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On the intersection product of analytic cycles

by S lawomir Rams (Kraków)

Abstract. We prove that the generalized index of intersection of an analytic set with a
closed submanifold (Thm. 4.3) and the intersection product of analytic cycles (Thm. 5.4),
which are defined in [T2], are intrinsic. We define the intersection product of analytic
cycles on a reduced analytic space (Def. 5.8) and prove a relation of its degree and the
exponent of proper separation (Thm. 6.3).

1. Introduction. In [T2] an intersection product of two analytic cycles
on a (complex) manifold is constructed. The construction is based on a
pointwise defined so-called extended index of intersection g̃(Z, S)(c) of an
analytic subset Z of a manifold N with a submanifold S at a point c (see
[T2], p. 185). This notion generalizes the intersection product constructed
in [Dr], [BH], and the isolated improper intersection multiplicity studied
in [ATW].

This paper is a continuation of [T2] and its main aim is to prove that both
the extended index of intersection and the intersection product are intrinsic.
Thanks to the results of the first five sections of our paper the construc-
tion from [T2] can be applied to analytic cycles on reduced analytic spaces
(Def. 5.8), which leads to a generalization (Thm. 6.3) of some estimates of
the exponent of proper separation (see [T1], [CT], [Cg]).

The reader is expected to be familiar with the notion of the multiplicity
of proper intersection of analytic sets (see [Dr]), intersection product of
analytic cycles (see [T2]), and some properties of holomorphic cycles (also
known as chains) (see [T2, §3]). For the convenience of the reader we present
the construction of the intersection product of analytic cycles on a manifold
in the third section. The definition of the topology of chains can be found in
[R1]. We apply it only on the space of positive chains, where it coincides with
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the weak topology of currents. Throughout the text we work over the field C
of complex numbers. All the manifolds are assumed to be second-countable.

2. Preliminaries. Let N be an n-dimensional complex manifold, M be
an m-dimensional closed submanifold of N , and let S be an s-dimensional
closed submanifold of M . We fix a purely k-dimensional analytic set Z ⊂M
and a point c ∈ Z ∩ S. Let U be a neighbourhood of c in N .

We define the following family of hypersurfaces:

B(U) := {H ⊂ U : H is a smooth hypersurface in U, H ⊃ S ∩ U}.

We endow B(U) with the topology of (n − 1)-chains (see [R1]) and obtain
a metrizable topological space ([R1], Thm. 3.6).

Let us recall some basic notions associated with analytic cycles. Let
A =

∑
j∈J αjCj be an analytic cycle on N . The degree of such a cycle at

a point c is defined to be the sum
∑
j∈J αjν(Cj , c), where ν(Cj , c) stands

for the degree of the component Cj at c. By [T2], Prop. 2.1, the function
N 3 c 7→ ν(A, c) ∈ Z is analytically constructible, and for each analytically
constructible function f : N → Z there exists a unique cycle whose degree
equals the value of f at every point of N . This cycle will be called the cycle
defined by the function f .

The analytic cycle A has a unique decomposition into the sum of j-cycles
(formal combinations of analytic sets of pure dimension j) A =

∑n
j=0 T(j).

The extended degree of A at c is defined by the formula

ν̃(A, c) := (ν(T(n), c), . . . , ν(T(0), c)) ∈ Zn+1.

For the cycle A =
∑
j∈J αjCj the part of A supported by S is defined to be

AS :=
∑

j∈J,Cj⊂S
αjCj .

Let V be an open subset of N . The restriction of the cycle A to V is defined
to be

∑
j∈J αj(Cj ∩ V ) and denoted by A ∩ V .

Throughout the text E denotes the unit disc in C. We end this section
with the following useful lemma.

Lemma 2.1. Let N = En, S = Es × {0}n−s, and let {Fν}∞ν=1 be a
sequence of orthogonal mappings such that each Fν is idCs ⊕fν , where fν :
Cn−s → Cn−s. If Fν → idCn and a hypersurface H belongs to B(En), then
Fν(H)→ H.

P r o o f. This is a straightforward consequence of [T2], Lemma 3.2.

3. Intersections on manifolds. In this section we maintain the setup
of the previous one. We recall here some basic facts from [T2] and study
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the behaviour of the systems of hypersurfaces that appear in [T2], Algo-
rithm (4.1).

Let us recall the definition of the family H(U,Z) (see [T2], p. 184). It is
the family of all H := (H1, . . . ,Hn−s) satisfying the following conditions:

(a) Hj is a smooth hypersurface of U containing U∩S for j = 1, . . . , n−s,
(b)

⋂n−s
j=1 TxHj = TxS for each x ∈ U ∩ S,

(c) dim[((U \S)∩Z)∩H1∩ . . .∩Hj ] ≤ max{k−j,−1} for j = 0, 1, . . . , k.

The family H(U,Z) is also denoted by HS(U,Z).
Any system H := (H1, . . . ,Hn−s) ∈ H(U,Z) enables us to construct an

analytic cycle H · Z in S ∩ U by the following procedure:

Algorithm ((4.1) from [T2]).
Step 0: Let Z0 = Z ∩U . Then Z0 = ZS0 + (Z0 −ZS0 ), where ZS0 is the

part of Z0 supported by S ∩ U (see [T2], p. 182).
Step 1: Let Z1 = (Z0 − ZS0 ) ·H1. Then Z1 = ZS1 + (Z1 − ZS1 ), where

ZS1 is the part of Z1 supported by S ∩ U .
Step 2: Let Z2 = (Z1 − ZS1 ) ·H2. Then Z2 = ZS2 + (Z2 − ZS2 ), where

ZS2 is the part of Z2 supported by S ∩ U .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Step n − s: Let Zn−s = (Zn−s−1−ZSn−s−1) ·Hn−s. Now we have a decom-
position Zn−s = ZSn−s + (Zn−s − ZSn−s), where |Zn−s − ZSn−s|
∩ S = ∅.

The cycle H · Z := ZS0 + . . . + ZSn−s is called the result of the Algorithm
applied to the system H, the set Z and the submanifold S.

We define the extended index of intersection g̃(Z, S)(c) of Z and S at c
by the formula ([T2], Def. 4.2)

g̃(Z, S)(c) := minlex{ν̃(H ·Z, c) : H ∈ H(V,Z), V is a neighbourhood of c},
where lex denotes the lexicographical ordering. The sum of all elements of
g̃(Z, S)(c) is called the index of intersection of Z and S at c and is denoted
by g(c) (or gN (Z, S)(c)).

Let X, Y be irreducible analytic subsets of the manifold N , a ∈ N , and
let ∆N denote the diagonal in N2. By [T2], Thm. 6.2, the function

N 3 x 7→ gN2(X × Y,∆N , (x, x)) ∈ N
is analytically constructible. The cycle defined by this function is called the
intersection product of the sets X, Y and is denoted by X • Y .

Having presented the construction which plays a fundamental role in this
paper, we can introduce some useful notation. Given a system (H1, . . . ,Hp)
of hypersurfaces and an open set V , we define a system of locally analytic
sets by the equality

(H1, . . . ,Hp)|V := (H1 ∩ V, . . . ,Hp ∩ V ).
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Let us now fix an integer 1 ≤ i ≤ n − s and a system H = (H1, . . . ,Hn−s)
of elements of B(U). For H ∈ B(U) we define the system

Hi(H) := (H1, . . . ,Hi−1, H,Hi+1, . . . ,Hn−s).

D(U,Z) denotes the family of all H = (H1, . . . ,Hn−s), where Hj ∈ B(U),
which satisfy the condition

(sq) dim[((U \ S) ∩ Z) ∩H1 ∩ . . . ∩Hq] ≤ max{k − q,−1}
for q = 1, . . . , k.

Observe that for any system H = (H1, . . . ,Hn−s) ∈ D(U,Z) we can
construct the cycle H ·Z. If V is a neighbourhood of c and H|V ∈ D(V,Z),
then we denote ν̃((H|V · Z), c) by ν̃(H · Z, c). This notation is justified by
the fact that the extended degree of the cycle H|V ·Z at c depends only on
the germs of Z, S, H1, . . . ,Hn−s at c. The latter results from the equality
(H|V · Z) ∩ V1 = H|V1 · Z, which holds for any neighbourhood V1 ⊂ V of c.

In what follows we will need the following families of hypersurfaces:
Ii(H, U, Z) denotes the family of hypersurfaces H ∈ B(U) for which there
exists a neighbourhood V of c such that Hi(H)|V ∈ H(V,Z), and

Ji(H, U, Z) := {H ∈ Ii(H, U, Z) : ν̃(Hi(H) · Z, c) = g̃(Z, S)(c)}.
Lemma 3.1. Let H = (H1, . . . ,Hn−s) ∈ H(U,Z) and let {Hj

i }∞j=1 ⊂
B(U ) converge to H0

i . If H0
i ∈ Ji(H, U, Z) then there exists a neighbourhood

V of c such that for almost all j we have

Hi(Hj
i )|V ∈ D(V,Z).

P r o o f. If Ũ is a neighbourhood of c such that the system Hi(Hj
i )|

Ũ

satisfies (sq) for j = q, . . . , l, then Zl(j, Ũ), ZSl (j, Ũ) stand for the results of
the first l steps of the Algorithm applied to this system.

It is obvious that all Hi(Hj
i ) satisfy (sq) for q < i. By [TW1], Thm. 2,

there exists a neighbourhood Ui of c and an integer ji such that Hj
i ∩ Ui

meet Z ∩ Ui properly for j > ji, which means that the cycles Zi(j, Ui) are
well defined for j > ji.

We can apply [T2], Thm. 3.6, to obtain Zi(j, Ui) → Zi(0, Ui). By [T2],
Thm. 3.4, there exists a neighbourhood Ũi+1 ⊂ Ui of c such that

(Zi(j, Ui)− ZSi (j, Ui)) ∩ Ũi+1 → (Zi(0, Ui)− ZSi (0, Ui)) ∩ Ũi+1.

Since ν((Zi(0, Ui)− ZSi (0, Ui))Hi+1 , c) = 0, we can apply [T2], Thm. 3.4, to
find a neighbourhood Ûi+1 ⊂ Ũi+1 such that

((Zi(j, Ui)− ZSi (j, Ui))Hi+1) ∩ Ûi+1 → 0,

where 0 is the zero cycle in Ûi+1. Consequently, there exists a neighbourhood
Ui+1 ⊂ Ûi+1 of c and an integer ji+1 such that Zi+1(j, Ui+1) is well defined
for j > ji+1.
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Since Zi+1(j, Ui+1) = (Hi+1 ∩ Ui+1) · (Zi(j, Ui+1) − ZSi (j, Ui+1)) we
apply [T2], Thm. 3.6, again to obtain the convergence Zi+1(j, Ui+1) →
Zi+1(0, Ui+1). Consequently, this procedure can be repeated until we find a
neighbourhood Un−s of c and an integer jn−s such that the cycles
Zn−s(j, Un−s) are well defined for j > jn−s. Put V := Un−s.

We can now prove the following property of the family Ji(H, U, Z).

Proposition 3.2. Under the main assumptions of this section we have

Ji(H, U, Z) ⊂ Int(Ii(H, U, Z)),

where Ii(H, U, Z) is considered as a subset of the space B(U).

P r o o f. Let H̆i ∈ Ji(H, U, Z). It suffices to find a neighbourhood V of
H̆i in B(U) such that every Hi ∈ V satisfies the following conditions:

(a)
⋂n−s
j=1 TcHj = TcS,

(b) there exists a neighbourhood Ũ of c such that

dim[(Z ∩ (Ũ \ S)) ∩H1 ∩ . . . ∩Hj ] ≤ max{k − j,−1} for j ≤ k.
To find a neighbourhood consisting only of hypersurfaces satisfying (a)

we can assume that U = (1 + ε)En, where ε > 0, S = (1 + ε)Es × {0}n−s,
c = 0. Observe that

⋂
j 6=i T0Hj = T0S + l, where l is a line.

Choose v ∈ (T0S + l) \ T0S. According to [R1], Def. 2.4, the condition
v 6∈ T0H defines a neighbourhood of T0H̆i. Therefore, it suffices to prove
the continuity of the mapping

B(U) 3 H 7→ T0H ∈ B(U).

Let {Hν}∞ν=0 ⊂ B(U) converge to a hypersurface H0. Without loss of gen-
erality H0 = (1 + ε)En−1 × {0}. For sufficiently large ν we have

(En−1 × ∂E) ∩Hν = ∅ and µ(π|Hν∩En) = 1,

where π(x1, . . . , xn) := (x1, . . . , xn−1) and µ denotes the multiplicity of
holomorphic covering.

Consequently, almost all hypersurfaces Hν ∩En are the graphs of holo-
morphic mappings Gν : En−1 → E, and Gν converges uniformly to G0. The
latter fact yields the convergence G′ν(0)→ G′0(0) and we get T0H

ν → T0H
0.

The existence of a neighbourhood satisfying (b) results immediately from
Lemma 3.1.

Now we can prove the main theorem of this section.

Theorem 3.3. The family Ji(H, U, Z) is an open subset of B(U).

P r o o f. By the previous proposition it suffices to prove that Ji(H, U, Z)
is an open subset of Ii(H, U, Z). Suppose that there exists a sequence
{Hj}∞j=1 ⊂ Ii(H, U, Z) \ Ji(H, U, Z) which converges to H0 ∈ Ji(H, U, Z).
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We introduce the following notation: Zl(j), ZSl (j) stand for the results of
the lth step of the Algorithm applied to the systems Hi(Hj) (thanks to
Lemma 3.1 we can assume that all those cycles are well defined), and

(νjs , . . . , ν
j
0) := ν̃(Hi(Hj) · Z, c), α := max{l : lim sup νjl > ν0

l }.

Obviously ZSq (j) = ZSq (0) for q ≤ i − 1 and νjl = ν0
l for l ≥ k − i + 1.

According to [T2], Thm. 3.6, we have Z1(j) → Z1(0). By [T2], Thm. 3.4,
there exists a neighbourhood Ui of c such that

ZSi (j) ∩ Ui → ZSi (0) ∩ Ui,(ai)
(Zi(j)− ZSi (j)) ∩ Ui → (Zi(0)− ZSi (0)) ∩ Ui.(bi)

The convergence (ai) yields that lim sup νji = ν0
i , which gives α < i. Since

H0 ∈ Ji(H, U, Z) and (bi) holds, we can apply [T2], Thm. 3.4, to find
Ui+1 satisfying the conditions (ai+1), (bi+1). Finally, we get α < 0, which
contradicts our choice of {Hj}∞j=1.

4.Extended index of intersection. We keep the setup of the previous
section. In this section we prove that the extended index of intersection is
intrinsic.

We will need the following lemmas.

Lemma 4.1. Let N = En, M = Em×{0}n−m, S = Es×{0}n−s and let Z
be a purely k-dimensional analytic subset of M . If V is a neighbourhood of
0 in M , and H = (H1, . . . ,Hm−s) ∈ H(V,Z), then there exist hypersurfaces
Hm−s+1, . . . ,Hn−s such that the system

H̃ := (H1 × En−m, . . . ,Hm−s × En−m, Hm−s+1, . . . ,Hn−s)

belongs to H(V × En−m, Z), and ν̃(H̃ · Z, 0) = ν̃(H · Z, 0).

P r o o f. Let Zj , ZSj (resp. Z̃j , Z̃Sj ) denote the result of the jth step of
the Algorithm applied to H (resp. H̃), Z and S.

Choose a system of hyperplanesHm−s+1, . . . ,Hn−s such that Cs×{0}m−s
× Cn−m ∩

⋂n−s
j=m−s+1Hj = Cs × {0}n−s. The assumption Z ⊂M gives
m−s⋂
j=1

(Hj × En−m) ∩ Z ⊂
(m−s⋂
j=1

Hj

)
× {0}n−m = S,

which implies that H̃ ∈ H(V × En−m, Z) and the cycles Z̃Sj vanish for
j > m− s.

It suffices to prove the equality Zj = Z̃j for j ≤ m− s. We can assume
that V = M and proceed by induction on j. Obviously Z0 = Z̃0. Suppose
that Zj−1 = Z̃j−1. Then [TW2], Thm. 2.2, yields

(Hj × En−m) ·N (Z̃j−1 − Z̃Sj−1) = ((Hj × En−m) ·N M) ·M (Z̃j−1 − Z̃Sj−1).
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Since (Hj × En−m) ·N M = Hj and Z̃j−1 − Z̃Sj−1 = Zj−1 − ZSj−1 we get
Zj = Z̃j .

Lemma 4.2. Under the assumptions of Lemma 4.1, if U is a neighbour-
hood of 0 in N , and H̃ = (H̃1, . . . , H̃n−s) ∈ H(U,Z) satisfies the condition

(1)
m−s⋂
i=1

T0H̃i ∩M = S,

then there exists a neighbourhood V of 0 in M such that the system H :=
(H̃1 ·M, . . . , H̃m−s ·M)|V ∈ H(V,Z) and ν̃(H̃ · Z, 0) = ν̃(H · Z, 0).

P r o o f. One can easily see that (H̃1 ·M, . . . , H̃m−s ·M)|V ∈ H(V,Z) for
a sufficiently small V .

Let Zj , ZSj (resp. Z̃j , Z̃Sj ) stand for the result of the jth step of the
Algorithm applied to H (resp. H̃), Z and S. As in the proof of Lemma 4.1
we have the inclusion

⋂m−s
j=1 Hj ∩ Z ⊂ S, which shows that the cycles Z̃Sj

vanish for j > m− s.
Finally, [TW2], Thm. 2.2, yields Zj = Z̃j ∩ (V ∩ S) for j ≤ m− s.

Theorem 4.3. Let S be an s-dimensional closed submanifold of a mani-
fold M , and let Z be a purely k-dimensional analytic subset of M , c ∈ S. If
M is a submanifold of a manifold N , then

g̃N (Z, S)(c) = g̃M (Z, S)(c).

P r o o f. Without loss of generality N = En, M = Em × {0}n−m, S =
Es × {0}n−s, c ∈ Z ∩ S and c = 0. We can also assume that there exists a
system H = (H1, . . . ,Hn−s) ∈ H(N,Z) such that ν̃(H · Z, c) = g̃(Z, S)(c).

We construct Hm−s := (H̃1, . . . , H̃m−s, Hm−s+1, . . . ,Hn−s) and find
εq > 0 such that Hm−s satisfies (1) (see Lemma 4.2), Hm−s|εm−sEn be-
longs to H(εm−sEn, Z) and ν̃(Hm−s · Z, c) = g̃(Z, S)(c).

Construction of H̃1. If H1 meets M at 0 transversally, we put H̃1 := H1.
Otherwise we choose {Fν}∞ν=1 satisfying the following conditions:

(a) Fν = idCs ⊕fν , where fν : Cn−s → Cn−s is an orthogonal mapping,
(b) Fν → idCn ,
(c) Fν(H1) is transversal to the submanifold M at the point 0.

Lemma 2.1 gives Fν(H1)→ H1. By Theorem 3.3 we can find a ν1 such that
Fν(H1) ∈ J1(H, En, Z) for ν ≥ ν1. We put H̃1 := Fν1(H1), H1 := H1(H̃1).
Obviously there exists ε1 > 0 such that H1|ε1En ∈ H(ε1En, Z).

Let q be an integer, 2 ≤ q ≤ m−s. Suppose that we have found a system
Hq−1 := (H̃1, . . . , H̃q−1, Hq, . . . ,Hn−s) which satisfies the conditions:
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• dim(
⋂q−1
j=1 T0H̃j ∩M) = m− q + 1,

• there exists an εq−1 > 0 such that Hq−1|εq−1En ∈ H(εq−1E
n, Z),

• ν̃(Hq−1 · Z, 0) = g̃(Z, S)(0).

Construction of H̃q. If Hq is transversal to
⋂q−1
j=1 H̃j ∩M at 0, we put

H̃q := Hq. Otherwise we apply Lemma 2.1 and Theorem 3.3 to find H̃q ∈
Jq(Hq−1, En, Z) that is transversal to

⋂q−1
j=1 H̃j ∩M at 0. We define Hq :=

(Hq−1)q(H̃q). One can see that there exists an εq > 0 such that Hq|εqEn ∈
H(εqEn, Z).

By Lemma 4.2,

g̃M (Z, S)(c) ≤lex ν̃(Hm−s · Z, c) = g̃N (Z, S)(c).

Assume that a system H ∈ H(M,Z) satisfies ν̃(H · Z, c) = g̃M (Z, S)(c).
Lemma 4.1 yields g̃M (Z, S)(c) ≥lex g̃N (Z, S)(c).

5. Intersections on analytic spaces. Let M be a submanifold of a
manifold N . If A1, . . . , Ar are analytic cycles on M , we denote by A1 •M
. . . •M Ar (resp. A1 •N . . . •N Ar) their intersection product in M (resp.
N). In this section we prove that those cycles are equal and construct the
intersection product of analytic cycles on a reduced analytic space.

We will need the following lemmas about systems of hypersurfaces.

Lemma 5.1. Let N = Ern, M = Erm × {0}rn−rm, S = Em × {0}rn−m,
S′ = Em × {0}(r−1)n × En−m, where r ≥ 2, and let Z be a purely k-
dimensional analytic subset of M . If H = (H1, . . . ,H(r−1)m) ∈ HS(M,Z),
then there exists a system of hypersurfaces H(r−1)m+1, . . . ,H(r−1)n such that

(2) Ĥ := (H1×Ern−rm, . . . ,H(r−1)m×Ern−rm, H(r−1)m+1, . . . ,H(r−1)n)

belongs to HS′(N,Z) and ν̃(Ĥ · Z, 0) = (0, . . . , 0︸ ︷︷ ︸
n−m

, ν̃(H · Z, 0)).

P r o o f. Put Hj := V (xj)∩En for i = (r−1)m+1, . . . , (r−1)n and define
Ĥ by (2). The inclusion

⋂(r−1)m
j=1 Hj ∩ Z ⊂ S′ implies that Ĥ ∈ HS′(N,Z),

The same inclusion shows that the cycles ẐSj vanish for j > m, where Ẑj ,
ẐS
′

j (resp. Zj , ZSj ) denote the result of the jth step of the Algorithm applied
to Ĥ (resp. H), Z and S′ (resp. S). The equality S′∩M = S yields ẐSj = ẐS

′

j

for j≤(r−1)m. Therefore it suffices to prove that Zj = Ẑj for j ≤ (r−1)m.
It is obvious that the cycles Z0, Ẑ0 are equal. Suppose that Zj−1 = Ẑj−1.

Then [TW2], Thm. 2.2, gives Zj = Ẑj (see the proof of Lemma 4.1).

Lemma 5.2. Under the assumptions of the previous lemma, if Ĥ =
(H1, . . . ,H(r−1)n) belongs to HS′(M,Z), then there exist hypersurfaces
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H(r−1)n+1, . . . ,Hrn−m such that H := (H1, . . . ,Hrn−m) ∈ HS(N,Z) and

(0, . . . , 0︸ ︷︷ ︸
n−m

, ν̃(H · Z, 0)) = ν̃(Ĥ · Z, 0).

P r o o f. Put Hj := V (xm+j) ∩ Ern for j = (r − 1)n + 1, . . . , rn − m
and H := (H1, . . . ,Hrn−m). The inclusion

⋂(r−1)n
j=1 Hj ∩Z ⊂ S implies that

H ∈ HS(N,Z). Let Zj , ZSj (resp. Ẑj , ẐSj ) denote the result of the jth step
of the Algorithm applied to H (resp. Ĥ), Z and S (resp. S′). By the same
inclusion the cycles ẐSj vanish for j > m. It is obvious that ZSj = ẐS

′

j for
j ≤ m.

Given a system of analytic sets X1, . . . , Xr ⊂ M of pure dimension and
a point a ∈ M , we define the integer

dM (X1, . . . , Xr)(a) := gMr (X1 ×Xr, ∆M )((a)r),

where ∆M denotes the diagonal in Mr.

Proposition 5.3. Let M be an m-dimensional submanifold of a manifold
N , dimN = n, a ∈M , and let X1, . . . , Xr be analytic subsets of M of pure
dimension. Then

(0, . . . , 0︸ ︷︷ ︸
n−m

, g̃Mr (X1 × . . .×Xr, ∆M )((a)r) = g̃Nr (X1 × . . .×Xr, ∆N )((a)r),

dM (X1, . . . , Xr)(a) = dN (X1, . . . , Xr)(a).

P r o o f. It suffices to prove the first equality. Lemma 5.2 yields

(0, . . . , 0, g̃Nr (X1 × . . .×Xr, ∆M )((a)r) ≤lex g̃Nr (X1 × . . .×Xr, ∆N )((a)r).

By Lemma 5.1,

(0, . . . , 0︸ ︷︷ ︸
n−m

, g̃Mr (X1× . . .×Xr, ∆M )((a)r) ≥lex g̃Nr (X1× . . .×Xr, ∆N )((a)r).

Theorem 4.3 concludes the proof.

As an immediate consequence we obtain the following theorem.

Theorem 5.4. Let M be a submanifold of a manifold N , and let A1, . . .
. . . , Ar be analytic cycles on M . Then

A1 •N . . . •N Ar = A1 •M . . . •M Ar.

Let W be a reduced analytic space. We set

K(W ) := {f : W → C : f(W ) ⊂ Z, f is analytically constructible},
and let G(W ) denote the family of analytic cycles on W .

We have the following generalization of [T2], Prop. 2.1.3.
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Lemma 5.5. The mapping ν : G(W ) 3 A 7→ ν(A) ∈ K(W ) is a bijection.

P r o o f. Obviously ν is an additive injection. Fix f ∈ K(W ). Our aim is
to construct a cycle T satisfying ν(T ) = f .

Put W0 := W , f0 := f . Let {W j
0 }j∈J be the irreducible components of

the space W . Since the proof of [T2], Prop. 2.1.3, is valid for irreducible
analytic spaces, we can find a family {T j0 }j∈J of analytic cycles such that
T j0 ∈ G(W j

0 ) and ν(T j0 ) = f |W j
0
. Observe that T0 :=

∑
j∈J T

j
0 is an analytic

cycle and define W1 := singW0 and f1 := f0− ν(T0). Since supp(f1) ⊂W1,
we can decompose W1 and construct the cycle T1.

Repeating this procedure we obtain a sequence {Wj , Tj , fj}∞j=0, where
Tj ∈ G(Wj), fj ∈ K(Wj), Wj are analytic subsets of W , which satisfies the
following conditions:

fi = fi−1 − ν(Ti−1),(ai)
supp(fi) ⊂Wi,(bi)
Wi = singWi−1.(ci)

The condition (ai) yields

(di)
i∑

j=0

fj −
i∑

j=0

ν(Tj) =
i+1∑
j=1

fj .

By (bi), (ci) the formal sum T :=
∑∞
j=0 Tj is a cycle. Fix x ∈ W . By the

same conditions there exists a j0 such that the functions fj , ν(Tj) vanish at
x for j ≥ j0. The equality (di) yields f(x)− ν(T, x) = 0.

As an immediate consequence of Proposition 5.3 we get the following
lemma.

Lemma 5.6. Let W be a reduced analytic space, X1, . . . , Xr ⊂ W be
analytic sets of pure dimension, and a ∈W . Let ψi : Ui → Zi be charts for
i = 1, 2, where Ui is a neighbourhood of a and Zi is an analytic subset of a
complex manifold Mi. Then

dM1(ψ1(X1), . . . , ψ1(Xr))(ψ1(a)) = dM2(ψ2(X1), . . . , ψ2(Xr))(ψ2(a)).

Now we define the multiplicity of intersection of sets X1, . . . , Xr at a
point.

Definition 5.7. Let W be a reduced analytic space, X1, . . . , Xr be its
irreducible analytic subsets, and a ∈ W . Let ψ : U → Z be a chart, where
U is a neighbourhood of a and Z is an analytic subset of a complex manifold
M . The multiplicity of intersection of X1, . . . , Xr at the point a is defined
to be

d(X1, . . . , Xr)(a) := dM (ψ(X1), . . . , ψ(Xr))(ψ(a)).
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By [T2], Thm. 5.5, and Lemma 5.6, the function W 3 x 7→ d(X1, . . .
. . . , Xr)(x) is analytically constructible.

Definition 5.8. Let X1, . . . , Xr be irreducible analytic subsets of a
reduced analytic space W . Their intersection product X1• . . .•Xr is defined
to be the unique cycle such that ν(X1 • . . . •Xr) = d(X1, . . . , Xr).

As in the smooth case (see [T2], Def. 6.4) we extend this definition by
Z-linearity to the case of arbitrary analytic cycles on a reduced analytic
space.

6. Regular separation on analytic spaces. Let W be a reduced
analytic space. In this section we study the relation between intersection
multiplicity and separation exponent for analytic subsets of W . By [Cg],
Cor. 4.5, if W is smooth, then X and Y are p-separated at a ∈ X ∩ Y with
p = ν(X •W Y, a). We will prove that the same holds in the case of analytic
subsets of a reduced analytic space.

We begin by recalling some basic facts (see [T1], [Cg], [CT] for details).
Let X, Y be locally analytic subsets of a normed complex vector space M .
Let | · | denote the norm in M and let %(·, Z) stand for the distance to the
set Z ⊂ M . For p ∈ [1,∞) we say that X, Y are p-separated at a point
a ∈ X ∩ Y if there exist C, r > 0 such that

%(z,X) + %(z, Y ) ≥ C%(z,X ∩ Y )p

provided |z−a|<r. We generalize the above definition in the following way.

Definition 6.1. Let X, Y be analytic subsets of the space W . We say
that X and Y are p-separated at a ∈ X ∩ Y if for every chart ϕ : V → G,
where V is a neighbourhood of a, the sets ϕ(X), ϕ(Y ) are p-separated
at ϕ(a).

Lemma 6.2. Let X, Y be analytic subsets of the space W , and a ∈ X∩Y .
If ψ : U → G, where U is a neighbourhood of a, is a chart , and p ∈ [1,∞),
then the following conditions are equivalent :

(1) X and Y are p-separated at a,
(2) the sets ψ(X), ψ(Y ) are p-separated at ψ(a).

P r o o f. Let k < n be positive integers. It suffices to prove that if X and
Y are analytic subsets of Ek, then the following conditions are equivalent:

(a) X and Y are p-separated at 0 (in Ek),
(b) X ×{0}n−k and Y ×{0}n−k are p-separated at 0 (as subsets of En).

Obviously (b) implies (a). To prove the other implication consider Cn with
the euclidean norm and apply [Cg], Lemma 4.2.

As an immediate consequence of [Cg], Cor. 4.5, we obtain the following
theorem.
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Theorem 6.3. Let X, Y be analytic subsets of a reduced analytic space W
and let a ∈ X ∩Y . Then X and Y are p-separated at a with p = ν(X •Y, a).
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[R2] —, Bézout-type theorems for certain analytic sets, Bull. Polish Acad. Sci. Math.
46 (1998), 277–283.

[T1] P. Tworzewsk i, Isolated intersection multiplicity and regular separation of an-
alytic sets, Ann. Polon. Math. 58 (1993), 213–219.

[T2] —, Intersection theory in complex analytic geometry , Ann. Polon. Math. 62
(1995), 177–191.

[TW1] P. Tworzewsk i and T. Winiarsk i, Continuity of intersection of analytic sets,
Ann. Polon. Math. 42 (1983), 387–393.

[TW2] —, —, Cycles of zeros of holomorphic mappings, Bull. Polish Acad. Sci. Math.
37 (1989), 95–101.

Institute of Mathematics
Jagiellonian University
Reymonta 4
30-059 Kraków, Poland
E-mail: rams@im.uj.edu.pl
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