
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Remark 3.4. Without loss of generality we can reduce our integrability
problem to the case of F analytic. By Cramer’s rule there is an m × m
matrix H̃ of real analytic functions such that

H̃H = HH̃ = (detH)I,

where I denotes the identity matrix. Then we can rewrite equation (3) in
the form

(detH)µ = H̃

{
∂F

∂λ
, F

}
.

Hypothesis (ii) of Theorem 3.1 implies that H̃{∂F/∂λ, F} vanishes on
{detH = 0}, thus to show that equation (3) has a solution, it is enough
to show that each component of the column vector H̃{∂F/∂λ, F} is divisi-
ble by detH.
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