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Weak solutions of equations

of complex Monge–Ampère type

by S lawomir Ko lodziej (Bielsko-Bia la and Kraków)

Abstract. We prove some existence results for equations of complex Monge–Ampère
type in strictly pseudoconvex domains and on Kähler manifolds.

0. Introduction. In this paper we extend the results on the existence of
bounded (resp. continuous) solutions of the complex Monge–Ampère equa-
tion

(0.1) (ddcu)n = dµ

(with a given positive measure dµ, a plurisubharmonic solution u, and the
wedge product on the left defined as in [BT1]) to the case of more general
equations of Monge–Ampère type

(0.2) (ddcu)n = F (u, ·)dµ.

We shall assume throughout that F (t, z) ≥ 0 is nondecreasing, continuous
in the first variable and measurable in the second one.

One can study the Dirichlet problem for the equation (0.1) in a strictly
pseudoconvex domain in C

n imposing a boundary condition

lim
z→x

u(z) = ϕ(x) for x ∈ ∂Ω,

with given ϕ ∈ C(∂Ω) (see [BT1], [Ce], [CKNS], [K1]–[K3]). By [K1] this
problem has a unique bounded solution, provided a bounded subsolution ex-
ists. We shall prove (Theorem 1.1 below) that the same conclusion holds for
(0.2) when F is bounded. Thus we generalize the results of Bedford–Taylor
[BT2] and Cegrell [Ce]. We refer to [CKNS] for the study of the classical
solutions of the equation. Furthermore, let the measure dµ be represented
as fdλ with dλ denoting the Lebesgue measure and f ≥ 0 belonging to the
Orlicz space
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Lχ(Ω) =
{
g ∈ L1(Ω) : g ≥ 0,

\
Ω

χ(g) dλ <∞
}
.

If

(0.3) χ(t) = |t|(log(1 + |t|))nh(log(1 + |t|)),

where h : R+ → (1,∞) is an increasing function satisfying
∞\
1

(yh1/n(y))−1 dy <∞,

then the Dirichlet problem for (0.1) has a unique continuous solution (see
[K2], [K3]). Corollary 1.2 says that this is still true for (0.2) with dµ = dλ

and F (t, z) ≤ f(z) ∈ Lχ(Ω).
In the next section we study the complex Monge–Ampère equation on a

compact Kähler manifold M with the fundamental form ω:

(0.2′) (ω + ddcu)n = F (u, ·)ωn.

By the Stokes theorem, if u satisfies (0.2′) then\
M

F (u, ·)ωn =
\

M

ωn.

For F positive and smooth, satisfying the normalizing condition (2.1), the
equation has been solved by Aubin [A1], [A2] and Yau [Y]. It is particularly
interesting for F (t, z) = exp(αt+ f(z)) when the solution serves to produce
Kähler–Einstein metrics (see [A1]–[A3], [S], [Y]). Using a result from [K3],
where the case of F not depending on t was treated, we show in Theorem
2.1 that for F only nonnegative and F ∈ Lχ(M), χ as above, one can find
a continuous solution of (0.2′). This result, applied to M = P

n, leads to
solving (0.2) in the family of entire plurisubharmonic functions of minimal
growth.

1. Equations of Monge–Ampère type in a strictly pseudoconvex

domain

Theorem 1.1. Let Ω be a strictly pseudoconvex domain and ϕ ∈ C(∂Ω).
Suppose there exists v ∈ PSH∩L∞(Ω) such that (ddcv)n = dµ and

limz→x v(z) = ϕ(x) for x ∈ ∂Ω. Furthermore assume that F : R × Ω → R

is a bounded nonnegative function which is nondecreasing and continuous in

the first variable and dµ-measurable in the second one. Then there exists a

unique bounded plurisubharmonic solution of the Dirichlet problem

u ∈ PSH∩L∞(Ω),

(ddcu)n = F (u, ·)dµ,(1.1)

lim
z→x

u(z) = ϕ(x) for x ∈ ∂Ω.
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P r o o f. Without loss of generality we assume F ≤ 1. As in [Ce] we shall
use Schauder’s fixed point theorem. Consider L2(Ω, dλ) equipped with the
weak topology. Let h be the maximal plurisubharmonic function in Ω with
the boundary data equal to ϕ. Then the set

A = {u ∈ PSH(Ω) : v ≤ u ≤ h}

is convex and bounded (thereby compact) in L2(Ω, dλ). We define the map-
ping F : A → A taking for F(u) the solution of

(1.2) w ∈ A, (ddcw)n = F (u, ·)dµ.

This solution exists by [K1]. We need to show that F is continuous. Let
uj → u in A. Set w = F(u) and wj = F(uj). By Hartogs’ lemma, u =
(lim supuj)∗. Consider the auxiliary functions ũk = (supj≥k uj)∗ and
w̃k = F(ũk). Since (ddcw̃k)n is decreasing it follows from the comparison
principle [BT3] that the sequence w̃k is increasing to some w̃ ∈ A. We also
have

(ddcwk)n = F (uk, ·)dµ ≤ F (ũk, ·)dµ = (ddcw̃k)n.

Hence, using the comparison principle, w̃k ≤ wk.

Furthermore, ũk ↓ u, and from the convergence theorem [BT3] one infers

(ddcw̃)n = lim
k→∞

F (ũk, ·)dµ = F (u, ·)dµ.

Since the solution to the Dirichlet problem (1.2) is unique we thus get

w = w̃ = lim↑ w̃k ≤ lim inf wk.

It remains to prove that

lim supwk ≤ w.

For this consider the sequence ŵk of functions in A solving

(ddcŵk)n = F (ûk, ·)dµ,

where ûk = infk≤j uj . Then, by the comparison principle, wk ≤ ŵk and
ŵk decreases to ŵ ∈ A. Since ûk ↑ u we obtain, applying the convergence
theorem,

(ddcŵ)n = lim↑(ddcŵk)n = F (u, ·)dµ.

This implies w = ŵ = lim↓ ŵk ≥ lim supwk. Thus we have proved the
continuity of the mapping F . The Schauder theorem now says that F has
a fixed point, which gives the existence part of the statement. Uniqueness
follows in a routine manner from the comparison principle and the fact that
F (·, z) is nondecreasing. Suppose u and v solve our equation and {u < v+h}
is nonempty for some negative strictly plurisubharmonic function h. Then
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by the comparison principle [BT3],\
{u<v+h}

(ddcv)n + (ddch)n ≤
\

{u<v+h}

(ddcu)n

=
\

{u<v+h}

F (u, ·) dµ ≤
\

{u<v+h}

F (v, ·) dµ =
\

{u<v+h}

(ddcv)n,

which is impossible since the set over which we integrate has positive Le-
besgue measure.

Remark. The above theorem remains true for hyperconvex domains
provided there exists a maximal plurisubharmonic function with boundary
data equal to ϕ.

Remark. The existence part of the theorem still holds when we drop
the hypothesis that F (·, z) be nondecreasing, but uniqueness is then lost
(see [Ce]).

Corollary 1.2. Let Ω,ϕ and F be as in the above theorem except that

instead of assuming that F is bounded we now suppose

F (t, ·) ≤ ψ ∈ Lχ(Ω),

with χ given by (0.3). Then there exists a continuous solution to

u ∈ PSH(Ω) ∩ C(Ω),

(ddcu)n = F (u, ·) dλ,

lim
z→x

u(z) = ϕ(x) for x ∈ ∂Ω,

where dλ denotes the Lebesgue measure.

P r o o f. For the subsolution required in Theorem 1.1 we take v∈PSH(Ω)
∩ C(Ω) solving

(ddcv)n = ψ dλ,

with given boundary data. The existence of such a v and continuity of u has
been proved in [K2] and [K3].

2. Equations of Monge–Ampère type on Kähler manifolds. Our
next result is concerned with the equation (0.2′).

Theorem 2.1. Let (M,ω) be a compact Kähler manifold with fundamen-

tal form ω. Assume F : R ×M → R, 0 ≤ F (t, z) ≤ ψ(z) ∈ Lχ(M) (with χ

as in (0.3)), is a function such that F (·, z) is continuous and nondecreasing ,
F (t, ·) is measurable and

(2.1) lim
t→−∞

\
M

F (t, z)ωn ≤
\

M

ωn ≤ lim
t→∞

\
M

F (t, z)ωn.
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Then the equation

Mu := (ddcu+ ω)n = F (u, ·)ωn

has a continuous solution.

We shall need the following lemma.

Lemma 2.2. Let (M,ω) and F be as in Theorem 2.1 except that we

replace the condition (2.1) by a slightly stronger one:

(2.1′) lim
t→−∞

\
M

F (t, z)ωn <
\

M

ωn < lim
t→∞

\
M

F (t, z)ωn.

Then there exists a sequence Fk ∈ C∞(R×M) with the following properties:
Fk > 0,

∂

∂t
Fk(t, z) ≥ 0, sup

k

\
M

χ(Fk)ωn < c <∞,

(2.1′) is fulfilled with Fk in place of F, and for any bounded function u in M ,

lim
k→∞

Fk(u(z), z) = F (u(z), z)

almost everywhere in M .

P r o o f. Using (2.1′) we fix R > 0 such that

(2.2)
\

M

F (−R, z)ωn +R−1 <
\

M

ωn <
\

M

F (R, z)ωn −R−1.

For any positive integer k > R we construct Fk(t, z) as follows. First, note
that the assumptions on F (·, z) allow us to find for given z ∈ M a positive
integer N such that

(2.3) F (tj+1, z) − F (tj , z) < 2−k−4

where

tj := −k + j2−N , j = 0, 1, . . . , k2N+1.

We fix N such that (2.3) holds true for all z 6∈ E with

(2.4)
\
E

ωn < 2−k−2.

In the next step we apply Luzin’s theorem to choose gj ∈ C(M), gj ≥ 0,T
M
χ(gj)ωn < c satisfying

(2.5)
\

E′

j

ωn < 2−k−j−3, E′
j := {gj 6= F (tj , ·)}.

Set hj = mins≥j gs. Then {hj 6= F (tj , ·)} ⊂ E′ :=
⋃N

s=0E
′
s. Since hj ≤

hj+1 one can approximate hj by smooth positive fj such that fj ≤ fj+1,
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M
χ(fj)ωn < c and

(2.6) {|fj − F (tj , ·)| > 2−k−3} ⊂ E′.

Fix ψj smooth in a neighbourhood of the interval [tj−1, tj ] with 0 ≤ ψj

≤ 1, ψj = 1 close to tj and ψj = 0 close to tj−1. Set

Fk(t, z) = ψj(t)fj+1(z) + (1 − ψj(t))fj(z), t ∈ [tj−1, tj ].

By our choice of ψj those functions are smooth and the choice of fj guar-
antees that Fk is nondecreasing in t, satisfies the inequalities

(2.2′)
\

M

Fk(−R, z)ωn <
\

M

ωn <
\

M

Fk(R, z)ωn,

and the condition

sup
k

\
M

χ(Fk)ωn < c <∞.

Note that for z 6∈ E′ and t ∈ [tj−1, tj ] we have (see (2.6))

(2.7) Fk(t, z) ≥ fj(z) ≥ F (tj , z) − 2−k−3 ≥ F (t, z) − 2−k−3.

If moreover z 6∈ E then (see (2.3) and (2.6))

F (t, z) ≥ F (tj−1, z) > F (tj+1, z) − 2−k−3(2.8)

≥ fj+1(z) − 2−k−2 ≥ Fk(t, z) − 2−k−2.

By (2.4) and (2.5) we have \
E∪E′

ωn < 2−k−1,

and writing E = E(k) and E′ = E′(k) to indicate the dependence of those
sets on k we get

∞∑

k=j

\
E(k)∪E′(k)

ωn < 2−j .

Since, by (2.7) and (2.8), for any z 6∈
⋃

j≤k[E(k)∪E′(k)] and any t we have
limk→∞ Fk(t, z) = F (t, z) the last part of the statement follows.

Proof of Theorem 2.1. First we prove the statement under the extra
hypothesis (2.1′). We fix a sequenceFk as in the above lemma. Yau’s theorem
[Y, Theorem 4] provides a smooth uk satisfying

Muk = Fk(uk, ·).

Let us define some auxiliary functions:

ujk = max
j≤l≤k

ul, vj = ( lim
k→∞

ujk)∗, u = (lim supuk)∗.
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One can apply [K3, Section 2.3] to conclude that

(2.9) sup
M

uk − inf
M
uk < c0,

with c0 depending only on c from the assumptions. By Stokes’ theorem,\
M

F (uk, ·)ω
n =

\
M

ωn.

So, in view of (2.2′) we obtain

sup
M

uk < R, inf
M
uk > −R, k > R.

Those inequalities and (2.9) imply that the sequence uk is uniformly
bounded. Passing to a subsequence we assume uk → u a.e. Applying [BT1,
Proposition 2.8] one gets

Mujk ≥ min
j≤l≤k

Fl(ul, ·).

Now, for fixed ε > 0 we find an integer j0 and a set E with

uj(z) ≥ u(z) − ε, j ≥ j0, z 6∈ E,

and
T
E
ωn < ε. Then for j, z as above,

Mujk(z) ≥ inf
j≤l≤k

Fl(u(z) − ε, z).

Letting k to ∞ and using the convergence theorem [BT3] we obtain

Mvj(z) ≥ inf
j≤l

Fl(u(z) − ε, z), z 6∈ E.

Since vj decreases to u one can apply the convergence theorem and Lem-
ma 2.2 to get

Mu(z) ≥ F (u(z) − ε, z) a.e. in M \ E.

This is true for any ε > 0 and F (·, z) is continuous, so

(2.10) Mu(z) ≥ F (u(z), z) a.e.

Since by the lemma and the argument above Fk(uk(z), z) → F (u(z), z)
almost everywhere and, on the other hand,\

M

Fk(uk, ·)ω
n =

\
M

ωn

for any k, we conclude that the integrals over M of both sides of inequality
(2.10) are equal. So the functions are equal. To get the general case, note
that if we had equalities in (2.1′) then F would be independent of t and
the equation would reduce to the one solved in [K3]. If we have one strict
inequality we can find a monotone sequence cj → 0 such that for any j,

lim
t→−∞

\
M

(F (t, z) + cj)ωn <
\

M

ωn < lim
t→∞

\
M

(F (t, z) + cj)ωn.
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Then by the preceding part of the proof, there exist uj satisfying

Muj = F (uj(z), z) + cj .

The function u = (lim supuk)∗ is the desired solution as can be seen by
repeating the above reasoning.

Theorem 2.1, when applied to M = P
n equipped with the Fubini–Study

metric, allows us to solve the Monge–Ampère type equation in the class
of entire plurisubharmonic functions of minimal growth, usually denoted
by L+:

L+ =
{
u ∈ PSH(Cn) :

∣∣u(z) − 1
2

log(1 + |z|2)
∣∣ < const

}
.

The function

v0(z) = 1
2 log(1 + |z|2) ∈ L+

is a potential of the Fubini–Study metric in P
n restricted to C

n (which is
embedded in the standard way). We have

(ddcv0)n = ωn =
n!

(1 + |z|2)n+1
dλ = (2π)n.

Let F : R × C
n → R, 0 ≤ F (t, z), be continuous and nondecreasing in t,

measurable in z and such that for some t0,\
Cn

F (t0, z) dλ = (2π)n.

Suppose also that

F (t, z) ≤ f(z)(1 + |z|2)−n−1,

with f ∈ Lχ(ωn).

Corollary 2.3. For F introduced above the equation

u ∈ L+, (ddcu)n = F (u− v0, ·) dλ

has a solution.

The uniqueness of those solutions has been shown in [BT4] in the case
when F is independent either of t or z.
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