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Multiplicity and the  Lojasiewicz exponent

by S. Spodzieja ( Lódź)

Abstract. We give a formula for the multiplicity of a holomorphic mapping f :
Cn ⊃ Ω → Cm, m > n, at an isolated zero, in terms of the degree of an analytic set
at a point and the degree of a branched covering. We show that calculations of this
multiplicity can be reduced to the case when m = n. We obtain an analogous result for
the local  Lojasiewicz exponent.

Introduction. Achilles, Tworzewski and Winiarski [ATW] introduced a
definition of the improper isolated intersection multiplicity of analytic sets.
Tworzewski [Tw] generalized this definition to any improper intersections of
analytic sets. This biholomorphic invariant plays an important role in the
theory of singularities of analytic sets. The above multiplicity leads to the
definition of multiplicity of a holomorphic mapping at a zero of this mapping
(see [TW]). We study the multiplicity i0(f) of a holomorphic mapping f :
Ω→Cm at an isolated zero 0 ∈ Ω, where Ω ⊂ Cn is an open set and m > n.

The main result of this paper is a formula for i0(f) (Theorem 1.2).
Namely, for a sufficiently small neighbourhood D ⊂ Ω of 0,

i0(f) = deg f |D deg0 f(D),

where f |D : D → f(D) is a branched covering (i.e. a ∗-covering in the
sense of [ L2], V.7.2). The crucial role in the proof of Theorem 1.2 is played
by the reduction of the calculations of the multiplicity of f at an isolated
zero to the case m = n (see Theorem 1.1). We obtain this result by the
composition of f with a linear mapping. From Theorem 1.1 it follows that
the multiplicity i0(f) depends on the ideal generated by the components
of f only (see Corollary 1.1, cf. [ATW], Proposition 6.1). Additionally we
obtain an estimate from below of the multiplicity of a holomorphic mapping
at an isolated zero in terms of the orders of the components of the mapping
(see Corollary 1.2).
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We apply considerations analogous to those in Theorem 1.1 to the local
 Lojasiewicz exponent. We show that the calculation of the  Lojasiewicz ex-
ponent of f can be reduced to the case m = n (see Theorem 2.1). In the case
m = n relations between the above mentioned biholomorphic invariants are
well known (see [ L1], [D’A], [CL], [P1]–[P3], [C], [Te], [LJT], [KL]). We show
that some of them also hold in the case m > n (see Proposition 3.1).

1. The multiplicity of isolated zeros of holomorphic mappings.
In the whole paper we will assume that Ω ⊂ Cn is a neighbourhood of
0 ∈ Cn and

f = (f1, . . . , fm) : Ω → Cm

is a holomorphic mapping having an isolated zero at 0, m ≥ n.
By the multiplicity of f at 0 we mean the improper intersection multi-

plicity i(graph f · (Cn×{0}); (0, 0)) of the graph f and Cn×{0} at the point
(0, 0) ∈ Cn ×Cm (see [ATW]) and we denote it by i0(f). If m = n then we
have i0(f) = µ0(f), where µ0(f) denotes the covering multiplicity of f at 0.

We shall show that considerations of multiplicity at an isolated zero of
a holomorphic mapping f : Cn ⊃ Ω → Cm can be reduced to the case when
m = n.

Denote by L(m, k) the set of all nonsingular linear mappings Cm → Ck,
where for k = 0 we put Ck = {0}.

In what follows we will write “the generic x ∈ A” instead of “there exists
an algebraic set V such that A \ V is a dense subset of A and x ∈ A \ V ”.

Let f : Ω → Cm be as above.

Theorem 1.1. Let n ≤ k ≤ m. Then for any L ∈ L(m, k) such that the
point 0 is an isolated zero of L ◦ f : Ω → Ck we have

(1) i0(f) ≤ i0(L ◦ f).

Moreover , for the generic L ∈ L(m, k), the point 0 is an isolated zero of
L ◦ f and

(2) i0(f) = i0(L ◦ f).

The proof of this theorem will be preceded by two definitions and a
lemma.

Let V be an analytic set in a neighbourhood D ⊂ CN of 0 ∈ CN , 0 ∈ V .
By C0(V ) we denote the tangent cone to V at 0 in the sense of Whitney
([W], p. 510). The tangent cone C0(V ) is clearly a closed cone with vertex 0.
Moreover, it is an algebraic set of dimension dim0 V . If 0 is a simple point
of V , then C0(V ) is the tangent space T0(V ) to V at 0.

Let V , W be analytic sets in a neighbourhood D ⊂ CN of 0 ∈ CN ,
0 ∈ V ∩W . The relative tangent cone C0(V,W ) of the sets V , W at 0 is
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defined as the set of v ∈ CN such that there exist sequences {xj} ⊂ V ,
{yj} ⊂W and {tj} ⊂ C satisfying

xj → 0, yj → 0, tj(xj − yj)→ v as j →∞.
It is easy to see that the relative tangent cone C0(V,W ) is clearly a closed
cone with vertex 0.

Lemma 1.1. Let Ω ⊂ Cn be a neighbourhood of 0 ∈ Cn such that Ω is
a compact set. Let f be a holomorphic mapping in some neighbourhood of
Ω with values in Cm such that f−1(0) ∩ Ω = {0} and f(Ω) generates an
irreducible analytic germ at 0 ∈ Cm. Then

C(0,0)(Cn × {0}, graph f) = Cn × C0(f(Ω)).

P r o o f. Take any sequences {xj} ⊂ Ω, {(x′j , f(x′j))} ⊂ graph f and
{tj} ⊂ C such that xj → 0 and x′j → 0 as j →∞. If

(3) tj(x′j − xj , f(x′j))→ v ∈ Cn+m,

then obviously v ∈ Cn × C0(f(Ω)).
Take any v = (x, y) ∈ Cn × C0(f(Ω)). Assume that y = 0, and

x 6= 0. Let x′j = (1/j)x. Then there exists {tj} ⊂ C such that tj → ∞
and tjf(x′j) → 0. Let xj = x′j − (1/tj)x. Then obviously xj → 0 and (3)
holds. Thus v ∈ C0(Cn × {0}, graph f). Let now y 6= 0. Then there exist
sequences {x′j} ⊂ Cn and {tj} ⊂ C such that

f(x′j)→ 0, tjf(x′j)→ y.

Hence, tj → ∞ and, by the assumptions, x′j → 0. Taking xj as above we
obtain (3) and so, v ∈ C0(Cn × {0}, graph f). This ends the proof.

Proof of Theorem 1.1. If m = n or k = m, then the assertion is obvious.
Assume that m > k ≥ n.

Consider the case k = n. Let L ∈ L(m,n) be such that 0 is an isolated
point of (L ◦ f)−1(0). Let

H = Cn × kerL.

Then from the definitions of multiplicity of improper and proper intersec-
tions we have

i0(f) = i(graph f · (Cn × {0}); (0, 0)) ≤ i(graph f ·H; (0, 0)) = µ0(L ◦ f),

which gives (1) in this case.
We now prove the second part of the theorem. Since the considerations

have a local character and 0 is an isolated zero of f , we may assume that
Ω is a compact set, f is a holomorphic mapping in a neighbourhood of Ω,
f−1(0) ∩Ω = {0} and W = f(Ω) generates an irreducible analytic germ at
0 ∈ Cm. Let C0(W ) be the tangent cone of W at 0. Then dimC0(W ) =
dimW . So, for the generic L ∈ L(m,n), by Corollary of [ L2], VII.11.8, we
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obtain C0(W )∩kerL⊂{0}, thus 0 is an isolated point of (L◦f)−1(0). From
Lemma 1.1 we get

C(0,0)(Cn × {0}, graph f) = Cn × C0(W ).

Thus, using Theorem 4.4 of [ATW], we easily see that for any L ∈ L(m,n)
such that C0(W ) ∩ kerL = {0},

i(graph f · Cn × {0}; (0, 0)) = i(graph f ·H; (0, 0)),

where H = Cn × kerL. So,

i0(f) = µ0(L ◦ f).

Since the set {L ∈ L(m,n) : C0(W ) ∩ kerL = {0}} is a Zariski open and
dense subset of L(m,n), we obtain (2) for the generic L ∈ L(m,n).

Now consider the last case n < k < m. Take any L∈L(m, k) such that 0
is an isolated zero of L ◦ f : Ω → Ck. Then, by the first part of the proof,
we have

i0(L ◦ f) = min
L̃∈L(k,n)

µ0(L̃ ◦ L ◦ f) ≥ min
L∈L(m,n)

µ0(L ◦ f) = i0(f).

This gives (1) in this case.
Let U ⊂ L(m,n) be the set of all M ∈ L(m,n) such that i0(M ◦ f)

= i0(f). Then, by the first part of the proof, the set

U ′ = {L = (M,M ′) ∈ L(m, k) : M ∈ U , M ′ ∈ L(m, k − n)}

contains a Zariski open subset of L(m, k). Moreover, for any L = (M,M ′)
∈ U ′, taking L̃(y1, . . . , yk) = (y1, . . . , yn) we obtain

i0(f) ≤ i0(L ◦ f) ≤ i0(L̃ ◦ (M,M ′) ◦ f) = i0(M ◦ f) = i0(f).

This gives (2) for any L ∈ U ′ and ends the proof in this case.
This ends the proof of Theorem 1.1.

Denote by O0 the ring of germs of holomorphic functions at 0 ∈ Cn, and
by m0 the maximal ideal of O0.

Theorem 1.1 and Theorem 5.2 of [ATW] yield

Corollary 1.1. The multiplicity i0(f) is a biholomorphic invariant and
depends on the ideal (f1, . . . , fm)O0 only.

P r o o f. The first part immediately follows from the fact that the inter-
section multiplicity of analytic sets is a biholomorphic invariant (see [ATW],
Theorem 5.2). To show the second part, observe that for any functions βi,j ,
i, j = 1, . . . ,m, holomorphic in a neighbourhood of 0 such that the matrix
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[βi,j ] is invertible, we have

i0(f) = i0(f̃),

where f̃ = [βi,j ]f . Indeed, since [βi,j ] is invertible, there exist neighbour-
hoods U,D ⊂ Cn × Cm such that

ξ : U 3 (x, y) 7→ (x, [βi,j ]y) ∈ D
is a biholomorphism. Moreover ξ(U ∩ (Cn × {0})) = D ∩ (Cn × {0}) and
ξ(U ∩ graph f) = D ∩ graph f̃ . Thus, by Theorem 5.2 of [ATW], we have
the announced observation.

Let g1, . . . , gk be holomorphic functions about 0 such that

(f1, . . . , fm)O0 = (g1, . . . , gk)O0.

From Theorem 1.1, we see that

i0(f) = i0(f1, . . . , fm, 0, . . . , 0),

so, from the above observation,

i0(f) = i0(f1, . . . , fm, g1, . . . , gk) = i0(0, . . . , 0, g1, . . . , gk) = i0(g1, . . . , gk).

This ends the proof.

Remark 1.1. Theorem 1.1 yields (m0)i0(f) ⊂ (f1, . . . , fm)O0.
Indeed, by Theorem 1.1, there exists L ∈ L(m,n) such that i0(f) =

µ0(L◦f). Let J be the ideal in O0 generated by the components of the map-
ping L◦f . It is well known that (m0)µ0(L◦f) ⊂ J . Since J ⊂ (f1, . . . , fm)O0,
we obtain the assertion.

Let m ≥ k. Denote by ∆(m, k) the set of all linear mappings L =
(L1, . . . , Lk) ∈ L(m, k) of the form

Li(y1, . . . , ym) = yi +
m∑

j=k+1

αi,jyj , i = 1, . . . , k,

where αi,j ∈ C.
From Theorem 1.1, it is easy to deduce

Proposition 1.1. For the generic L = (L1, . . . , Ln) ∈ ∆(m,n), the
point 0 is an isolated zero of L ◦ f : Ω → Cn and

i0(f) = i0(L ◦ f) = µ0(L ◦ f).

Moreover , if kj = ord fj , k1 ≤ . . . ≤ km, then

ord(Lj ◦ f) = kj , j = 1, . . . , n.

From the above proposition and properties of covering multiplicity of
holomorphic mappings we have
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Corollary 1.2. Let f = (f1, . . . , fm) : Ω → Cm, and let kj = ord fj ,
k1 ≤ . . . ≤ km. Then:

(i) i0(f) ≥ k1 . . . kn.
(ii) If

(4) i0(f) = k1 . . . kn

then the initial forms in f1, . . . , in fl have no nontrivial zeros in common,
where l = max{j : kj = kn}.

(iii) If the forms in f1, . . . , in fn have no common nontrivial zeros, then
(4) holds.

P r o o f. From Proposition 1.1, by the assumptions on the orders kj , for
the generic L = (L1, . . . , Ln) ∈ ∆(m,n) we have

(5) ordLj ◦ f = kj , j = 1, . . . , n,

and
i0(f) = µ0(L ◦ f).

Then from the properties of covering multiplicity in the proper case m = n
we obtain (i).

(ii) Assume that the forms in f1, . . . , in fl have a nontrivial common zero.
Then for the generic L ∈ ∆(m,n), the initial forms of the components of
the mapping L ◦ f have a nontrivial zero in common. Thus, by (5), Propo-
sition 1.1, and the properties of covering multiplicity in the proper case, (4)
does not hold.

(iii) Assume that (4) does not hold. Then, by (5), (i) and Proposition 1.1,
for the generic L ∈ ∆(m,n), the initial forms of the components of L ◦ f
have a nontrivial zero in common. Let

F = (F1, . . . , Fn) : ∆(m,n)×Ω 3 (L, x) 7→ L(f(x)) ∈ Cn.

Then for the generic L ∈ ∆(m,n), the forms inF1(L, x), . . . , inFn(L, x) have
a nontrivial zero in common. Thus for any L ∈ ∆(m,n) the above forms
have a nontrivial zero in common. In particular taking L(y1, . . . , ym) =
(y1, . . . , yn) ∈ ∆(m,n) we see that in f1, . . . , in fn have a common nontrivial
zero. This contradicts the assumption.

Corollary 1.3. Let f = (f1, . . . , fm) : Cn → Cm be a polynomial
mapping having an isolated zero at 0. Let dj = deg fj , d1 ≥ . . . ≥ dm > 0.
Then

i0(f) ≤ d1 . . . dn.

P r o o f. By Proposition 1.1, there exists L = (L1, . . . , Ln) ∈ ∆(m,n)
such that 0 is an isolated zero of L ◦ f and i0(f) = i0(L ◦ f). By the
definition of ∆(m,n) we have degLj ◦ f ≤ dj for j = 1, . . . , n. Then, by
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Proposition 1.3 of [P3] we obtain

i0(f) = µ0(L ◦ f) ≤ d1 . . . dn.

This gives the assertion.

Let us give a formula for the multiplicity of a holomorphic mapping at
an isolated zero. We adopt the definition of the degree of an analytic set A
at a point x from [D], §6, and denote it by degxA.

Let Ω ⊂ Cn be a neighbourhood of 0 ∈ Cn such that Ω is a compact set.
Let f be a holomorphic mapping in some neighbourhood of Ω with values in
Cm such that f−1(0)∩Ω = {0}. By the Remmert proper mapping theorem
([ L2], V.5.1), f(Ω) is an analytic set at 0 ∈ Cm.

Proposition 1.2. Under the above notations,

i0(f) = α deg0 f(Ω),

where α = lim supx→0 #(f−1(f(x)) ∩ Ω). Moreover , α does not depend on
the choice of Ω.

P r o o f. From the assumption, we have η = infx∈∂Ω |f(x)| > 0. Let
B = {y ∈ Cm : |y| < η/2}, and let D ⊂ Ω be the connected component of
f−1(B) such that 0 ∈ D. Obviously f−1(0)∩D = {0}. Moreover f : D → B
is a proper mapping. So, for any y ∈ B, #(f−1(y) ∩ D) < ∞. By the
Remmert proper mapping theorem, W = f(D) is an analytic subset of B,
and, by Proposition 2 of [ L2], V.7.2, dimW = n. Moreover, the germs of the
analytic sets W and f(Ω) at 0 ∈ Cm are equal, thus

deg0W = deg0 f(Ω).

Since the set W is irreducible, f |D : D → W is a branched covering. It is
easy to see that for any neighbourhood D′ ⊂ D of 0 ∈ Cn, there exists ε > 0
such that for any |y| < ε we have f−1(y) ∩D′ = f−1(y) ∩Ω. Thus α is the
degree of the covering f |D.

Let S be the set of singular points of W . From the definition of deg0W ,
there exists a dense subset U ⊂ L(m,n) such that for any L ∈ U , there exists
a neighbourhood U ⊂ Cn of 0, and an analytic subset V ⊂ U , dimV < n,
such that for all z ∈ U \ V ,

#[(W \ S) ∩ L−1(z)] = #[W ∩ L−1(z)] = deg0W.

Thus, for any z ∈ U , #[(L ◦ f)−1(z) ∩ D] ≤ α deg0W . Moreover, by the
Andreotti–Stoll theorem, there exists an analytic subset V ⊂ Σ ⊂ U ,
dimΣ < n, such that for any z ∈ U \Σ,

#[(L ◦ f)−1(z) ∩D] = α deg0W.

On the other hand, for any L ∈ U , there exist connected neighbourhoods
D′ ⊂ D and B′ ⊂ U of 0 ∈ Cn such that L ◦ f : D′ → B′ is proper and
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(L ◦ f)−1(0) ∩D′ = {0}. In consequence,

µ((L ◦ f), 0) = sup
z∈B′

#[(L ◦ f)−1(z) ∩D′] = α deg0W.

This, by Theorem 1.1, gives the assertion.

Let, as before, Ω ⊂ Cn be a neighbourhood of 0 ∈ Cn and f : Ω → Cm
be a holomorphic mapping having an isolated zero at 0.

Theorem 1.2. There exists a neighbourhood D ⊂ Ω of 0 such that
f |D : D → f(D) is a branched covering , f−1(0) ∩D = {0} and

i0(f) = deg0 f(D) deg f |D.
P r o o f. Since 0 is an isolated zero of f , there exists a neighbourhood K

of 0 such that K ⊂ Ω is a compact set and f−1(0)∩K = {0}. So, as in the
proof of Proposition 1.2, there exist neighbourhoods 0 ∈ D ⊂ K, 0 ∈ B ⊂
Cm such that f |D : D → B is a proper mapping. Thus, f |D : D → f(D)
is a branched covering. Moreover α = lim supx→0 #(f−1(0) ∩D) does not
depend on the choice of D and α is the degree of the branched covering
f |D : D → f(D). In consequence, by Proposition 1.2, we have the assertion.

2. The local  Lojasiewicz exponent. Analogous considerations can
be applied to the local  Lojasiewicz exponent. Let, as usual, Ω ⊂ Cn be a
neighbourhood of 0 ∈ Cn and let f : Ω → Cm be a holomorphic mapping
having an isolated zero at 0.

Set

N0(f) = {ν ∈ R : ∃C>0, r>0 ∀x∈Ω |x| < r ⇒ |f(x)| ≥ C|x|ν}.
The  Lojasiewicz exponent at 0 of the mapping f is defined to be inf N0(f)
and denoted by L0(f).

Theorem 2.1. Let n ≤ k ≤ m. Then for any L ∈ L(m, k) such that 0
is an isolated zero of (L ◦ f)−1(0) we have

L0(f) ≤ L0(L ◦ f).

Moreover , for the generic L ∈ L(m, k), the point 0 is an isolated zero of
L ◦ f and

L0(f) = L0(L ◦ f).

P r o o f. Obviously m ≥ n. If m = n or k = m, then the assertion is
obvious. Assume that m > k ≥ n.

Consider the case k = n. Let L ∈ L(m,n) be such that 0 is an isolated
point of (L ◦ f)−1(0). Then there exists M ∈ L(m,m − n) such that L̃ =
(L,M) : Cm → Cm is a linear automorphism of Cm. Thus L0(f) = L0(L̃◦f).
Obviously for x ∈ Ω we have |L̃◦f(x)| ≥ |L◦f(x)|, so L0(L̃◦f) ≤ L0(L◦f).
This gives the first part of the assertion in this case.
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Let us prove the second part. Since the considerations have a local charac-
ter, we may assume thatW = f(Ω) generates an irreducible germ at 0 ∈ Cm.
Let C0(W ) be the tangent cone to W at 0. Then dimC0(W ) = dimW , so
for the generic L ∈ L(m,n) we have C0(W ) ∩ kerL ⊂ {0}, thus 0 is an
isolated zero of L◦f . By Sadullaev’s theorem ([ L2], VII.7.1), for the generic
L ∈ L(m,n) there exists M ∈ L(m,m−n) such that (L,M) ∈ L(m,m) and
for any y ∈ C0(W ),

|M(y)| ≤ 1
2 |L(y)|.

Thus, diminishing Ω if necessary, we have for any x ∈ Ω,

|M(f(x))| ≤ |L(f(x))|.
Therefore |(L,M) ◦ f(x)| = |L ◦ f(x)|, x ∈ Ω. This gives

L0(L ◦ f) = L0((L,M) ◦ f) = L0(f).

So, we have the assertion in this case.
The last case n < k < m is proved as in Theorem 1.1. This ends the

proof.

Since the  Lojasiewicz exponent is an invariant with respect to linear
automorphisms, from Theorem 2.1 we immediately obtain

Proposition 2.1. For the generic L = (L1, . . . , Ln) ∈ ∆(m,n), the
point 0 is an isolated zero of L ◦ f : Ω → Cn and

L0(f) = L0(L ◦ f).

Moreover , if kj = ord fj , k1 ≤ . . . ≤ km, then

ord(Lj ◦ f) = kj , j = 1, . . . , n.

By the regular separation exponent of closed sets X, Y in an open subset
D ⊂ CN at a point a ∈ X ∩ Y we mean a number ν > 0 such that there
exist C > 0 and a neighbourhood B ⊂ D of a such that

z ∈ B ⇒ %(z,X) + %(z, Y ) ≥ C%(z,X ∩ Y )ν ,

where %(z,A) = infx∈A |z − x| (cf. [ L2], IV.7.1).

Remark 2.1. It is easy to observe that the  Lojasiewicz exponent of a
holomorphic mapping f : Ω → Cm at an isolated zero 0 ∈ Ω is the smallest
regular separation exponent of Ω × {0} and graph f at (0, 0).

Remark 2.2. From the above remark it follows that the  Lojasiewicz
exponent of a holomorphic mapping f = (f1, . . . , fm) : Ω → Cm at an
isolated zero 0 ∈ Ω depends on the ideal (f1, . . . , fm)O0 only.

Indeed, let X = Ω × {0}, Y = graph f . Take any functions βi,j , i, j =
1, . . . ,m, holomorphic in a neighbourhood of 0 ∈ Cn such that the matrix
[βi,j ] is invertible, and take the biholomorphism ξ as in the proof of Corol-
lary 1.1. Then for f̃ = [βi,j ]f we have ξ(Y ) = graph f̃ . Since the regular
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separation exponent is a biholomorphic invariant (see [ L2], IV.7.1), using
Remark 2.1, we see L0(f) = L0(f̃). Hence, as in the proof of Corollary 1.1
we obtain the assertion of the remark.

Remark 2.3. For the  Lojasiewicz exponent, in general, the inclusion
(m0)L0(f)⊂ (f1, . . . , fm)O0 does not hold. Indeed, if f = (x2, y3) : C2→C2,
then L0(f) = 3 but (m0)3 6⊂ (x2, y3)O0, because (x+ y)3 6∈ (x2, y3)O0.

3. Multiplicity and the  Lojasiewicz exponent. Using the results
of Sections 1 and 2, we may easily generalize some known relations between
multiplicity and the  Lojasiewicz exponent from the case m = n to the case
m > n. Namely, we have

Proposition 3.1. Let Ω ⊂ Cn be a neighbourhood of 0 and let

f = (f1, . . . , fm) : Ω → Cm

be a holomorphic mapping having an isolated zero at 0, m ≥ n.

(i) ([P2] for m = n). If g : Ω → Cm is a holomorphic mapping such
that ord(f − g) > L0(f), then 0 is an isolated zero of g and

L0(f) = L0(g), i0(f) = i0(g).

(ii) ([P3] for m = n).

i0(f) ≤ [L0(f)]n,

where [L0(f)] denotes the integer part of the number L0(f).
(iii) ([C] for m=n=2 and [P3] for m=n). Let kj=ord fj , k1≤ . . .≤km.

Then

kn ≤ L0(f) ≤ i0(f) + kn −
n∏
i=1

ki.
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