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Topological conjugacy of cascades generated by
gradient flows on the two-dimensional sphere

by Andrzej Bielecki (Kraków)

Abstract. This article presents a theorem about the topological conjugacy of a gra-
dient dynamical system with a constant time step and the cascade generated by its Euler
method. It is shown that on the two-dimensional sphere S2 the gradient dynamical flow
is, under some natural assumptions, correctly reproduced by the Euler method for a suffi-
ciently small time step. This means that the time-map of the induced dynamical system is
globally topologically conjugate to the discrete dynamical system obtained via the Euler
method.

1. Introduction. In recent years several papers have been devoted to
studying the qualitative properties of discrete-time dynamical systems ob-
tained via discretization methods. The basic question is whether the quali-
tative properties of continuous-time systems are preserved under discretiza-
tion. Various concepts of differentiable dynamics were investigated. Re-
sults on stability and attraction properties ([KL]), the saddle-point structure
about equilibria ([AD], [Bey1], [Bey2]), invariant manifolds ([BL], [Fec1]),
averagings ([Fec2]) and algebraic-topological invariants ([MR]) can be men-
tioned as examples. A number of applications have been studied as well
([Gar4]). The investigations are concerned with both local (see, for instance,
[Gar1], [Fec3]) and global conjugacy ([Gar2], [Gar3], [Gar5]).

This paper is devoted to the problem of topological conjugacy between
the discretization of a gradient dynamical system and the cascade generated
by its Euler method. Similar problems have been solved in recent years for
numerical methods of order greater than one (see [Gar2], [Li]).

2.Topological conjugacy of gradient cascades.As mentioned above
we consider a gradient differential equation and its Euler method. The time-
map of the induced solution is compared to the cascade obtained via the
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Euler method. We show that on the two-dimensional sphere S2 a gradient
dynamical system is, under some natural assumptions, correctly reproduced
by the Euler method for a sufficiently small time step. This means that the
time-map of the induced dynamical system is globally topologically conju-
gate to the discrete dynamical system obtained via the Euler method. This
fact can be expressed as follows.

Theorem 2.1. Let S2 be the unit sphere in R3 and let

φ : S2 × R→ S2

be the dynamical system generated by a differential gradient equation

(1) ẋ = − gradE(x),

where E∈C2(S2,R), having a finite number of singularities, all hyperbolic.
Let , furthermore, the dynamical system φ have no saddle-saddle connec-
tions. Moreover , let φh : S2 → S2 be the discretization of φ, i.e. φh(x) :=
φ(x, h), and let ψh : S2 → S2 be generated by the Euler method for (1).
Then, for sufficiently small h > 0, there exists a homeomorphism α = αh :
S2 → S2 globally conjugating the cascades generated by φh and ψh, i.e.

(2) φh ◦ α = α ◦ ψh.
Remarks. 1. Axiom A and the strong transversality condition are known

to be equivalent to the structural stability of a dynamical system (see [PM],
p. 171, and [Man]). On the other hand, for gradient dynamical systems,
Axiom A implies that the system has only a finite number of singularities,
all hyperbolic, whereas the strong transversality condition implies that the
system has no saddle-saddle connections. Thus, the structural stability of a
dynamical system (S2, φ) implies the assumptions of Theorem 2.1. Moreover,
the set of structurally stable systems is open and dense in the space of
gradient dynamical systems (see [PM], p. 116).

2. A dynamical system generated by the equation (1), having only a finite
number of singularities, all hyperbolic, without saddle-saddle connections is
called a gradient Morse–Smale system.

3. Estimation of the Euler method on Sn. Let n0 ∈ N and let
a = n0h denote the length of the time interval on which the error en :=
%M(φn0

h (x), ψn0
h (x)) is estimated (%M denotes the Riemannian metric on

M). We will show that on the n-dimensional sphere

(3) en < ξ(a)h,

where, for a given problem, ξ(a) is a constant value which only depends
on a.

Consider the problem

(4) ẋ = f(x), x(0) = x0, 0 ≤ t ≤ a,
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on a compact manifold M, where f is a vector field on M. The Euler
iterative rule for the problem (4) is of the form

(5) xn = expxn(−hf(xn−1)),

where f(xn−1) is a vector of the tangent space Txn−1M.
The Euler method in Rn is a first order numerical method ([Kru], p. 31).

For x, y ∈M in the domain of a chart ϑ of a manifold M, we have

(6) m1%(ϑ(x), ϑ(y)) ≤ %M(x, y) ≤ m2%(ϑ(x), ϑ(y)),

where m1,m2 are constant for a given chart ϑ (see [Rob], p. 453, formula
(2.2)); % is the euclidian metric on Rn. By (6), the Euler method on a
compact manifold is also a first order method.

The error in a single step of a numerical method is defined by

r(x, h) := %M(ψh(x), φh(x))

and is a continuous function of x for a constant h. Therefore, on a compact
manifold, it reaches its maximum. Set

r(h) := max
x∈M

r(x, h).

Let us estimate the error of the Euler method for a gradient equation
on the sphere Sn in Rn+1. By the assumptions of Theorem 2.1 a gradient
dynamical system on a compact manifold has at least one attracting singu-
larity. Change coordinates in Rn+1 so that this fixed point is the south pole
of the sphere. The sphere can be covered by two charts ϑ1, ϑ2 with

(7) ϑ1 : Sn \ pnorth → Rn, ϑ2 : Sn \ psouth → Rn,
where pnorth, psouth are the poles of the sphere.

If the south pole is the starting point of the Euler method then

%M(φnh(x), ψnh(x)) = 0

for each n ∈ N as the gradient is zero at the south pole. In this case the
error is zero.

In the other case, if the starting point x is different from psouth then
φnh(x) 6= psouth for each n ∈ N, because ψh is invertible for h sufficiently
small. Thus, for each n ≤ n0, both φnh(x) and ψnh(x) lie in the domain
of the chart ϑ2. Therefore, the point x and the systems φh and ψh can
be transformed into Rn in order to perform the iterations ψ̃n0

h (ϑ2(x)) and
φ̃n0
h (ϑ2(x)). Afterwards, we return to the sphere via ϑ−1

2 . The dynamical
systems ψ̃h and φ̃h are the systems ψh and φh transformed from the sphere
to Rn by the maps of the atlas. Notice that if ψh is generated by the Euler
method of the gradient equation generating φh on the sphere then ψ̃h is
generated by the Euler method of the equation generating φ̃h in Rn because
the atlas preserves the differential structure.
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The error estimate with step h for the equation

ẋ = f(x),

where f is lipschitzian with a constant L in Rn, is given by the formula (see
[Kru], p. 32, formula 1.22)

(8) en ≤
(
e0 +

rh

L

)
eLa,

where a = n0h is the time interval on which the solution is considered,
rh2 is the maximal error in a single step and e0 is the initial error. Since
the right side of (1), being a differentiable map on a compact space, is a
lipschitzian map, so is the right side of the equation transformed to Rn, by
(6). Therefore, the estimate (8) can be applied to the systems ψ̃h and φ̃h.
The flow and its Euler method start from the same point, thus e0 = 0 and

%(ψ̃n0
h (ϑ2(x)), φ̃n0

h (ϑ2(x))) ≤ rh

L
eLa.

By (6) we get the following estimate on Sn:

(9) %M(ψn0
h (x), φn0

h (x)) ≤ m2
rh

L
eLa,

which is of the same form as in Rn. Thus we have obtained (3).

4. Lemmas. One of the key points in the proof of Theorem 2.1 is a
construction of proper homeomorphisms conjugating the cascades φh and
ψh in a neighbourhood of an attracting singularity (see Lemma 4.6). This
construction is based on the following geometric lemma.

Lemma 4.1. Let γ1, γ2, δ1, δ2 be curves in R2, each parametrized by τ ∈
[0, 1], homeomorphic to a line segment and such that γ1(0) = δ1(0), γ1(1) =
δ2(0), γ2(0) = δ1(1) and γ2(1) = δ2(1). Assume that their union is the
boundary of a simply connected domain D. Then there exists a homeo-
morphism Λ : D → [0, 1]2 such that Λ(γ1) = [0, 1] × {1}, Λ(γ2) = [0, 1] ×
{0}, Λ(δ1) = {1} × [0, 1], Λ(δ2) = {0} × [0, 1].

The proof of this well known fact is omitted. It can be found in [Bie].
A great number of theorems concerning the topological conjugacy near

hyperbolic singularities are known. We will need the following theorem (see
[Bey], [Gar2], [Gar3]).

Theorem 4.2. For each equilibrium point x0 of the cascade φh and for
sufficiently small h there exists an equilibrium point xh of the cascade ψh,
a neighbourhood Vx0 of x0, and a homeomorphism αh : Vx0 → αh(Vx0) such
that αh(x0) = xh and (αh ◦ φh)(x) = (ψh ◦ αh)(x), whenever x and φh(x)
are in Vx0 .
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In our case, since xh is an equilibrium point of ψh iff gradE(xh) = 0, we
have xh = x0 for every h > 0.

Throughout this section M denotes a compact differentiable manifold
of dimension greater than one, φ denotes a Morse–Smale gradient system
on M, and φh and ψh are the cascades defined as in Theorem 2.1. Let,
furthermore,

gci : Vci → V ∗ci

be a homeomorphism locally conjugating φh and ψh in the neighbourhood
Vci of the singularity ci and V ∗ci = g(Vci).

Lemma 4.3. Let ci be an attracting or saddle singularity. Then there
exists ri > E(ci) such that for every x 6= ci in W s

φ(ci) ∩ Vci the following
implication holds: if E(x) ≤ ri then there exists t > 0 such that

E(φ(x,−t)) > ri and φ(x,−t) ∈W s
φ(ci) ∩ Vi.

Furthermore the sets
Kci,0: = {x ∈W s

φ(ci) : E(x) ≤ ri},
Kci,1: = {x ∈W s

φ(ci) : E(x) ≤ ri}, where E(ci) < ri < ri,

are nonempty.

P r o o f. The point ci is attracting on the stable manifold W s
φ(ci). Choose

R < min{%M(ci, cj) : i 6= j, cj is a fixed point}.
Let Brel(ci, R) be the closed ball and Srel(ci, R) the sphere in W s

φ(ci). By
compactness there exists x0 ∈ Srel(ci, R) such that

E(x0) = inf{E(x) : x ∈ Srel(ci, R)} =: ei.

The following proposition is necessary to complete the proof of Lemma
4.3. Its proof follows simply from the Morse lemma and therefore is omitted
(it can be found in [Bie]).

Proposition 4.4. Let ei > r∗ > E(ci). Then the set

Blev(ci, r∗) := {x ∈W s
φ,ci : E(x) ≤ r∗}

and the ball Brel(ci, R) are homeomorphic.

Since the potential E decreases along each orbit, every ri < r∗ (where
r∗ is defined in Corollary 4.4) satisfies the implication in Lemma 4.3. That
implies that the sets Kci,m, m = 0, 1, are nonempty.

Lemma 4.5. The sets Kci,m, m = 1, 2, have the following properties:

(i) ci ∈ intrelKci,m,
(ii) ∂relKci,0 = {x ∈ W s

φ,ci
: E(x) = r} and ∂relKci,1 = {x ∈ W s

φ,ci
:

E(x) = r},
(iii) {φ(x, t) : t > 0} ⊂ Kci,m for every x ∈ Kci,m,
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(iv) Kci,m is arcwise connected ,
(v) inf{%M(x, y) : x ∈ Kci,1, y ∈ Kci,0} > 0.

The boundaries and interiors are considered in the relative topology of
W s
φ,ci

and therefore are marked by the subscript “rel”.

P r o o f. (i) This is clear since Kci,m is homeomorphic to a ball Brel(ci, r).
(ii) Let x0 ∈ ∂relKci,0. Then, for every neighbourhood Vx0 of x0,

Vx0 ∩ {x ∈W s
φ,ci : E(x) ≤ r} 6= ∅ and Vx0 ∩ {x ∈W s

φ,ci : E(x) > r} 6= ∅.

Since the map E is continuous, E(x0) is equal to r.
Let x0 ∈W s

φ,ci
. The definition of Kci,m implies that x0 ∈ Kci,0. Assume,

by contradiction, that x0 ∈ intrelKci,0. Then there exists t0 > 0 such that
φ(x0,−t) ∈ Kci,0 for every t ≤ t0. However, for those t,

E(φ(x0,−t)) > E(φ(x0, 0)) = E(x0) = r.

This means that φ(x0, t) 6∈ Kci,0, a contradiction.
The property of Kci,1 can be proved in the same way.
(iii) Let x0 ∈ ∂relKci,0. Since the potential decreases along orbits,

E(φ(x0, t)) < E(x0) for every t > 0. Hence φ(x0, t) ∈ Kci,0 by the defi-
nition of Kci,m.

If x0 ∈ intrelKci,0, then E(x0) < r. Since the set Kci,0 = Blev(ci, r)
is homeomorphic to a ball Brel(ci, R) such that Kci,0 ⊂ Brel(ci, R) (see
Corollary 4.4), the set {φ(x0, t) : t > 0} would intersect the boundary
∂relKci,0 if the semiorbit φ(x0, t), t > 0 were not included in Kci,0. However
this is impossible because the potential on the boundary of the set Kci,0 is
greater than in the interior.

The property of Kci,1 can be shown in the same way.
(iv) Define τ : R 3 t 7→ τ(t) ∈ [−1, 1] by

τ(t) =

{−1 if t = −∞,
t/(1 + |t|) if t ∈ R,
1 if t =∞.

Let x1, x2 ∈ Kci,m, where m equals 1 or 2. Then the formulas

γ
(

1
2τ(t)

)
= φ(x1, t) and γ

(
1− 1

2τ(t)
)

= φ(x2, t)

define an arc from x1 to x2; the arc is included in Kci,m by Lemma 4.5(ii).
(v) The assertion follows from the compactness of M. Assume, by con-

tradiction, that inf{%M(x, y) : x ∈ Kci,1, y ∈ Kci,0} = 0. Then there exists
a sequence {xn} ⊂ Kci,1 which converges to a point x0 ∈ ∂relKci,0. But
E(x0) = r and E(xn) ≤ r, which is a contradiction because r < r and E is
continuous.

The following lemma is necessary for the construction of a global hom-
eomorphism conjugating φh and ψh.
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Lemma 4.6. Let a be an attracting fixed point of the flow φ on a two-
dimensional manifold M. Let , furthermore, sk, k ∈ {1, . . . ,K}, be saddle
points whose stable manifolds intersect the stable manifold of a. Then there
exists a neighbourhood Va of a and a homeomorphism ga defined on this
neighbourhood locally conjugating the flows (M, φh) and (M, ψh) such that
for every k ∈ {1, . . . ,K},
(10) ga(W u

φh
(sk) ∩ Va) ⊂W u

ψh
(sk).

P r o o f. We first record some facts and introduce a few definitions. As
M is two-dimensional, the components of the unstable manifolds W u

φh
(sk)

of the saddle points are curves with a common end at a. Choose a level set
of E on which E > E(a) and such that its connected component is included
both in W s

φh
(ai) and in a sufficiently small neighbourhood of a. Denote this

component by F1. Since near an attracting singularity a level is homeo-
morphic to a circle (see Corollary 4.4), this level can be parametrized as
F1 = F1(τ) with F1(0) = F1(1), τ ∈ [0, 1], where the map F1 is continuous.
The set W u

φ (sk)\{sk, a} has two connected components, each being an orbit
of φ. As already mentioned, the curve F1 is homeomorphic to a circle and
the value of the potential decreases along an orbit. Thus, every connected
component of

⋃K
k=1(W u

φh
(sk) \ {sk, a}) intersects F1 in exactly one point.

Let there be M such components and let they be numbered from 0 to M−1
according to the increasing τ, say W u

φh,m
, m = 0, . . . ,M − 1.

Set F2 := φh(F1). The curve F2 does not intersect F1 and is homeomor-
phic to F1. The point a lies in the interior of the domain bounded by F2.
Therefore the set

PF1,F2 := {φ(x, t) : x ∈ F1, t ∈ [0, h]}
is homeomorphic to a closed annulus B(a,R) \ intB(a, r), where r < R.
Define

δm := W u
φh,m

∩ PF1,F2 , m = 0, . . . ,M − 1, (11)
Λ : [0, 1]× [0, h] 3 {τ, t} 7→ Λ(τ, t) = φ(F1(τ), t) ∈ PF1,F2 .

The mapping Λ is a homeomorphism because it is a superposition of homeo-
morphisms and there exists a finite sequence τ0 = 0, τ1, . . . , τM−1 such that
Λ(τm, [0, h]) = δm.

Now, we begin the proof of Lemma 4.6.

Step 1: Construction on fragments of W u
φh

(sk). Let gsk denote a home-
omorphism locally conjugating φh and ψh near sk and let φ−h be the inverse
of φh. The formula

(12) gsk,a(x) := (ψn0(x)
h ◦ gsk ◦ φ

n0(x)
−h )(x)

defines a homeomorphism conjugating φh and ψh on δm. The natural number
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n0(x) is chosen in such a way that φn0(x)
−h (x) ∈ Ksk,1 and φ

n0(x)−1
−h (x) ∈

intrel(Ksk,0\Ksk,1). Note that the parameterm uniquely identifies the saddle
point sk.

The mapping
ga := gsk,a, x ∈ δm,

defines a homeomorphism conjugating φh and ψh on
⋃M−1
m=0 δm. The map-

pings ψh, gsk and ga are continuous in h and each is the identity for h = 0.

Step 2: Construction on a fragment of the annulus. Set

γ1,m := {x = F1(τ) : τ ∈ [τm, τm+1]}, γ2,m := {x = F2(τ) : τ ∈ [τm, τm+1]},
where τm is the value of τ for which

Fj(τm) = Fj ∩W u
φh,m

=: xj(m), j ∈ {1, 2}.
Note that γj,m, j = 1, 2, m = 0, . . . ,M − 1, is a curve with end points
xj(m), xj(m+ 1) whereas δm is a curve with end points x1(m), x2(m). All
these curves are homeomorphic to line segments. This implies that γ1,m ∪
γ2,m∪δm∪δm+1 bounds a simply connected domain in R2. By the Riemann
Theorem this domain is homeomorphic to a ball and hence to a rectangle.
By Lemma 4.1 there exists a homeomorphism

Λm := Λ|[τm,τm+1]×[0,h]

from [τm, τm+1]× [0, h] onto the closed domain Sqγ1,m,γ2,m,δm,δm+1
bounded

by the curves γ1,m, γ2,m, δm and δm+1. The mapping Λ has the following
properties:

Λm(τm, [0, h]) = δm,

Λm([τm, τm+1], 0) = γ1,m,

Λm([τm, τm+1], h) = γ2,m.

Perform a similar construction for the cascade ψh. Set

x∗j (m) := ga(xj(m)).

Let a curve F ∗1 := ga(F1) parametrized by τ be homeomorphic to a circle
and such that a is in the interior of the simply connected domain bounded
by F ∗1 . Let, furthermore, the points x∗1(m), m ∈ {0, . . . ,M − 1}, lie in F ∗1
and let the parametrization have the property

F ∗1 (τm) = x∗1(m), m = 0, . . . ,M − 1.

Let F ∗2 := ψh(F ∗1 ) and suppose ψh(F ∗1 (τ)) = F ∗2 (τ) for all τ. Set

δ∗m := ga(δm),

and let δ∗m be parametrized in such a way that

δ∗m(h0) := ga(δm(h0)), h0 ∈ [0, h].
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The homeomorphism ga is a continuous function of h and is the identity for
h = 0, so for sufficiently small h, the curve δ∗m lies near δm and does not
intersect any other δm′ , m′ 6= m. Thus, if m increases then so does the value
of τ which parametrizes F ∗1 . Therefore, F ∗1 can be reparametrized in such a
way that the values of τ at xj(m) equal those at x∗j (m), m = 0, . . . ,M − 1.
Define

γ∗1,m := {x ∈ F ∗1 (τ) : τ ∈ [τm, τm+1]},

γ∗2,m := {x ∈ F ∗2 (τ) : τ ∈ [τm, τm+1]}.
Arguing as for φh, we can show that the domain bounded by F ∗1 and
F ∗2 is homeomorphic to an annulus whereas the domain Sqγ∗1,m,γ∗2,m,δ∗m,δ∗m+1

bounded by γ∗1,m, γ
∗
2,m, δ

∗
m and δ∗m+1 is homeomorphic to a rectangle. By

Lemma 4.1 the homeomorphism can be chosen to map the vertices of the
rectangle to the points x∗1(m), x∗2(m), x∗1(m+ 1) and x∗2(m+ 1). Denote it
by

ξm : Sqγ∗1,m,γ∗2,m,δ∗m,δ∗m+1
→ [τm, τm+1]× [0, h].

It has the following properties:

ξm(γ∗1,m) = [τm, τm+1]× {0},
ξm(γ∗2,m) = [τm, τm+1]× {h},
ξm(δ∗m) = {τm} × [0, h].

Furthermore, ξm can be constructed in such a way that on the curves δ∗m it
is consistent with the mapping gm,a (the parameter m determines the saddle
point sk uniquely):

(13) gm,a(φ(xm, t)) = ξm(τm, t), t ∈ [0, h],

and

(14) gm+1,a(φ(xm + 1, t)) = ξm(τm+1, t), t ∈ [0, h].

This can be shown in the following way. Equations (13) and (14) imply that
on the vertical sides τm×[0, h] and τm+1×[0, h] the parametrization is settled
by increasing homeomorphisms f1 : [0, h] → [0, h] and f2 : [0, h] → [0, h].
We will show that the mapping

g : [τm, τm+1]× [0, h] 3 {τ, t} 7→
g(τ, t) = (g1(τ, t), g2(τ, t)) ∈ [τm, τm+1]× [0, h]

defined by

g1(τ, t) = τ, g2(τ, t) =
τm+1 − τ
τm+1 − τm

· f1(t) +
τ − τm

τm+1 − τm
· f2(t)

is a homeomorphism with the required properties. We will prove that it
transforms the rectangle [τm, τm+1] × [0, h] onto itself. Fix τ0 ∈ [τm, τm+1]
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and t0 ∈ [0, h]. Without losing generality we can assume that f1(t0) ≤ f2(t0).
Then

g2(τ0, t0) ≥ τm+1 − τ0
τm+1 − τm

· f1(t0) +
τ0 − τm

τm+1 − τm
· f1(t0) = f1(t0) ∈ [0, h]

and

g2(τ0, t0) ≤ τm+1 − τ0
τm+1 − τm

· f2(t0) +
τ0 − τm

τm+1 − τm
· f2(t0) = f2(t0) ∈ [0, h].

Furthermore, g2(τm, ·) = f1(·) and g2(τm+1, ·) = f2(·). The jacobian

jac g =
(
∂g1/∂τ ∂g1/∂t
∂g2/∂τ ∂g2/∂t

)
=

τm+1 − τ
τm+1 − τm

· df1(t)
dt

+
τ − τm

τm+1 − τm
· df2(t)

dt

is positive at each point because both components are nonnegative (f1 and
f2 are increasing) and do not equal zero simultaneously.

The superposition
Υm = Λm ◦ g ◦ ξm

is a homeomorphism transforming the closure of Sqγ∗1,m,γ∗2,m,δ∗m,δ∗m+1
onto the

closure of Sqγ1,m,γ2,m,δm,δm+1
in such a way that for each x ∈ δm ∪ δm+1,

(15) Υm(x) = gm,a(x).

Step 3: Construction on the annulus. By (13) and (14), Υm(x)=Υm+1(x)
for each x ∈ δm+1 and Υ0(x) = ΥM−1(x) for x ∈ δ0. Therefore the mapping
defined as

Υ (x) = Υm(x) for x ∈ Sqγ∗1,m,γ∗2,m,δ∗m,δ∗m+1
and m ∈ {0, 1, . . . ,M − 1}

is a homeomorphism transforming the “annulus” PF∗1 ,F∗2 onto the “annulus”
PF1,F2 .

Step 4: Construction on the neighbourhood of a. Extend Υ to the whole
neighbourhood of a. Let y ∈ PF∗1 ,F∗2 , and define x ∈ Va by

x = ψ
k(x)
h (y), k ∈ N.

Set

(16) Υ̃a(x) :=

 (ψ−k(x)h ◦ Υ ◦ φk(x)h )(x)
if ∃y ∈ PF∗1 ,F∗2 : x = ψ

k(x)
h (y), k ∈ N,

a for x = a.

For points of the curve F ∗2 the mapping Υ̃a is defined in two ways. First,
F ∗2 ⊂ PF∗1 ,F∗2 so we can take zero as the value of k. On the other hand we
can take k = 1 because every point of F ∗2 is the image of a point of F ∗1 .
However, both φh and ψh preserve values of τ so for each x ∈ F ∗2 both the
ways give the same image. This also implies that Υ̃a is continuous on F ∗2 .
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To prove the continuity of Υ̃a at a consider a sequence {xn} converging to
a. For each n there exists a natural number kn such that ψ−knh (xn) ∈ PF∗1 ,F∗2 .
Furthermore, kn →∞. Thus Υ̃a(xn)→ a. Hence, the function

Υ̃a : PF∗1 ,F∗2 → PF1,F2

is a homeomorphism.
Since on the sets δm, m = 0, . . . ,M − 1 (see (11)) the mapping Υ is

defined by the local conjugating homeomorphism gsk (see (12) and (15))
which transforms W u

φh
(sk) onto W u

ψh
(sk), the inclusion (10) is satisfied.

Introduce the following notations:
Dφh — the set of all repelling points,
Sφh — the set of all saddle points and the attracting points which are not

contained in the closure of the unstable manifold of any saddle point,
Pφh — the set of attracting points which are contained in the closure of the

unstable manifold of a saddle point.
Define

W s
φh

(Sφh) :=
⋃

c∈Sφh

W s
φh

(c), W s
φh

(Pφh) :=
⋃

c∈Pφh

W s
φh

(c),

and Θ : W s
φh

(Sφh)→M by

(17) Θ(x) =
{

(ψn0
−h ◦ gc ◦ φ

n0
h )(x) for x ∈W s

φh
(c) \ {c},

x for x = c,

where c ∈ Sφh , gc is a local homeomorphism conjugating the flows φh and
ψh on a neighbourhood of c and ψ−h is the inverse of ψh. If x is in one of the
sets Kc,1, then the natural number n0 = n0(x) is zero. In the other case it is
chosen in such a way that φn0

h (x) ∈ Kc,1 and φn0−1
h (x) ∈ intrel(Kc,0 \Kc,1).

Define α :M→M as follows:

(18) α(x) =


Θ(x) for x ∈W s

φh
(Sφh),

Υ̃a(x) for x ∈W s
φh

(Pφh), a ∈ Pφh ,
x for x ∈ Dφh .

Every nonrepelling point on a compact manifold is contained in a stable
manifold of an attracting or saddle singularity. Thus (18) defines α on the
wholeM. In the next section it is shown that α is a homeomorphism globally
conjugating the flows (M, φh) and (M, ψh).

Lemma 4.7. For all positive constants ε, there exists a positive constant
h0 such that for all x ∈M, t ∈ R and 0 < h < h0,

%M(φ(x, t), φ(x, t+ h)) < ε.

The proof of this simple lemma is omitted (it can be found in [Bie]).
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Lemma 4.8. Let a be an attracting fixed point of the flow φ, and p1, p2

repelling fixed points, p1 6= p2. Assume that p1, p2 ∈ clW s
φ(a). Then there

exist saddle points q1, q2, not necessarily different , such that p1 ∈ cl W s
φ(q1)

and p2 ∈ cl W s
φ(q2).

P r o o f. Since p1, p2 ∈ ∂W s
φ(a), there exist y1 and y2 such that

lim
t→∞

φ(y1, t) = a, lim
t→−∞

φ(y1, t) = p1,

lim
t→∞

φ(y2, t) = a, lim
t→−∞

φ(y2, t) = p2.

Let z1 ∈ orb(y1)∩ Va and z2 ∈ orb(y2)∩ Va, where orb(y) denotes the orbit
of y, and let Va ⊂W s

φ,a be a neighbourhood of a. The manifoldM is locally
arcwise connected, so let

l : [0, 1] 3 τ 7→ l(τ) ∈ X
be a closed arc included in Va, avoiding a and such that l(0) = z1, l(1) = z2.
Since z1 and z2 lie in the unstable manifolds of p1 and p2 respectively, the
boundaries of the unstable manifolds intersect l in points w1 and w2, not
necessarily different. As the unstable manifolds of repelling points are open
andM is compact, the points w1, w2 are contained in the unstable manifolds
of saddle points q1, q2, not necessarily different. From the λ-lemma it follows
that for every neighbourhood Vqi of qi there exists t > 0 such that

φ(l ∩W u
φ (p1),−t) ∩ Vq1 6= 0.

We have
(W s

φ(q1) \ {q1}) ∩ Vq1 6= 0.

Thus, for every ε > 0 there exists t > 0 such that φ(l∩W u
φ (p1),−t) intersects

the ε-envelope of W s
φ(q1). This implies that there exists u ∈ W s

φ(q1) such
that

lim
t→−∞

φ(u, t) = p1.

Therefore, the point p1 ∈ clW u
φ (q1). The same can be said about the points

q2 and p2.

Corollary 4.9. Let p be a repelling point which is not contained in the
closure of the stable manifold of any saddle point. Then there exists only
one attracting point a such that p ∈ clW s

φ(a).

This follows easily from Lemma 4.8.

Corollary 4.10. Let M = Sn, n > 1. Then, for every h > 0, the
cascade (Sn, φh) has no saddle-saddle connections and , for sufficiently small
h, the cascade (Sn, ψh) has no such connections either.

P r o o f. By the assumptions of Theorem 2.1, the flow (Sn, φ) has no
saddle-saddle connections. Thus each saddle point qi, i = 1, . . . , I, has a
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neighbourhood Uqi such that every point x0 ∈ Uqi lies in W s
φ(qi) or in

W s
φ(aj) for an attracting point aj . For every x ∈ Sn and h > 0,

lim
t→∞

φ(x, t) = lim
n→∞

φnh(x),

hence x0 ∈W s
φh

(qi) or x0 ∈W s
φh

(aj).
Define

Pi := {x ∈ Uqi : ∀n∈{1,2,...} ψnh(x) 6∈ Uqi}
and let Uqi ⊂ intVqi , where Vqi is a neighbourhood on which the cascades
φh and ψh are locally conjugate. Choose real numbers R and hi such that
B(qi, R) ⊂ intUqi and Pi ∩B(qi, R/2) 6= ∅ for every h ∈ [0, hi].

Step 1: We will show that Pi ∩W s
φ(qi) = ∅ for sufficiently small hi.

Define

ti := sup
x∈Uqi∩W

s
φ(qi)

{t : φ(x, t) ∈ B(qi, R/4) \B(qi, R/8)}.

It is obvious that ti ∈ (0,∞). Suppose hi is such that there exists a natural
number n1 with ti = n1hi and

ξhi < R/4,

where ξ is the constant from (3). Since there are only a finite number of
singularities, we can take ξ as the maximum value of the constants of all
saddle points.

Let x ∈ Uqi ∩W s
φ(qi). Then

φn1
hi

(x) ∈ B(qi, R/4)

and by (3) and the choice of hi,

%M(φn1
hi

(x), ψn1
hi

(x)) < R/4,

or equivalently
ψn1
hi

(x) ∈ B(qi, R/2).

Since Pi ∩B(qi, R/2) = ∅, the point x is not in Pi.

Step 2: Proof of lemma. Let x ∈ Pi. The first step implies that
x 6∈ W s

φ(qi). Since there are no saddle-saddle connections, the point x is
in W s

φ(aj) for an attracting point aj . Let Vaj be the neighbourhood of aj
on which φh and ψh are topologically conjugate. Decompose the set Pi into
disjoint components in the following way:

Pij := {x ∈ Pi : x ∈W s
φ(aj)}.

Let, furthermore,

tij := sup{t : φ(x, t) ∈ B(aj , r/2) \B(aj , r/4), x ∈ Pij},
where r is chosen in such a way that B(aj , r) ⊂ Vaj . It is obvious that
tij ∈ (0,∞). Denote by en the error after the nth step of the Euler method.
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Choose hij so small that φh and ψh are topologically conjugate on Vaj and
ξhij < r/2. Moreover, let tij = n2hij , n2 ∈ {1, 2, . . .}. Then φ(x, tij) ∈
B(aj , r/2) for every x ∈ Pij . By (3) and the choice of hij ,

en := %M(φn2
hij

(x), ψn2
hij

(x)) < r/2.

Hence
ψn2
hij

(x) ∈ B(aj , r).

Assuming that there are I saddle points and J attracting points, set

(19) h0 := min
i∈{1,...,I}, j∈{1,...,J}

{hij}.

As Vaj ⊂W s
φh0

(aj) and the cascades are locally topologically conjugate, we
have Vaj ⊂W s

ψh
(aj) for every h ∈ [0, h0]. Hence

ψn2
h (x) ∈W s

ψh
(aj).

Therefore, every x ∈ Uqi is either in W s
ψh

(qi) or in W s
ψh

(aj), where aj is an
attracting point. This implies that ψh has no saddle-saddle connections.

Remark. By Lemma 4.10 and Theorem 4.2, if (Sn, φ) is a gradient
Morse–Smale system, then so are the cascade (Sn, φh) (for every positive h)
and (Sn, ψh) (for sufficiently small h).

Corollary 4.11. Let Uqi be a neighbourhood of saddle point qi on which
the cascades φh and ψh are conjugate by a homeomorphism gqi : Uqi →
gqi(Uqi). Then there exists a constant h0 > 0 such that for every h ∈ (0, h0)
and x ∈ Uqi ∩W u

φh
(qi) if x ∈W s

φh
(aj), where aj is an attracting fixed point ,

then gi(x) ∈W s
ψh

(aj).

P r o o f. Step 1. Define

(20) Hij := W u
φh

(qi) ∩ (B(qi, ri) \ intB(qi, ri/2)) ∩W s
φh

(aj).

First, it will be shown that there exists h0 > 0 so small that for every
h ∈ (0, h0) and every x ∈ Hij we have gi(x) ∈ W s

ψh
(aj). The radius ri is

chosen such that B(qi, ri) ⊂ Uqi .
The definition (20) implies that Hij is closed in M, hence compact.

The stable manifold W s
φh

(aj) is open and Hij ⊂ W s
φh

(aj). Thus, for every
x ∈ Hij there exists rx > 0 such that B(x, rx) ⊂W s

φh
(aj). The set

K := {B(x, rx) ∩W u
φh

(qi)}
is a covering of Hij . Thus, we can choose a finite subcovering K∗. Let rij be
the smallest radius of the balls B(x, rx) used to construct K∗. Take h0ij > 0
such that gqi(x) ∈ B(x, rij) for every point x ∈ Hij . Then gqi(x) ∈W s

φh
(aj).

It can be shown (in the same way as in the second step of the proof of
Corollary 4.10) that there exists h1ij such that g(Hij) ⊂W s

ψh
(aj) for every

h ∈ (0, h1ij). Set hij := min{h0ij , h1ij}.
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Step 2. Suppose, by contradiction, that there exists y ∈ W u
φh

(qi) ∩
intB(qi, ri/2) such that y1 ∈ W s

φh
(aj) and z1 := gi(y1) ∈ W s

φh
(ak), where

ak is an attracting fixed point and k 6= j. Corollary 4.7 implies that, for
sufficiently small h, there exists a natural m0 such that

φm0
h (y1) ∈ B(qi, ri) \ intB(qi, ri/2).

As y1 ∈ W s
φh

(aj), the point y2 := φm0
h (y1) is in W s

φh
(aj). Therefore, by

Step 1, z2 := gi(y2) ∈W s
ψh

(aj) as y2 ∈ Pij . However

z2 := g(y2) = g(φm0
h (y1)) = (g ◦ φh)(φm0−1

h (y1))

= (ψh ◦ g ◦ φh)(φm0−2
h (y1))

= (ψh ◦ ψh ◦ g)(φm0−2
h (y1)) = . . . = ψm0

h (g(y1)) = ψm0
h (z1),

and ψm0
h (z1) ∈W s

ψh
(ak) as z1 ∈W s

ψh
(ak), which leads to a contradiction.

5. Proof of Theorem. Firstly, we prove that the map α defined in (18)
is a bijection. Then we prove that it is continuous onM. This implies that α
is a homeomorphism. The map α conjugates the cascades φh and ψh, which
follows directly from its definition (see (16)–(18)).

Injectivity. Let x1, x2 ∈ S2. If at least one of them is a repelling singu-
larity of the system φ, then α(x1) 6= α(x2) by the definition of α. Otherwise
the following two cases have to be considered:

Case 1: The points lie in different orbits. Then

y1 := φ
n0(x1)
h (x1) 6= φ

n0(x2)
h (x2) =: y2.

The system φ has only a finite number of singularities and every singularity
ci is a fixed point of gi. The sphere S2 is compact so every point is contained
in the stable manifold of a stable point: x1 ∈W s

φ(ci), x2 ∈W s
φ(cj).

If i = j, then z1 := gi(y1) 6= gi(y2) = z2 as gi is a bijection. Since gi is
a local conjugating homeomorphism, the images of different orbits do not
intersect. Thus ψn0(x1)

−h (z1) 6= ψ
n0(x2)
−h (z2), which implies that α(x1) 6= α(x2).

If i 6= j, then we can choose the domains Vi of the homeomorphisms gi
in such a way that Vi ∩ Vj = ∅ and gi(Vi) ∩ gj(Vj) = ∅ for i 6= j. Thus
z1 := gi(y1) 6= gj(y2) =: z2. As x1 ∈ W s

φh,ai
and x2 ∈ W s

φh,aj
, the points

z1 and z2 lie in the disjoint manifolds W s
ψh,ai

and W s
ψh,aj

respectively. This
implies that α(x1) 6= α(x2).

Case 2: The points lie in the same orbit. We can assume that E(x2) >
E(x1). Then x1 = φmh (x2) for some positive natural number m = m(x1, x2).
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Thus

α(x2) = (ψn0(x1)+m
−h ◦ gci ◦ φ

n0(x1)+m
h )(x2)

= (ψm−h ◦ ψ
n0(x1)
−h ◦ gci ◦ φ

n0(x1)
h )(x1) = ψm−h(α(x1)) 6= α(x1).

Surjectivity. If y ∈ S2 is a repelling fixed point, then y = α(y) (see
definition of α). Otherwise y ∈W s

ψh,ci
for some fixed point ci (attracting or

saddle). Let n0 = n0(y) be such that

yn0−1 := ψn0−1
h (y) ∈ int

rel
(g(Kci,0) \ g(Kci,1)) and yn0 := ψn0

h (y) ∈ g(Kci,0).

As g is a conjugating homeomorphism,

(φ−1
h ◦ g

−1 ◦ ψh)(yn0−1) = g−1(yn0−1).

Furthermore, since ψh(yn0−1) = yn0 , we have

(φ−1
h ◦ g

−1)(yn0) = g−1(yn0−1).

Set
xn0 := g−1(yn0) and xn0−1 := g−1(yn0−1) = φ−1

h (xn0).

Since gci is a homeomorphism, xn0−1 ∈ (intrelKci,0 \Kci,1) and xn0 ∈ Kci,1.
This means that for x∗ = φn0

−h(xn0) the natural number n0 is the same as
in the definition of α, which implies that y = (ψ−n0

h ◦ g ◦ φn0
h )(x∗) = α(x∗).

Continuity

Case 1: Continuity on the stable manifold of an attracting point. Let x
lie on the stable manifold of an attracting point ai. There exists n0 = n0(x)
such that

φn0
h (x) ∈ Kai,1 and φn0−1

h (x) ∈ int(Kai,0 \Kai,1).

If φn0
h (x) ∈ intKai,1, then as intKai,1 and int(Kai,0 \ Kai,1) are open

and the map φ(·, t) is continuous, there exists a neighbourhood Ux of x such
that

φn0
h (Ux) ⊂ intKai,1 and φn0−1

h (Ux) ⊂ int(Kai,o \Kai,1).

As gi, ψ−h(·, t) and φh(·, t) are continuous, the map α = ψn0
−h ◦ gi ◦ φ

n0
h is

continuous at x.
If y := φn0

h (x) ∈ ∂Kai,1, then every neighbourhood Uy of y intersects
int(Kai,0 \Kai,1). Let (yn)∞n=1 ⊂ int(Kai,0 \Kai,1) converge to y. Then there
exists N such that for every natural n greater than N, φh(yn) ∈ intKai,1.
Indeed, suppose otherwise. Then there exists a subsequence (ynk) such that
φh((ynk)∞k=1) 6⊂ intKai,1. However, φh(y) ∈ intKai,1 because the potential
E is constant on ∂Kai,1 and decreases along a trajectory. This means that
for every k, %M(φh(y), φh(ynk)) > inf{%M(φh(y), w) : w ∈ ∂Kai,1)} > 0.
This is a contradiction because φ is continuous.
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We have demonstrated that for every y ∈ ∂Kai,1 there exists a neigh-
bourhood U?y with φh(U?y ) ⊂ Kai,1. The neighbourhood U?y has two disjoint
components: the first one, U?1y , is included in intKa1,1 whereas the second,
U?2y , is not. The point x is transformed by the map α in such a way that
U?1y is transformed by gi, and U?2y by ψ−h ◦ gi ◦ φh. Afterwards U?1y ∪ U?2y
is transformed by the map ψn0

−h. But gi is a conjugating homeomorphism so

(ψ−h ◦ gi ◦ φh)(U?2y ) = (ψ−h ◦ ψh ◦ gi)(U?2y ) = gi(U?2y )

and therefore we can say that the whole neighbourhood U?y is transformed
by gi. The continuity of φh, gi and ψ−h implies that α is continuous at x.

Case 2: Continuity at repelling fixed points. There are two possibilities
in this case: either

(i) the repelling point, say p, is in the closure of the stable manifold of
a saddle point q, or

(ii) p is in the closures of the stable manifolds of attracting points.

Suppose first that (i) holds.

Step 1: Restriction to the stable manifold. Let {xk}k∈N ⊂ W s
φ,q, p ∈

clW s
φ(q) and limk→∞ xk = p.

Let Vq be a neighbourhood of q such that the homeomorphism gh,q conju-
gating φh and ψh is defined on Vq. For sufficiently small h and every natural
N almost all elements of the sequence {xk}k∈N have the following property:

φnkh (xk) ∈ intKq,1, φnk−1
h (xk) ∈ int(Kq,0 \Kq,1), nk > N,

which follows from Lemma 4.7 (for the definition of the sets Kq,0 and Kq,1,
see Lemma 4.3). The same lemma also implies that there exists r > 0 such
that yk = φ(xk, nkh) 6∈ B(q, r)∩W s

φ(q) = Kq,2 for all k. In other words, since
the step on the manifold M is small, all the yk lie near ∂Kq,1. Since q is a
fixed point of gh,q, gh,q(Vq) is a neighbourhood of q and gh,q(Vq)∩W s

φh
(q) ⊂

W s
ψh,q

as gh,q locally conjugates φh and ψh. Since p is also a repelling point
of ψh, it lies in W s

ψh
(q) (by Corollary 4.11). As gh,q is a homeomorphism,

gq(yk) 6∈ gh,q(Kq,2) for every k. Let W p,s
ψh

(q) be the maximal connected
component of W s

ψh
(q) \ {q} containing p. Then, for every ε > 0, there exists

N such that

ψn−h(W p,s
ψh

(q) \Kq,2) ⊂ B(p, ε) for all n > N.

Since almost all nk are greater than N and every yk is in W p,s
ψh

(q) \ Kq,2,
almost all ψnk−h(yk) lie in B(p, ε). This means that

lim
k→∞

ψnk−h(gq(yk)) = p.

Thus, we have shown that the map α restricted to W s
φh

(q)∪{p} is continuous
at p.
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Step 2: Continuity at the repelling point. Let ε>0. Since α is continuous
on the stable manifold of every saddle point (see case 3), for every x∗ in such
a manifold and ε1 > 0, there exists δ1 > 0 such that if x ∈ B(x∗, δ1) then
α(x) ∈ B(x∗, ε1). On the other hand, p is a fixed point of α, and α|W s

φ(q)
is continuous at p (see step 1). Thus, for every ε2 > 0 there exists δ2 > 0
such that if x∗ ∈ B(p, δ2), then α(x∗) ∈ B(p, ε2). Let ε1 and ε2 be such that
ε1 + ε2 = ε. Then the triangle inequality implies that if x ∈ B(p, δ1 + δ2)
then α(x) ∈ B(p, ε1 + ε2).

Suppose now that (ii) holds. Corollary 4.9 implies that there exists only
one attracting singularity a such that p ∈W s

φ(a), whereas Lemma 4.8 implies
that only one repelling point can lie in clW s

φ(a). This means that there exists
a neighbourhood Vp of p such that

lim
t→∞

φ(x, t) = a

for all x ∈ Vp \ {p} and there exists a neighbourhood Va of a such that

lim
t→∞

ψ(y,−t) = p for all y ∈ Va \ {a}.

We can now repeat the first step of subcase (i) to show that the map α is
continuous at p.

Case 3: Continuity on the stable manifold of a saddle point. Let qi be
a saddle point. If the restriction φh|W s

φh
(qi) is considered, then qi is an

attracting singularity and, repeating the argument from case 1, we have
continuity of α in the relative topology on the stable manifold.

Thus, let x0 ∈W s
φh

(qi) and x ∈ Ux0 \W s
φh

(qi), where Ux0 is a neighbour-
hood of x0. Since there are no saddle-saddle connections, there exist attract-
ing points aj , ak, not necessarily different, such that W u

φh
(qi)1 ⊂ W s

φh
(aj)

and W u
φh

(qi)2 ⊂ W s
φh

(ak), where W u
φh

(qi)1 and W u
φh

(qi)2 are the connected
components of the manifold W u

φh
(qi).

For every x0 ∈ W s
φ(qi), each neighbourhood Vqi of qi and sufficiently

small h > 0, there exists δ1 > 0 and n1 such that

φn1
h (B(x, δ1)) ⊂ Vqi .

Suppose Vqi ∩W s
φ(qi) = intKq1,1, and h and n1 are such that

φn1−1
h (B(x0, δ1) ∩W s

φ(qi)) ⊂ int(Kqi,0 \Kqi,1).

Thus xn1 := φn1
h (x) lies in the local stable manifold W s

φ,loc(qi). Denote by Du
φ

a disc transversal to W s
φ,loc(qi), containing xn0 , xn1 := φ

n1(x)
h and embedded

in Vqi . According to the λ-lemma, for every δ2 > 0 and sufficiently small h,
there exists n2 such that

Du
n2

:= φn2
h (Du

φ)



Topological conjugacy of cascades 55

is δ2-close to W u
φ,loc(qi). Thus, for every y ∈ Du

n2
there exists a point y in one

of the connected components of W u
φ (qi), for instance in W u

φ (qi)1 ⊂W s
φ(aj),

such that

%M(y, y) < δ2.

For every neighbourhood Uqi ⊂ Vqi of qi we can choose x so close to x0 that
y := φn1+n2

h (x) ∈ Vqi .
We will trace the behaviour of the point y lying near the W u

φ (qi) using a
“spying point” y whose behaviour is known because it lies in W u

φ,loc(qi)1 ⊂
W s
φ(aj), where aj is an attracting point. Since y is in the attracting basin

of aj , there exists a neighbourhood Vy ⊂ W s
φ(aj). For every δ2 > 0, by

the λ-lemma and continuity of φh, we can choose x so close to x0 that
y ∈ B(y, δ2). According to Lemmas 4.7 and 4.5 we can choose n3 such that

φn3
h (y) =: yn3 ∈ intKaj ,1, φn3−1

h (y) ∈ int(Kaj ,0 \Kaj ,1)

and

φn3
h (y) =: yn3 ∈ intKaj ,1, φn3−1

h (y) ∈ int(Kaj ,0 \Kaj ,1).

The map φh is continuous so, for every δ3 > 0, there exists δ2 > 0 such that
if %M(y, y) < δ2, then %M(yn3 , yn3) < δ3. Define

zn3 := (ψn3
−h ◦ gaj )(yn3), zn3 := ψn3

−h(gaj (y
n3)),

where gaj is a local conjugating homeomorphism constructed in Lemma 4.6.
Then the definition of gqi,aj (see formula (12)) implies that

gqi(y) = zn3 ,

where gqi is a local homeomorphism conjugating φh and ψh in a neighbour-
hood of qi. This follows from the definition since

zn3 := (ψn3
−h ◦ gqi,aj ◦ φ

n3
−h)(y) = (ψn3

−h ◦ (ψn3
h ◦ gqi ◦ φ

n3
−h) ◦ φn3

h )(y) = gqi(y).

Thus, for every neighbourhood Uqi of qi, if %M(x, x0) is sufficiently small,
then the points y, y and y0 := gqi(φ

n1+n2
h (x0)) all lie in Uqi . The continuity

of the map gqi and the equality qqi(qi) = qi imply that for every r > 0 there
exists a neighbourhood Uqi such that zn3 , gqi(y0) ∈ B(qi, r). Furthermore,
zn3 is also in this ball by the continuity of ψn3

−h ◦gqi,aj ◦φ
n3
−h and the equality

gqi(y) = zn3 . The continuity of ψ−h assures that for every r1 > 0 there
exists a radius r such that

%M(ψn2
−h(y), ψn2

−h(y0)) < r1.

On the other hand gqi(x
n1
0 ) = ψn2

−h(y0) because
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ψn2
−h(y0) = (ψn2

−h ◦ gqi ◦ φ
n2
h )(xn1

0 ) = (ψn2−1
−h ◦ ψ−h ◦ gqi ◦ φh ◦ φ

n2−1
h )(xn1

0 )

= (ψn2−1
−h ◦ ψ−h ◦ ψh ◦ gqi ◦ φ

n2−1
h )(xn1

0 )

= (ψn2−1
−h ◦ gqi ◦ φ

n2−1
h )(xn1

0 ) = . . . = (ψ−h ◦ gqi ◦ φh)(xn1
0 )

= (ψ−h ◦ ψh ◦ gqi)(x
n1
0 ) = gqi(x

n1
0 ).

Recapitulating, for every r1 > 0 we can choose the radius r of the ball
B(qi, r) such that

%M(ψn2
−h(y), gqi(x

n1
0 )) < r1.

The continuity of ψh implies that for every ε > 0 there exists r1 such that

%M(ψn1
−h(ψn2

−h(y)), ψn1
h

(gqi(x
n1
0 ))) = %M(α(x), α(x0)) < ε.

This completes the proof.
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