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The BV-algebra of a Jacobi manifold

by Izu Vaisman (Haifa)

Abstract. We show that the Gerstenhaber algebra of the 1-jet Lie algebroid of a
Jacobi manifold has a canonical exact generator, and discuss duality between its homology
and the Lie algebroid cohomology. We also give new examples of Lie bialgebroids over
Poisson manifolds.

1. Introduction. A Gerstenhaber algebra is a triple (A =
⊕

k∈ZAk,∧,
[ , ]) where ∧ is an associative, graded commutative algebra structure (e.g.,
over R), [ , ] is a graded Lie algebra structure for the shifted degree [k] := k+1
(the sign := denotes a definition), and

(1.1) [a, b ∧ c] = [a, b] ∧ c+ (−1)kjb ∧ [a, c]

for all a ∈ Ak+1, b ∈ Aj , c ∈ A. If this structure is supplemented by an
endomorphism δ : A → A, of degree −1, such that δ2 = 0 and

(1.2) [a, b] = (−1)k(δ(a ∧ b)− δa ∧ b− (−1)ka ∧ δb) (a ∈ Ak, b ∈ A),

one gets an exact Gerstenhaber algebra or a Batalin–Vilkovisky algebra (BV-
algebra) with the exact generator δ. If we also have a differential d : Ak →
Ak+1 (d2 = 0) such that

(1.3) d(a ∧ b) = (da) ∧ b+ (−1)ka ∧ (db) (a ∈ Ak, b ∈ A),

we will say that we have a differential BV-algebra. Finally, if

(1.4) d[a, b] = [da, b] + (−1)k[a, db] (a ∈ Ak, b ∈ A)

the differential BV-algebra is said to be strong [21].
On the other hand, a Jacobi manifold (see, e.g., [5]) is a smooth manifold

Mm (everything is of class C∞ in this paper) with a Lie algebra structure
of local type on the space of functions C∞(M) or, equivalently [5], with a
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bivector field Λ and a vector field E such that

(1.5) [Λ,Λ] = 2E ∧ Λ, [Λ,E] = 0.

In (1.5) one has the usual Schouten–Nijenhuis brackets. If E = 0, (M,Λ) is
a Poisson manifold .

One of the most interesting examples of a BV-algebra is that of the
Gerstenhaber algebra of the cotangent Lie algebroid of a Poisson manifold,
described by many authors (see [9], [8], etc.). More generally, Xu [21] extends
a result of Koszul [9] and proves that the exact generators of the Gersten-
haber algebra of a Lie algebroid A → M are provided by flat connections
on
∧r

A (r = rankA), and Huebschmann [6] proves a corresponding result
for Lie–Rinehart algebras.

The main aim of this note is to show that a Jacobi manifold also has
a canonically associated, differential BV-algebra (which, however, is not
strong), namely, the Gerstenhaber algebra of the 1-jet Lie algebroid de-
fined by Kerbrat and Souici-Benhammadi [7]. Then we apply results of Xu
[21] and Evens–Lu–Weinstein [3] to discuss duality between the homology
of this BV-algebra and the cohomology of the Lie algebroid. (The homology
was also independently introduced and studied by de León, Marrero and
Padron [11].)

In the final section, we come back to a Poisson manifold M with the
Poisson bivector Q, and show that the infinitesimal automorphisms E of Q
yield natural Poisson bivectors of the Lie algebroid TM⊕R. These bivectors
lead to triangular Lie bialgebroids and BV-algebras in the usual way [8], [21].

Notice that BV-algebras play an important role in some recent research
in theoretical physics (see, e.g., [4]).
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2. The Jacobi BV-algebra. For any Lie algebroid A→M with anchor
α : A→ TM one has the Gerstenhaber algebra A(A) defined by

(2.1) A(A) :=
(⊕
k∈N

Γ
∧k

A,∧, [ , ]SN

)
,

where Γ denotes spaces of global cross sections, and SN denotes the Schou-
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ten–Nijenhuis bracket (see, e.g., [8], [21]; on the other hand, we refer the
reader to [15, 8, 3], for instance, for the basics of Lie algebroids and Lie
algebroid calculus). The BV-algebra which we want to discuss is associated
with the 1-jet Lie algebroid of a Jacobi manifold (M,Λ,E) defined in [7],
which we present as follows.

We identify M with M × {0} ⊆ M × R, where M × R is endowed with
the Poisson bivector [5]

(2.2) P := e−t
(
Λ+

∂

∂t
∧ E

)
(t ∈ R).

Let J1M = T ∗M ⊕R be the vector bundle of 1-jets of real functions on M ,
and notice that ΓJ1M is isomorphic as a C∞(M)-module to

(2.3) Γ0(M) := {et(α+ fdt) / α ∈
∧1

M, f ∈ C∞(M)} ⊆
∧1(M × R).

(For any differentiable manifold V we denote by
∧k

V the space Γ
∧k

T ∗V of
differential k-forms on V .) A straightforward computation shows that Γ0(M)
is closed under the bracket of the cotangent Lie algebroid of (M×R, P ) (see,
e.g., [19]), namely

{et(α+ fdt), et(β + gdt)}P = et[L]Λαβ − L]Λβα− d(Λ(α, β))(2.4)
+ fLEβ − gLEα− α(E)β + β(E)α
+ ({f, g} − Λ(df − α, dg − β))dt],

where 〈]Λα, β〉 := Λ(α, β) (α, β ∈
∧1

M), and

{f, g} = Λ(df, dg) + f(Eg)− g(Ef) (f, g ∈ C∞(M))

is the bracket which defines the Jacobi structure [5].
Therefore, (2.4) produces a Lie bracket on ΓJ1M . Moreover, if ]P is

defined similarly to ]Λ, we get

(2.5) ]P (et(α+ fdt)) = ]Λα+ fE − α(E)
∂

∂t
,

and

(2.6) % := (prTM ◦]P )t=0 : J1M → TM

has the properties of an anchor, since so does ]P .
Formulas (2.4), (2.6) precisely yield the Lie algebroid structure on J1M

defined in [7]. In what follows we refer to it as the 1-jet Lie algebroid . The
mapping f 7→ et(df + fdt) is a Lie algebra homomorphism from the Jacobi
algebra of M to Γ0(M).

2.1. Proposition. The Gerstenhaber algebra A(J1M) is isomorphic
to the subalgebra A0(M) :=

⊕
k∈N

∧k
Γ0(M) of the Gerstenhaber algebra

A(T ∗(M × R)).
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P r o o f. The elements of Ak0(M) :=
∧k

Γ0(M) are of the form

(2.7) λ = ekt(λ1 + λ2 ∧ dt) (λ1 ∈
∧k

M, λ2 ∈
∧k−1

M),

and we see that A0(M) is closed under the wedge product and under the
bracket { , }P of differential forms on the Poisson manifold (M × R, P )
(see, e.g., [19]). Accordingly, (A(J1M),∧, { , }) and (A0(M),∧, { , }P ) are
isomorphic Gerstenhaber algebras since they are isomorphic at the grade 1
level, and the brackets of terms of higher degree are spanned by those of
degree 1.

2.2. Remark. Since A0(M) is a Gerstenhaber algebra, the pair (A0
0 =

C∞(M), A1
0 = Γ0(M)) is a Lie–Rinehart algebra [6].

Now, we can prove

2.3. Proposition. The Gerstenhaber algebra A0(M) has a canonical
exact generator.

P r o o f. It is known thatA(T ∗(M×R)) has the exact generator of Koszul
and Brylinski (see, e.g., [19])

(2.8) δP = i(P )d− di(P ),

where P is the bivector (2.2). Hence, all we have to do is to check that
δPλ ∈ Ak−1

0 (M) if λ is given by (2.7).
First, we notice that

(2.9) i(P )(dt ∧ µ) = e−t(i(E)µ+ dt ∧ (i(Λ)µ)) (µ ∈
∧∗

M).

Then, if we also introduce the operator δΛ := i(Λ)d − di(Λ) (cf. [1]), and
compute for λ of (2.7), we get

δPλ = e(k−1)t[δΛλ1 + (−1)kLEλ2 + ki(E)λ1(2.10)
+ (δΛλ2 + (−1)ki(Λ)λ1 + (k − 1)i(E)λ2) ∧ dt].

It follows from (2.10) that δP restricts to an exact generator δ of the
Gerstenhaber algebra A(J1M), and the latter becomes a BV-algebra. This
is the BV-algebra announced in Section 1, and we call it the Jacobi BV-
algebra of the Jacobi manifold (M,Λ,E). We can look at it under the two
isomorphic forms indicated by Proposition 2.1.

It is easy to see that the Jacobi BV-algebra above has the differential

(2.11) dλ := e(k+1)td(e−ktλ),

where λ is given by (2.7). But a computation shows that d is not a derivation
of the Lie bracket { , } of A(J1M). Another difference from the Poisson
case is the formula

(δP d+ dδP )λ = ekt[(k + 1)i(E)dλ1(2.12)
+ (LEλ2 + (k + 1)i(E)dλ2 − (−1)kδΛλ1) ∧ dt],
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where λ is given by (2.7) again. This formula is the result of technical com-
putations which we omit.

2.4. Remark. If we refer to the Poisson case E = 0, we see that both
T ∗M and J1M have natural structures of Lie algebroids. The Lie bracket
and anchor map of J1M are given by

(2.13) {et(α+ fdt), et(β + gdt)}
= et[{α, β}Λ + ((]Λα)g − (]Λβ)f − Λ(α, β))dt]

and

(2.14) %(et(α+ fdt)) = ]Λα,

and the mapping α 7→ et(α+0dt) preserves the Lie bracket, hence T ∗M is a
Lie subalgebroid of J1M , and the latter is an extension of the former by the
trivial line bundle M ×R. J1M has not yet been used in Poisson geometry.

3. The homology of the Jacobi BV-algebra. We call the homology
of the Jacobi BV-algebra of a Jacobi manifold (M,Λ,E), with boundary
operator δ, the Jacobi homology HJ

k(M,Λ,E). (Another “Jacobi homology”
was studied in [1].) Here, we look at this homology from the point of view
of [21] and [3], and discuss a duality between the Jacobi homology and the
Lie algebroid cohomology of J1M , called Jacobi cohomology .

Jacobi cohomology coincides with the one studied by de León, Marrero
and Padrón in [10]. If C ∈ Γ

∧k(J1M)∗ is seen as a k-multilinear skew
symmetric form on arguments (2.7) of degree 1, at t = 0, it may be written
as

(3.1) C = C̃|t=0 := e−kt
[(
C1 +

∂

∂t
∧ C2

)]
t=0

(C1 ∈ VkM, C2 ∈ Vk−1M),

where VkM := Γ
∧k

TM is the space of k-vector fields on M . Furthermore,
the coboundary, say σ, is given by the usual formula

(3.2) (σC)(s0, . . . , sk)

=
k∑
i=0

(−1)i(%si)C(s0, . . . , ŝi, . . . , sk)

+
k∑

i<j=1

(−1)i+jC({si, sj}, s0, . . . , ŝi, . . . , ŝj , . . . , sk),

where % is given by (2.6), and si ∈ ΓJ1M . Again, if we view the arguments
as forms (2.7) with k = 1, (3.2) becomes

(3.3) σC = [σP C̃]t=0 = [P, C̃]t=0,
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where σP is the Lichnerowicz coboundary (see, e.g., [19]). Up to sign, (3.3)
is the coboundary defined in [10], namely

σC = [Λ,C1]− kE ∧ C1 − Λ ∧ C2(3.4)

− ∂

∂t
∧ ([Λ,C2]− (k − 1)E ∧ C2 + [E,C1]).

We denote the Jacobi cohomology spaces by Hk
J (M,Λ,E).

3.1. Remark [10]. The anchor % induces homomorphisms %] : Hk
de R(M)

→ Hk
J (M,Λ,E) given by

(3.5) (%]λ)(s1, . . . , sk) = (−1)kλ(%s1, . . . , %sk) (λ ∈
∧k

M, si ∈ ΓJ1M).

Now, we need a recapitulation of several results of [21] and [3].
For a Lie algebroid A → M with anchor a, an A-connection ∇ on a

vector bundle E →M consists of derivatives ∇se ∈ ΓE (s ∈ ΓA, e ∈ ΓE)
which are R-bilinear and satisfy the conditions

∇fse = f∇se, ∇s(fe) = (a(s)f)e+ f∇se (f ∈ C∞(M)).

For an A-connection, curvature may be defined as for usual connections.
Any flat A-connection ∇ on

∧r
A (r = rankA) produces a Koszul operator

D : Γ
∧k

A→ Γ
∧k−1

A, locally given by

DU = (−1)r−k+1
[
i(dω)Ω +

r∑
h=1

αh ∧ (i(ω)∇shΩ)
]
,

whereΩ ∈ Γ
∧r

A, ω ∈ Γ
∧r−k

A∗ is such that i(ω)Ω = U , sh is a local basis
of A, and αh is the dual cobasis of A∗. Moreover, D is an exact generator of
the Gerstenhaber algebra of A, and every exact generator is defined by a flat
A-connection as above. The operator D is a boundary operator, and yields
a corresponding homology, called the homology of the Lie algebroid A with
respect to the flat A-connection ∇, Hk(A,∇). For two flat connections ∇, ∇
such that D−D = i(α), where α = dAf (f ∈ C∞(M); dA is the differential
of the Lie algebroid calculus of A), one has Hk(M,∇) = Hk(M,∇). If there
exists Ω ∈ Γ

∧r
A∗ which is nowhere zero, and ∇∗Ω = 0 where ∇∗ is the

connection induced by ∇ in the dual bundle
∧r

A∗ of
∧r

A, one has the
duality Hk(A,∇) = Hr−k(A), defined by sending Q ∈ Γ

∧k
A to ∗ΩQ :=

i(Q)Ω.
These results may be applied to the case where A is the cotangent Lie

algebroid of an orientable Poisson manifold (Nn, Q). In this case, the flat
connection ∇θΨ = θ ∧ (di(Q)Ψ) (θ ∈ T ∗N , Ψ ∈

∧n
N) precisely has the

Koszul operator δQ and defines the known Poisson homology Hk(N,Q) (see,
e.g., [19]). Finally ([21], Proposition 4.6 and Theorem 4.7), if N has the
volume form Ω, which defines a connection ∇0 by ∇0Ω = 0, and if WQ
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is the modular vector field which acts on f ∈ C∞(M) according to the
equation

LXQf
Ω = (WQf)Ω

(XQ
f is the Hamiltonian field of f) [20], one has δQ−D0 = i(WQ), where D0

is the Koszul operator defined by ∇0. Accordingly, if the modular field WQ

is Hamiltonian (i.e., (N,Q) is a unimodular Poisson manifold), Hk(N,Q) =
Hn−k(T ∗N).

The case of a general, possibly non-orientable, Poisson manifold is stud-
ied in [3]. The expression of ∇θΨ above can be viewed as the local equation
of a connection on

∧n
T ∗N , and it still defines the Koszul operator δQ. The

general duality Theorem 4.5 of [3] is

(∗) Hk(N,Q) = Hn−k(T ∗N,
∧n

T ∗N),

where the right hand side is the cohomology of the Lie algebroid T ∗N
with values in the line bundle

∧n
T ∗N . This means that the k-cocycles

are spanned by cross sections V ⊗ Ψ , V ∈ VkN , Ψ ∈ Γ
∧n

T ∗N , and the
coboundary is given by

∂(V ⊗ Ψ) = [Q,V ]⊗ Ψ + (−1)kV ∧∇Ψ,
where ∇Ψ ∈ V1N ⊗ Γ

∧n
T ∗N = Hom(ΓT ∗N,Γ

∧n
T ∗N) is defined by

(∇Ψ)(θ) = ∇θΨ , θ ∈ ΓT ∗N . The duality (∗) is again defined by the isomor-
phism which sends V ⊗ Ψ to i(V )Ψ .

With this recapitulation finished, we apply the results to Jacobi man-
ifolds (Mm, Λ,E). Consider the Poisson manifold (M × R, P ) which we
already used before. Then δP is the Koszul operator of the (T ∗M × R)-
connection

(3.6) ∇θΨ = θ ∧ (di(P )Ψ) (θ ∈ T ∗(M × R), Ψ ∈
∧m+1(M × R)).

In particular, if we take

(3.7) θ = et(α+ fdt), Ψ = e(m+1)tΦ ∧ dt (α ∈ T ∗M, Φ ∈
∧m

M),

then Ψ ∈
∧m+1(J1M), (2.9) implies

(3.8) ∇θΨ = e(m+1)t[fdi(E)Φ− α ∧ (di(Λ)Φ+mi(E)Φ)] ∧ dt,

and this formula may be viewed as defining a J1M -connection on
∧m+1

J1M .
Clearly, the Koszul operator of this connection must be the δ of (2.10).
Therefore, we have

3.2. Proposition. The Jacobi homology of (M,Λ,E) is equal to the
homology of the Lie algebroid J1M with respect to the flat connection (3.8),
i.e.,

(3.9) HJ
k(M,Λ,E) = Hk(J1M,∇).
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Now, assume thatM has a volume form Φ ∈
∧m

M . ThenΩ := e(m+1)tΦ
∧ dt is a volume form on M × R, and one has a connection ∇0 defined by
∇0Ω = 0 with a Koszul operator D0 such that

(3.10) δP −D0 = i(WP ),

where WP is the corresponding modular vector field, i.e.

(3.11) LXPϕΩ = (WPϕ)Ω (ϕ ∈ C∞(M × R)).

We need the interpretation of (3.10) at t = 0. To get it, we take local
coordinates (xi) on M , and compute the local components of WP by using
(3.11) for ϕ = xi and ϕ = t. Generally, we have

(3.12) XP
ϕ = i(dϕ)P = e−t

(
]Λdϕ+

∂ϕ

∂t
E − (Eϕ)

∂

∂t

)
.

On the other hand, on M , define a vector field V and a function divΦE by

(3.13) L]ΛdfΦ = (V f)Φ, LEΦ = (divΦE)Φ (f ∈ C∞(M)).

(The fact that V is a derivation of C∞(M) follows easily from the skew
symmetry of Λ.) Then the calculation of the local components of WP yields

(3.14) WP = e−t
[
V −mE + (divΦE)

∂

∂t

]
.

At t = 0, (3.14) defines a section of TM ⊕R which we denote by V (Λ,E) and
call the modular field (not a vector field, of course) of the Jacobi manifold.

As in the Poisson case, if Φ 7→ aΦ (a > 0), then V (Λ,E) 7→ V (Λ,E) +
σ(ln a), hence what is well defined is the Jacobi cohomology class [V (Λ,E)],
to be called the modular class. If the modular class is zero, (M,Λ,E) is a
unimodular Jacobi manifold .

It is also possible to get the modular class [V (Λ,E)] from the general
definition of the modular class of a Lie algebroid [3]. In the case of the
algebroid J1M , the definition of [3] means computing the expression

E := (LJ
1M
et(df+fdt)[(e

mtΦ)∧ (etdt)])⊗Φ+ (e(m+1)tΦ∧ dt)⊗ (L%(et(df+fdt))Φ),

where % is given by (2.6), and

LJ
1M
et(df+fdt)[(e

mtΦ) ∧ (etdt)] = {et(df + fdt), (emtΦ) ∧ (etdt)}P .

If we decompose (emtΦ) =
∧n
i=1(etϕi), ϕi ∈

∧1
M , the result of the required

computation turns out to be

E = (2(V f) + 2f(divΦE)− Ef)(e(m+1)tΦ ∧ dt)⊗ Φ.
By comparing with (3.14), we see that the modular class in the sense of [3]
is the Jacobi cohomology class of the cross section of TM ⊕ R defined by

A(Λ,E) = 2V (Λ,E) − (2m+ 1)E.
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With all this notation in place, the recalled results of [21], Proposition
4.6, and [3], Theorem 4.5 (see also [6]) yield

3.3. Proposition. If (M,Λ,E) is a unimodular Jacobi manifold one
has duality between Jacobi homology and cohomology :

(3.15) HJ
k(M,Λ,E) = Hm−k+1

J (M,Λ,E).

If (M,Λ,E) is an arbitrary Jacobi manifold , one has the duality

(3.15′) HJ
k(M,Λ,E) = Hm−k+1

J (J1M,
∧m+1

J1M).

P r o o f. The right hand side of (3.15′) is Jacobi cohomology with values
in
∧m+1

J1M , similar to that in (∗). The homologies and cohomologies of
(3.15) and (3.15′) are to be seen as given by subcomplexes of

⊕
k

∧k(M×R),⊕
k Vk(M × R) defined by (2.7) and (3.1). Then the result follows by the

proofs of the theorems of [21], [3] quoted earlier, if we notice that

i

[
e−kt

(
C1 +

∂

∂t
∧ C2

)]
(e(m+1)tΦ ∧ dt)

= e(m−k+1)t[(−1)mi(C2)Φ+ (i(C1)Φ) ∧ dt].

The notation is that of (3.1) and (3.7).

In particular, let us consider the transitive Jacobi manifolds [5].
a) Let M2n be a locally or globally conformal symplectic manifold with

the global 2-form Ω such that Ω|Uα = eσαΩα, where Ωα are symplectic
forms on the sets Uα of an open covering of M , and σα ∈ C∞(Uα). Then
(see, e.g., [18]) {dσα} glue up to a global closed 1-form ω, which is exact
iff there exists α with Uα = M , and ]Λ := [−1

Ω , E := ]Λω define a Jacobi
structure on M (cf. [5]). It follows easily that LEΩ = 0, hence divΩn E = 0.
Furthermore,

L]ΛdfΩ
n = −n(n− 1)df ∧ ω ∧Ωn−1.

Using the Lepage decomposition theorem ([12], p. 46) we see that df ∧ ω =
ξ + ϕΩ, where

ξ ∧Ωn−1 = 0, ϕ = − 1
n
i(Λ)(df ∧ ω) = Ef.

Hence, V = −n(n−1)E, and V (Λ,E) = −n(2n−1)E. Then, for f ∈ C∞(M),
(3.4) yields σf = ]Λdf − (Ef)(∂/∂t), and σf = E holds iff ω = df . Thus,
(3.15) holds on globally conformal symplectic manifolds. But (3.15) may not
hold in the true locally conformal symplectic case. For instance, it follows
from Corollary 3.15 of [11] that the result does not hold on a Hopf manifold
with its natural locally conformal Kähler structure (private correspondence
from J. C. Marrero).
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b) Let M2n+1 be a contact manifold with contact 1-form θ such that
Φ := θ ∧ (dθ)n is nowhere zero. Then M has the Reeb vector field E where

i(E)θ = 1, i(E)dθ = 0,

and for all f ∈ C∞(M) there is a Hamiltonian vector field Xθ
f such that

i(Xθ
f )θ = f, i(Xθ

f )dθ = −df + (Ef)θ.

Furthermore, if

Λ(df, dg) := dθ(Xθ
f , X

θ
g ) (f, g ∈ C∞(M)),

then (Λ,E) is a Jacobi structure [5].
Now, let (qi, pi, z) (i = 1, . . . , n) be local canonical coordinates such that

θ = dz −
∑
i pidq

i. Then

E =
∂

∂z
, Λ =

∑
i

∂

∂qi
∧ ∂

∂pi
+

∂

∂z
∧
(∑

i

pi
∂

∂pi

)
.

This leads to divΦE = 0, V (Λ,E) = nE, and it follows that there is no
f ∈ C∞(M) satisfying σf = (nE ⊕ 0).

We close this section by the remark that the identification of a manifold
M with M ×{0} ⊆M ×R leads to other interesting structures as well. For
instance, if we define the spaces∧k

0 M := {et(ξ1 + ξ2 ∧ dt) | ξ1 ∈
∧k

M, ξ2 ∈
∧k−1

M},

the triple (
⊕

k

∧k
0 M,d, i(X + f(∂/∂t)) is a Gelfand–Dorfman complex [2],

and a Jacobi structure on M is equivalent to a Hamiltonian structure [2] on
this complex.

On the other hand, if we have a Jacobi manifold (M,Λ,E), and put

Vk0M :=
{
e−(k−1)t

(
Q1 +

∂

∂t
∧Q2

) /
Q1 ∈ VkM, Q2 ∈ Vk−1M

}
,

then (
⊕

k Vk0M, [ , ], σP ) (P is defined by (2.2) and [ , ] is the usual
Schouten–Nijenhuis bracket) is a differential graded Lie algebra, whose
cohomology is exactly the 1-differentiable Chevalley–Eilenberg cohomology
Hk

1-dif(M,Λ,E) of Lichnerowicz [13]. In particular, H1
1-dif(M,Λ,E) is the

quotient of the space of conformal Jacobi infinitesimal automorphisms by
the space of Jacobi Hamiltonian vector fields [13].

4. Lie bialgebroid structures on TM⊕R. In the Poisson case, T ∗M
is a Lie bialgebroid over M (see [8], [16]) with dual TM . This is not true for
J1M on Jacobi manifolds in spite of the fact that (J1M)∗ = TM ⊕ R has
a natural Lie algebroid structure, which extends the one of TM . Namely, if
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we view X ∈ Γ (TM ⊕ R) as a vector field of M × R given by

(4.1) X =
(
X + f

∂

∂t

)∣∣∣∣
t=0

(X ∈ ΓTM, f ∈ C∞(M)),

we have the Lie bracket

(4.2) [X ,Y]0 :=
[
X + f

∂

∂t
, Y + g

∂

∂t

]
= [X,Y ] + (Xg − Y f)

∂

∂t
,

and the anchor map a(X ) := X. If we were in the case of a Lie bialgebroid,
the bracket {f, g}s := 〈df, d∗g〉 (f, g ∈ C∞(M)), where d, d∗ are the dif-
ferentials of the Lie algebroids TM ⊕ R and J1M , respectively, would be
Poisson [8], [16]. This is not true since one gets {f, g}s = Λ(df, dg).

4.1. Remark. The differential d defined by (2.11) is the same as the
differential d of the Lie algebroid TM ⊕ R with bracket (4.2).

In Poisson geometry, the cotangent Lie bialgebroid structure is produced
by a Poisson bivector Π of TM , i.e., [Π,Π] = 0. It is natural to ask what
is the structure produced by a Poisson bivector Π of TM ⊕R. As a matter
of fact, we will ask this question in the more general situation where we fix
a closed 2-form Ω on M , and take the Lie bracket

(4.2′) [X ,Y]Ω := [X ,Y]0 +Ω(X,Y )
∂

∂t
.

The notation and the anchor map a are the same as for (4.2). It is known
that (4.2′) defines all the transitive Lie algebroid structures over M such
that the kernel of the anchor is a trivial line bundle, up to isomorphism
[15]. A Poisson bivector Π on TM ⊕R with bracket (4.2′) will be called an
Ω-Poisson structure on M .

4.2. Proposition. An Ω-Poisson structure Π on M is equivalent to a
pair (Q,E), where Q is a Poisson bivector on M (i.e., [Q,Q] = 0), and E
is a vector field such that

(4.3) LEQ = ]QΩ.

P r o o f. Using the identification (4.1) of the cross sections of TM ⊕ R
with vector fields on M × R for t = 0, and local coordinates (xi) on M , we
may write

(4.4) Π = Q+
∂

∂t
∧ E =

1
2
Qij(x)

∂

∂xi
∧ ∂

∂xj
+
∂

∂t
∧
(
Ek(x)

∂

∂xk

)
,

where Q is a bivector field on M , E is a vector field, and the Einstein
summation convention is used.

Now, [Π,Π]Ω = 0 can be expressed by the known formula for the Schou-
ten–Nijenhuis bracket of decomposable multivectors (see, e.g., [19], formula
(1.12)), and (4.2′). The result is equivalent to [Q,Q] = 0 and (4.3).



286 I. Vaisman

4.3. Corollary. If (M,Q) is a Poisson manifold , then Q extends to
an Ω-Poisson structure for every closed 2-form Ω, where the de Rham class
[Ω] has zero ]Q-image in the Poisson cohomology of (M,Q), by taking E
such that (4.3) holds.

This is just a reformulation of Proposition 4.2.
It is well known that a Poisson bivector on a Lie algebroid A induces a

bracket on ΓA∗ such that (A,A∗) is a triangular Lie bialgebroid [8], [16].
Namely, the Poisson bivector Π of (4.4) yields the following bracket:

{α⊕ f, β ⊕ g}Ω := LΩ]Π(α⊕f)(β ⊕ g)(4.5)

− LΩ]Π(β⊕g)(α⊕ f)− dΩ(Π(α⊕ f, β ⊕ g)),

where α ⊕ f, β ⊕ g ∈ ΓJ1M , and the index Ω denotes the fact that the
operators involved are those of the Lie algebroid calculus of (4.2′).

To make this formula explicit, notice that

(4.6) ]Π(α+ fdt) = ]Qα+ fE − α(E)
∂

∂t
,

whence

(4.7) Π(α+ fdt, β + gdt) = Q(α, β) + fβ(E)− gα(E).

Then, by evaluation on a field of the form (4.1), and with (4.2′), we obtain

(4.8) LΩ]Π(α+fdt)(β+ gdt) = L]Π(α+fdt)(β+ gdt)− g([Ω]Qα)− fgi(E)Ω,

where [ΩX := i(X)Ω. As a consequence, (4.5) becomes

{α⊕ f, β ⊕ g}Ω := [{α, β}Q + f(LEβ + [Ω]Qβ)− g(LEα+ [Ω]Qα)](4.9)
⊕ [(]Qα)g − (]Qβ)f + f(Eg)− g(Ef)],

where (Q,E) are associated with Π as in Proposition 4.2.
The anchor map of the Lie algebroid J1M with (4.9) is % := prTM ◦]Π ,

and it is provided by (4.6).
In particular, Proposition 4.2 tells us that a pair (Q,E) which consists

of a Poisson bivector Q and an infinitesimal automorphism E of Q, to which
we will refer as an enriched Poisson structure, provides a Poisson bivector
Π on TM ⊕ R with bracket (4.2), and a Lie bialgebroid (TM ⊕ R, J1M =
T ∗M ⊕ R).

An example (suggested by [14]) can be obtained as follows. Let (M,Λ,E)
be a Jacobi manifold. A time function is a function τ ∈ C∞(M) which
satisfies Eτ = 1. If such a function exists, then (Λ0 := Λ− (]Λdt)∧E,E) is
an enriched Poisson structure. Jacobi manifolds with time may be seen as
generalized phase spaces of time-dependent Hamiltonian systems. Namely,
if H ∈ C∞(M) is the Hamiltonian function, the trajectories of the system
are the integral lines of the vector field X0

H := ]Λ0dH + E.
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Let us briefly indicate the important objects associated with the Lie
algebroids TM ⊕R defined by the bracket (4.2′), and J1M with the bracket
(4.9).

The cohomology of TM ⊕ R is that of the cochain spaces

(4.10)
∧k
ΩM := {λ = λ1 + λ2 ∧ dt / λ1 ∈

∧k
M, λ2 ∈

∧k−1
M}

with the corresponding coboundary, say dΩ . A straightforward evaluation
of dΩλ on arguments Xi + fi(∂/∂t), in accordance with the Lie algebroid
calculus [15], yields the formula

(4.11) dΩλ = dλ− (−1)kΩ ∧ λ2.

The Poisson cohomology of TM⊕R above, i.e. the cohomology of the Lie
algebroid J1M with (4.9), can be viewed (with (4.1)) as having the cochain
spaces

(4.12) Ck(M) :=
{
C = C1 +

∂

∂t
∧ C2

/
C1 ∈ VkM, C2 ∈ Vk−1M

}
,

and the coboundary ∂C = [Π,C]Ω , with Π of (4.4) and the Ω-Schouten–
Nijenhuis bracket. In order to write down a concrete expression of this
coboundary, we define an operation U ∧Ω V ∈ Vk+h−2, for U ∈ VkM ,
V ∈ VhM , by the formula

(4.13) U ∧Ω V (α1, . . . , αk+h−2)

=
1

(k − 1)!(h− 1)!

∑
σ∈Sk+h−2

[(signσ)

·
m∑
i=1

U(εi, ασ1 , . . . , ασk−1)V ([Ωei, ασk , . . . , ασk+h−2)],

where S is the symmetric group, ei is a local tangent basis of M , and εi is
the corresponding dual cobasis. If U, V are vector fields, U ∧Ω V = Ω(U, V ).
By computing, for decomposable multivectors C1, C2 we get

(4.14) ∂C = [Q,C1] +
∂

∂t
∧ ([Q,C2] +Q ∧Ω C1 − LEC1),

where the brackets are the usual Schouten–Nijenhuis brackets on M .
Furthermore, the exact generator of the BV-algebra of the Lie algebroid

J1M is δΩ := [i(Π), dΩ ], and using (4.11) we get

(4.15) δΩ(λ1 + λ2 ∧ dt)
= δQλ1 + (−1)k−1([i(Q), e(Ω)]λ2 − di(E)λ2) + (δQλ2) ∧ dt,

where e(Ω) is exterior product and [ , ] is the commutator of the operators.
Finally, let us discuss the modular class of the Lie algebroid J1M with

bracket (4.9). For simplicity, we assume the manifold M to be orientable,
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with volume form Φ∈ Γ
∧m

M . In the non-orientable case, the same compu-
tations hold if Φ is replaced by a density Φ ∈ Γ |

∧m
M |. Again, we denote by

WQ the modular vector field defined by L]QdfΦ = (WQf)Φ (see Section 3).
There are two natural possibilities to define a modular class for the

algebroid J1M . One is by computing the Lie derivative:

(4.16) L]Π(α+fdt)(Φ ∧ dt) = [L]QαΦ+ fLEΦ+ df ∧ i(E)Φ] ∧ dt.
This result is obtained if the computation is done after Φ is decomposed
into a product of m 1-forms, and by using (4.6). Since i(E)(df ∧Φ) = 0, the
last term in (4.16) is (Ef)Φ, and if we also use (3.13), then (4.16) yields

(4.17) L]Π(df+fdt)(Φ ∧ dt) = (WQf + f divΦE + Ef)(Φ ∧ dt).
Therefore, we get the modular field

(4.18) WΠ := WQ + E + (divΦE)
∂

∂t
.

If Φ is replaced by hΦ (h ∈ C∞(M)), it follows easily that the Π-Poisson
cohomology class [WΠ ] is preserved. This will be the modular class.

The second possibility is to apply the general definition of [3]. Similar to
what we had for Jacobi manifolds in Section 3, this requires computing the
flat connection D on (

∧m+1
J1M)⊗ (

∧m
T ∗M) given by

D(df+fdt)[(Φ ∧ dt)⊗ Φ] = LJ
1M

(df+fdt)(Φ ∧ dt)⊗ Φ(4.19)
+ (Φ ∧ dt)⊗ (L%(df+fdt)Φ).

From Lie algebroid calculus, we know that

(4.20) LJ
1M

(df+fdt)(Φ ∧ dt) = {df + fdt, Φ ∧ dt}Ω ,
where the bracket is the Schouten–Nijenhuis extension of (4.9). If we look
at a decomposition Φ = ϕ1 ∧ . . . ∧ ϕn (ϕi ∈

∧1
M), (4.9) yields

{df + fdt, dt}Ω = 0

and

{df + fdt, ϕi}Ω = L%(df+fdt)ϕi − ϕi(E)df + f[Ω]Qβ − (]Qβ(f))dt,

and we get

(4.21) LJ
1M

(df+fdt)(Φ ∧ dt) = [L(df+fdt)Φ− (Ef)Φ+ f tr([Ω ◦ ]Q)Φ] ∧ dt.
But we also have

(4.22) L%(df+fdt)Φ = L]Qdf+fEΦ = [WQf + f divΦE + Ef ]Φ.

By inserting (4.21), (4.22) into (4.19), we get another modular field , namely,

AΩ := (2WQ + E)⊕ (divΦE + tr([Ω ◦ ]Q))(4.23)
= (2WΠ − E)⊕ tr([Ω ◦ ]Q).
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From the general results of [3], it is known that the Π-Poisson cohomology
class of this field is independent of the choice of Φ, and it is a modular class
of J1M .

As for the modular class of TM ⊕ R with bracket (4.2′), it vanishes for
reasons similar to those for the class of the tangent algebroid TM (cf. [3]).

We finish by another interpretation of the enriched Poisson structures.
If F is an arbitrary associative, commutative, real algebra, we may say
that f : M → F is differentiable if for any R-linear mapping φ : F → R,
φ ◦ f ∈ C∞(M). Furthermore, an R-linear operator vx which acts on germs
of F-valued differentiable functions at x ∈M , and satisfies the Leibniz rule,
will be an F-tangent vector of M at x. Then we have natural definitions of
tangent spaces Tx(M,F), differentiable F-vector fields, etc. [17]. A bracket
{ , } which makes C∞(M,F) a Poisson algebra will be called an F-Poisson
structure on M .

Now, take F to be the Studi algebra of parabolic dual numbers S := R[s |
s2 = 0], where s is the generator. An S-Poisson structure Π in the above-
mentioned sense will be called a Studi–Poisson structure. The restriction of
Π to real-valued functions is a Poisson bivector Q on M , and the Jacobi
identity shows that the Hamiltonian vector field XΠ

s of the constant function
s is an infinitesimal automorphism E of Q. Conversely, the pair (Q,E)
defines the Studi–Poisson bracket
{f0 + f1s, g0 + g1s} := {f0, g0}Q + f1(Eg0)− g1(Ef0)

+ s({f0, g1}Q + {f1, g0}Q + f1(Eg1)− g1(Ef1)).

Notice that we cannot say that vxs = 0 for all vx ∈ Tx(M,F) since vx
was linear over R only.
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