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Topological conjugacy of cascades generated by
gradient flows on the two-dimensional sphere

by ANDRZEJ BIELECKI (Krakow)

Abstract. This article presents a theorem about the topological conjugacy of a gra-
dient dynamical system with a constant time step and the cascade generated by its Euler
method. It is shown that on the two-dimensional sphere S? the gradient dynamical flow
is, under some natural assumptions, correctly reproduced by the Euler method for a suffi-
ciently small time step. This means that the time-map of the induced dynamical system is
globally topologically conjugate to the discrete dynamical system obtained via the Euler
method.

1. Introduction. In recent years several papers have been devoted to
studying the qualitative properties of discrete-time dynamical systems ob-
tained via discretization methods. The basic question is whether the quali-
tative properties of continuous-time systems are preserved under discretiza-
tion. Various concepts of differentiable dynamics were investigated. Re-
sults on stability and attraction properties ([KL]), the saddle-point structure
about equilibria ([AD], [Beyl], [Bey2]), invariant manifolds ([BL], [Fecl]),
averagings ([Fec2]) and algebraic-topological invariants ([MR]) can be men-
tioned as examples. A number of applications have been studied as well
([Gar4]). The investigations are concerned with both local (see, for instance,
[Garl], [Fec3]) and global conjugacy ([Gar2], [Gar3], [Garb]).

This paper is devoted to the problem of topological conjugacy between
the discretization of a gradient dynamical system and the cascade generated
by its Euler method. Similar problems have been solved in recent years for
numerical methods of order greater than one (see [Gar2], [Li]).

2. Topological conjugacy of gradient cascades. As mentioned above
we consider a gradient differential equation and its Euler method. The time-
map of the induced solution is compared to the cascade obtained via the
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Euler method. We show that on the two-dimensional sphere S? a gradient
dynamical system is, under some natural assumptions, correctly reproduced
by the Euler method for a sufficiently small time step. This means that the
time-map of the induced dynamical system is globally topologically conju-
gate to the discrete dynamical system obtained via the Euler method. This
fact can be expressed as follows.

THEOREM 2.1. Let S? be the unit sphere in R? and let

$:S8*xR— 8?2
be the dynamical system generated by a differential gradient equation
(1) & = —grad E(x),

where E €C?(8?,R), having a finite number of singularities, all hyperbolic.
Let, furthermore, the dynamical system ¢ have no saddle-saddle connec-
tions. Moreover, let ¢y, : S — S? be the discretization of ¢, i.e. ¢p(x) =
é(x,h), and let ¢y, : 8 — 8% be generated by the Euler method for (1).
Then, for sufficiently small h > 0, there exists a homeomorphism o = ay, :
S? — 82 globally conjugating the cascades generated by ¢p, and 1y, i.e.

(2) broa=aouy.

REMARKS. 1. Axiom A and the strong transversality condition are known
to be equivalent to the structural stability of a dynamical system (see [PM],
p. 171, and [Man]). On the other hand, for gradient dynamical systems,
Axiom A implies that the system has only a finite number of singularities,
all hyperbolic, whereas the strong transversality condition implies that the
system has no saddle-saddle connections. Thus, the structural stability of a
dynamical system (S2, ¢) implies the assumptions of Theorem 2.1. Moreover,
the set of structurally stable systems is open and dense in the space of
gradient dynamical systems (see [PM], p. 116).

2. A dynamical system generated by the equation (1), having only a finite
number of singularities, all hyperbolic, without saddle-saddle connections is
called a gradient Morse—Smale system.

3. Estimation of the Euler method on S8™. Let ng € N and let
a = ngh denote the length of the time interval on which the error e, :=
om(9,,°(x),1,°(x)) is estimated (oaq denotes the Riemannian metric on
M). We will show that on the n-dimensional sphere

(3) en < &(a)h,
where, for a given problem, £(a) is a constant value which only depends

on a.
Consider the problem

(4) = f(x), x(0)=z, 0<t<a,
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on a compact manifold M, where f is a vector field on M. The Euler
iterative rule for the problem (4) is of the form

(5) Ty = eXpmn(_hf(xn—l))7
where f(z,—1) is a vector of the tangent space Ty, , M.

The Euler method in R™ is a first order numerical method ([Kru], p. 31).
For z,y € M in the domain of a chart ¥ of a manifold M, we have

(6) mio(9(x),9(y)) < om(z,y) < moo(d(x),9(y)),
where my, mg are constant for a given chart ¥ (see [Rob], p. 453, formula
(2.2)); o is the euclidian metric on R™. By (6), the Euler method on a
compact manifold is also a first order method.

The error in a single step of a numerical method is defined by

’I"(ZC, h) = oM Wh(iﬂ)’ d)h(x))
and is a continuous function of x for a constant h. Therefore, on a compact
manifold, it reaches its maximum. Set

r(h):= max r(z, h).

Let us estimate the error of the Euler method for a gradient equation
on the sphere 8™ in R"*!. By the assumptions of Theorem 2.1 a gradient
dynamical system on a compact manifold has at least one attracting singu-
larity. Change coordinates in R"*! so that this fixed point is the south pole
of the sphere. The sphere can be covered by two charts 91,95 with

(7) "91 : S \pnorth - Rn’ 192 S \psouth - an

where puorth, Psouth are the poles of the sphere.
If the south pole is the starting point of the Euler method then

om(¢p(z), ¥y (2)) =0
for each n € N as the gradient is zero at the south pole. In this case the
error is zero.

In the other case, if the starting point x is different from pgoutn then
dp(x) # psoutn for each n € N, because 1)y, is invertible for h sufficiently
small. Thus, for each n < ng, both ¢} (z) and ¢} (x) lie in the domain
of the chart 5. Therefore, the point x and the systems ¢; and 1 can
be transformed into R™ in order to perform the iterations 1;° (J2(x)) and
NZO (92(z)). Afterwards, we return to the sphere via 9, . The dynamical
systems Jh and qgh are the systems v, and ¢y, transformed from the sphere
to R™ by the maps of the atlas. Notice that if ¢, is generated by the Euler
method of the gradient equation generating ¢; on the sphere then )y, is
generated by the Euler method of the equation generating ¢, in R™ because
the atlas preserves the differential structure.
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The error estimate with step h for the equation

i = f(x),
where f is lipschitzian with a constant L in R™, is given by the formula (see
[Kru], p. 32, formula 1.22)

h
(8) en < <€0 + rL>eL“,

where a = ngh is the time interval on which the solution is considered,
rh? is the maximal error in a single step and eq is the initial error. Since
the right side of (1), being a differentiable map on a compact space, is a
lipschitzian map, so is the right side of the equation transformed to R", by
(6). Therefore, the estimate (8) can be applied to the systems 1, and ¢y,.
The flow and its Euler method start from the same point, thus ey = 0 and

oG (93(z)), 510 (9 (2))) < %ew.

By (6) we get the following estimate on S™:

Q o (U322, 650(2) < ma e,

which is of the same form as in R™. Thus we have obtained (3).

4. Lemmas. One of the key points in the proof of Theorem 2.1 is a
construction of proper homeomorphisms conjugating the cascades ¢; and
¥y, in a neighbourhood of an attracting singularity (see Lemma 4.6). This
construction is based on the following geometric lemma.

LEMMA 4.1. Let 1, 72, 01, 62 be curves in R?, each parametrized by T €
[0, 1], homeomorphic to a line segment and such that v1(0) = §1(0), v1(1) =
02(0), 72(0) = 01(1) and v2(1) = 62(1). Assume that their union is the
boundary of a simply connected domain D. Then there exists a homeo-
morphism A : D — [0,1]% such that A(vy1) = [0,1] x {1}, A(y2) = [0,1] x
{0}, A(61) = {1} x [0,1], A(d2) = {0} x [0,1].

The proof of this well known fact is omitted. It can be found in [Bie].
A great number of theorems concerning the topological conjugacy near

hyperbolic singularities are known. We will need the following theorem (see
[Bey], [Gar2], [Gar3]).

THEOREM 4.2. For each equilibrium point xo of the cascade ¢ and for
sufficiently small h there exists an equilibrium point x, of the cascade vy,
a neighbourhood V,, of xo, and a homeomorphism oy, : Vg — ap(Vy,) such
that ap(zo) = zp and (ap o ¢p)(x) = (Vi o ap)(x), whenever x and ¢p(x)
are in Vg, .
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In our case, since xj, is an equilibrium point of vy, iff grad E(zp) = 0, we
have xz; = xg for every h > 0.

Throughout this section M denotes a compact differentiable manifold
of dimension greater than one, ¢ denotes a Morse-Smale gradient system
on M, and ¢ and vy are the cascades defined as in Theorem 2.1. Let,
furthermore,

gCi : chz - ‘/CT
be a homeomorphism locally conjugating ¢ and vy in the neighbourhood
Ve, of the singularity ¢; and VZ = g(V,,).

LEMMA 4.3. Let ¢; be an attracting or saddle singularity. Then there
exists T; > E(c;) such that for every x # c¢; in Wj)(cl) NV, the following
implication holds: if E(x) <T; then there exists t > 0 such that

E(¢(x,—t)) >7; and ¢(x,—t) € Wi(c;) N Vi,
Furthermore the sets
K. o ={z¢€ Wil(ei) : E(x) 1
K ={x e Wi(e;) : E(z) <73},  where E(c;) <73 < Ty,

are nonempty.

INA
i

Proof. The point ¢; is attracting on the stable manifold Wj(c;). Choose
R < min{om(ci,¢j) i # j, ¢; is a fixed point}.
Let Biei(ci, R) be the closed ball and Spei(c;, R) the sphere in W;(ci). By
compactness there exists xg € Syei(c;, R) such that
E(zo) = inf{E(x) : x € Srel(ci, R)} =: ;.

The following proposition is necessary to complete the proof of Lemma
4.3. Its proof follows simply from the Morse lemma and therefore is omitted
(it can be found in [Bie]).

PROPOSITION 4.4. Let e; > r* > E(c;). Then the set
Biey(ci,r") i={x e W5 ., : E(z) <r*}
and the ball Bye(ci, R) are homeomorphic.

Since the potential E decreases along each orbit, every 7; < r* (where
r* is defined in Corollary 4.4) satisfies the implication in Lemma 4.3. That
implies that the sets K, ,,, m = 0,1, are nonempty. m

LEMMA 4.5. The sets K., ., m = 1,2, have the following properties:
(1) c; € intre Kchm, B
(ii) Orer K¢, 0 = {z € W5 E(xz) =7} and OraK ;1 = {z € Ws ..
E(x) = F}’
(iii) {p(x,t) : t > 0} C K¢, m for every x € K, m,



42 A. Bielecki

(iv) K, m is arcwise connected,
(v) inf{om(z,y) :x € K¢, 1, y € K¢y 0} > 0.

The boundaries and interiors are considered in the relative topology of
W3 ., and therefore are marked by the subscript ‘rel”.

Proof. (i) Thisis clear since K¢, ,, is homeomorphic to a ball Byei(c;, ).
(ii) Let zp € Ore1 K, 0. Then, for every neighbourhood V;, of zg,

Ve M {z € W5, E(x) <T} #0 and V,,N{z € W; . : E(x) >7} #0.

Since the map F is continuous, F(zg) is equal to T.

Let z¢ € W(;Ci. The definition of K, ,, implies that zy € K, o. Assume,
by contradiction, that z¢ € int,c K¢, 0. Then there exists ty > 0 such that
o(zo, —t) € K, o for every t < ty. However, for those t,

E(¢(zo, —t)) > E(¢(20,0)) = E(z) =T.
This means that ¢(zo,t) € K., o, a contradiction.

The property of K., 1 can be proved in the same way.

(iii) Let o € 0K, 0. Since the potential decreases along orbits,
E(¢(zo,t)) < E(zo) for every t > 0. Hence ¢(xo,t) € K., o by the defi-
nition of K¢, .

If 29 € intye K¢, 0, then E(xg) < T. Since the set K., o = Biev(¢;,T)
is homeomorphic to a ball Bye(c;, R) such that K., o C Byel(ci, R) (see
Corollary 4.4), the set {¢(zo,t) : ¢ > 0} would intersect the boundary
Ore1 K¢, o if the semiorbit ¢(zo,t),t > 0 were not included in K., o. However
this is impossible because the potential on the boundary of the set K, o is
greater than in the interior.

The property of K., 1 can be shown in the same way.

(iv) Define 7 : R > t — 7(¢) € [-1,1] by

-1 if t = —o0,
T(t) = {t/(l +t]) ift €R,
1 if t = oo.
Let z1, 22 € K¢, m, where m equals 1 or 2. Then the formulas

v(537(t) = ¢(z1,t) and (1= 57(1)) = p(x2,1)
define an arc from z; to xg; the arc is included in K., ,, by Lemma 4.5(ii).
(v) The assertion follows from the compactness of M. Assume, by con-
tradiction, that inf{om(x,y) : z € K¢, 1, y € K¢, 0} = 0. Then there exists
a sequence {z,} C K., 1 which converges to a point ¢ € OraK,, 0. But
E(x¢) =T and E(x,) < T, which is a contradiction because 7 < 7 and F is
continuous. m

The following lemma is necessary for the construction of a global hom-
eomorphism conjugating ¢, and y,.
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LEMMA 4.6. Let a be an attracting fized point of the flow ¢ on a two-
dimensional manifold M. Let, furthermore, s, k € {1,..., K}, be saddle
points whose stable manifolds intersect the stable manifold of a. Then there
exists a neighbourhood V, of a and a homeomorphism g, defined on this
neighbourhood locally conjugating the flows (M, ¢p) and (M, 1y) such that
for every k € {1,..., K},

(10) ga(W;)lh (sk) N Va) C szh(sk)'

Proof. We first record some facts and introduce a few definitions. As
M is two-dimensional, the components of the unstable manifolds Wp (si)
of the saddle points are curves with a common end at a. Choose a level set
of E on which £ > E(a) and such that its connected component is included
both in W§, (a;) and in a sufficiently small neighbourhood of a. Denote this
component by Fj. Since near an attracting singularity a level is homeo-
morphic to a circle (see Corollary 4.4), this level can be parametrized as
Fy, = Fy(7) with F1(0) = Fy(1), 7 € [0, 1], where the map F} is continuous.
The set W (sk)\{sk,a} has two connected components, each being an orbit
of ¢. As already mentioned, the curve Fj is homeomorphic to a circle and
the value of the potential decreases along an orbit. Thus, every connected
component of Uiil(Wgh (sk) \ {sk,a}) intersects F; in exactly one point.
Let there be M such components and let they be numbered from 0 to M —1
according to the increasing 7, say Wg, ., m=0,...,M — 1.

Set Fy := ¢p(F1). The curve Fy does not intersect F} and is homeomor-
phic to F;. The point a lies in the interior of the domain bounded by F5.
Therefore the set

PF1,F2 = {¢($,t) 1T € Fl, [AS [Oah]}

is homeomorphic to a closed annulus B(a, R) \ int B(a,r), where r < R.
Define

Om 1= WgthﬂPFI’FQ, m=0,....M —1, (11)
A:[0,1] x [0,h] 3 {7, t} — A(7,t) = ¢(Fi1(T),t) € Pp, p,.

The mapping A is a homeomorphism because it is a superposition of homeo-
morphisms and there exists a finite sequence 79 = 0,71, ...,7a/—1 such that

AT, [0, B]) = Oy
Now, we begin the proof of Lemma 4.6.
STEP 1: Construction on fragments of Wq;‘h(sk). Let g5, denote a home-

omorphism locally conjugating ¢; and vy, near s; and let ¢_j be the inverse
of ¢p,. The formula

(12) Gsnna(®) = (W™ 0 gy, 0 ™) ()

defines a homeomorphism conjugating ¢, and ¥y, on §,,. The natural number
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no(z) is chosen in such a way that gbr_mh(x)(x) € K, 1 and (;5_0,1(33)71(%’) €

intyer(Ks, 0\ K5, 1). Note that the parameter m uniquely identifies the saddle
point sg.
The mapping
9a ‘= YGsy,as MRS 5ma
defines a homeomorphism conjugating ¢; and 1, on Un]\f;ol Om. The map-
pings ¥n, gs, and g, are continuous in h and each is the identity for h = 0.

STEP 2: Construction on a fragment of the annulus. Set
Yim =z =F(7) : T € [Tm, Tmta]}, Yo.m = {x = Fo(7) : 7 € [T, Tm41]},
where 7, is the value of 7 for which
Fi(tm) = F;NWg, o, = x;(m), j€{1,2}.

Note that vjm, 7 = 1,2, m = 0,...,M — 1, is a curve with end points
xj(m), xj(m+ 1) whereas d,, is a curve with end points x1(m), z2(m). All
these curves are homeomorphic to line segments. This implies that ~q ., U
Y2.m U8 U1 bounds a simply connected domain in R?. By the Riemann
Theorem this domain is homeomorphic to a ball and hence to a rectangle.
By Lemma 4.1 there exists a homeomorphism

A = A1, 10 i1]x[0,1]
from (7o, Tymt1] X [0, k] onto the closed domain Sq., | ., 5 5 bounded
by the curves vi m, 72,m;0m and 0,,41. The mapping A has the following
properties:
A (T, [0, h]) = 6,
Am([Tma Tm—i—l]a 0) = Y1,m»
Am([Tn’m Tm+1]7 h) = Y2,m-
Perform a similar construction for the cascade vy. Set

*

zj(m) := ga(z;(m)).

Let a curve Fy := g,(F1) parametrized by 7 be homeomorphic to a circle
and such that a is in the interior of the simply connected domain bounded
by Fy. Let, furthermore, the points z5(m), m € {0,...,M — 1}, lie in F}
and let the parametrization have the property

Ff (1) =2i(m), m=0,...,M —1.
Let Fy := 1, (Fy) and suppose ¢y, (F; (7)) = Fy(7) for all 7. Set
5’;‘(71 = ga((sm)7
and let §;, be parametrized in such a way that

55, (ho) = ga(6m(ho)),  ho € [0,h].
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The homeomorphism g, is a continuous function of h and is the identity for
h = 0, so for sufficiently small h, the curve ¢;, lies near J,, and does not
intersect any other d,,,, m’ # m. Thus, if m increases then so does the value
of 7 which parametrizes F}". Therefore, F|' can be reparametrized in such a
way that the values of 7 at z;(m) equal those at x7(m), m =0,...,M — 1.
Define

’yim ={x € F{'(7) : T € [Trm, Tm+1]}s

’y;m ={x € F5(7) : T € [Tm), Tm+1] }-
Arguing as for ¢p, we can show that the domain bounded by Fj and
F3 is homeomorphic to an annulus whereas the domain quf,mwé‘,w 55,65 11
bounded by ] ,,, V3 > Oy, and &y, 4 is homeomorphic to a rectangle. By
Lemma 4.1 the homeomorphism can be chosen to map the vertices of the
rectangle to the points xj(m), x3(m), zj(m + 1) and x5(m + 1). Denote it
by

Em Sq’yfn“’y;ﬂn,é* s = [Tm, Tma1] X [0, A].

01
It has the following properties:
Em(Mm) = [Tm> Tmta] x {0},
fm(’Y;,m) = [T Tmt1] X {h},
Em () = {7m} x [0, h].
Furthermore, &, can be constructed in such a way that on the curves §;, it

is consistent with the mapping g,, , (the parameter m determines the saddle
point sy uniquely):

(13) gm,a(d)(xma t)) = &m(Tm,t), t€[0,h],
and
(14) gm+1,a(¢(xm +1,1)) = &n(Tms1,t),  t€0,A]

This can be shown in the following way. Equations (13) and (14) imply that
on the vertical sides 7,,, X [0, h] and 7,41 X [0, h] the parametrization is settled
by increasing homeomorphisms f; : [0,h] — [0,h] and fo : [0,h] — [0, A].
We will show that the mapping
9 [Tmy Tmt1] X [0, 0] 2 {1, t} —
g(T7 t) = (gl (7—) t)7 92(7—7 t)) € [Tm7 Terl} X [07 h’]
defined by

T, -7
g1 (Tv t) =T, 92(7_7 t) = : fl(t) =+
Tm+1 — Tm Tm+1 — Tm

T —Tm

- fa(t)

is a homeomorphism with the required properties. We will prove that it
transforms the rectangle [7,,, Tm41] X [0, h] onto itself. Fix 79 € [T, Timt1]
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and to € [0, h]. Without losing generality we can assume that f1(tg) < fa(to).
Then

T, — T To— T,
g2(To,t0) =~ fi(tg) + ———""— - f1(to) = fi(to) € [0, 7]
Tm+1 — Tm Tm+1 — Tm
and
T, — T To— T,
g2(10,t0) < L S fa(to) + 0= . fa(to) = fa(to) € [0, A).
Tm+1 — Tm Tm+1 — Tm

Furthermore, go(7, ) = f1(-) and g2(Tm+1,-) = f2(+). The jacobian
g — 091/01 0g1/O0t\ _ Tmi1—T df1(t) y T dfa(t)
ey dg2/0T g2 /0t Tmt1l — Tm  dt Tmtl — Tm  di
is positive at each point because both components are nonnegative (f; and

f2 are increasing) and do not equal zero simultaneously.
The superposition

Yo =Apno0goém
is a homeomorphism transforming the closure of Sq.x = . 5. 5 ., onto the
closure of Sq,, ., 5. .., insuch a way that for each z € 0y U 01,

(15) Yo () = gm.a(2).

STEP 3: Construction on the annulus. By (13) and (14), T (2)=2Lm+1(x)
for each x € 0,41 and Ty(x) = Var—1(x) for & € dg. Therefore the mapping
defined as

Y(x)=Tp(z) forze Sy 500565, and m € {0,1,...,.M — 1}
is a homeomorphism transforming the “annulus” Pgy gy onto the “annulus”
.PF1 Fy-

STEP 4: Construction on the neighbourhood of a. Extend T to the whole
neighbourhood of a. Let y € Ppy py, and define x € V,, by

T = Z(x)(y), ke N.
Set
_ (W, " 0 T 0 61 (2)

(16)  Yu(z):= if 3y € Pry s cx = 1 (y), k €N,

a for £ = a.

For points of the curve F3 the mapping fa is defined in two ways. First,
F3 C Pry py so we can take zero as the value of k. On the other hand we
can take k = 1 because every point of Fj is the image of a point of Fy.
However, both ¢, and 1, preserve values of 7 so for each x € F3 both the

ways give the same image. This also implies that Ta is continuous on Fj.
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To prove the continuity of Ta at a consider a sequence {z,,} converging to
a. For each n there exists a natural number k,, such that 1/1,:’“” (zn) € Pry Fy.

Furthermore, k,, — co. Thus Y, (z,) — a. Hence, the function
Ta : PF{‘,FQ* - PFl,FQ
is a homeomorphism.
Since on the sets §,,, m = 0,...,M — 1 (see (11)) the mapping T is
defined by the local conjugating homeomorphism g5, (see (12) and (15))
which transforms W (s) onto Wi (sk), the inclusion (10) is satisfied. =

Introduce the following notations:
Dy, — the set of all repelling points,
S84, — the set of all saddle points and the attracting points which are not
contained in the closure of the unstable manifold of any saddle point,
Py, — the set of attracting points which are contained in the closure of the
unstable manifold of a saddle point.
Define

W¢>h S¢h : U chh quh P¢h : U W¢h

CES¢h C€P¢h

and O : W;h(8¢h) — M by
(17) O(z) = { ("9, 0 gco ¢p°)(x) for x € w3, (e)\ {c},

T for x = ¢,
where ¢ € Sy, , gc is a local homeomorphism conjugating the flows ¢; and
1p, on a neighbourhood of ¢ and ¥_}, is the inverse of ¢,. If = is in one of the
sets K. 1, then the natural number ng = ng(x) is zero. In the other case it is
chosen in such a way that ¢}°(z) € K. and ¢}~ (z) € inte(Keo \ Ke1)-
Define a : M — M as follows:
O(z) for x € W3 (Sp.),
(18) a(z) =4 Tp(x) forze W, (Ps,), a € Pg,,
x for z € Dy, .
Every nonrepelling point on a compact manifold is contained in a stable
manifold of an attracting or saddle singularity. Thus (18) defines « on the

whole M. In the next section it is shown that « is a homeomorphism globally
conjugating the flows (M, ¢p) and (M, y,).

LEMMA 4.7. For all positive constants e, there exists a positive constant

ho such that for allx € M, t € R and 0 < h < hy,
om(@(z,t), ¢(x,t + h)) <e

The proof of this simple lemma is omitted (it can be found in [Bie]).
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LEMMA 4.8. Let a be an attracting fived point of the flow ¢, and p1, p2
repelling fized points, p1 # ps. Assume that p1,ps € cl W;(a). Then there
exist saddle points q1, qo2, not necessarily different, such that p; € cl W;(ql)
and p2 € cl W5(q2).

Proof. Since p1, p2 € 9W;(a), there exist y1 and y2 such that
lim Cb(yl,t) =a, lim Qb(yl,t) = D1,
t—oo t——o0
Jm o(ys,t) = a,  Tim_ ¢(y2, 1) = pa.

Let z; € orb(y;1) NV, and 23 € orb(y2) NV, where orb(y) denotes the orbit
of y, and let V, C W5 , be a neighbourhood of a. The manifold M is locally
arcwise connected, so let
[:[0,1] 37— 1(1) e X

be a closed arc included in V,, avoiding a and such that [(0) = 21, (1) = 2.
Since z; and 2y lie in the unstable manifolds of p; and p, respectively, the
boundaries of the unstable manifolds intersect ! in points w; and ws, not
necessarily different. As the unstable manifolds of repelling points are open
and M is compact, the points wq, ws are contained in the unstable manifolds
of saddle points ¢, g2, not necessarily different. From the A-lemma it follows
that for every neighbourhood V, of ¢; there exists t > 0 such that

d(INWi(p1), —t) NV, #0.
We have
(Wa(q) \{a1}) NV, #0.

Thus, for every e > 0 there exists ¢ > 0 such that ¢(INW§(p1), —t) intersects
the e-envelope of W;(ql). This implies that there exists u € W;(ql) such
that

t——o0
Therefore, the point p; € clWj(g1). The same can be said about the points
2 and py. =

COROLLARY 4.9. Let p be a repelling point which is not contained in the
closure of the stable manifold of any saddle point. Then there exists only
one attracting point a such that p € cl W;)(a).

This follows easily from Lemma 4.8.

COROLLARY 4.10. Let M = 8™, n > 1. Then, for every h > 0, the
cascade (8™, ¢p) has no saddle-saddle connections and, for sufficiently small
h, the cascade (S™,vn) has no such connections either.

Proof. By the assumptions of Theorem 2.1, the flow (8™, ¢) has no
saddle-saddle connections. Thus each saddle point ¢;, + = 1,...,1, has a
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neighbourhood U, such that every point z¢o € U, lies in W;(ql) or in
W;(a;) for an attracting point a;. For every x € 8™ and h > 0,

Jim ¢(z,1) = lim gf(x),
hence zg € W3, (¢i) or zo € W, (ay).
Define
P ={zecU, !Vne{m,...} V() & Uy, }
and let U,, C intV,,, where V,, is a neighbourhood on which the cascades

¢ and 9y, are locally conjugate. Choose real numbers R and h; such that
B(¢;, R) C intU,, and P; N B(q;, R/2) # 0 for every h € [0, h;].

STEP 1: We will show that P; N W(q;) = 0 for sufficiently small h;.
Define

tiz= sup  {t:o(x,t) € B(gi, /4) \ B(g;, R/8)}-
z€U4; "W (q:)
It is obvious that ¢; € (0,00). Suppose h; is such that there exists a natural
number n; with ¢; = n1h; and
¢h; < R/4,

where ¢ is the constant from (3). Since there are only a finite number of
singularities, we can take £ as the maximum value of the constants of all
saddle points.

Let z € Uy, N W5(g;). Then

ni (%) € Blgi, /4)

and by (3) and the choice of h;,

oM (85 (@), () < R4,
or equivalently
v (x) € Blai R/2).

Since P; N B(g;, R/2) = (), the point z is not in P;.

STEP 2: Proof of lemma. Let x € P;. The first step implies that
T ¢ W;(ql) Since there are no saddle-saddle connections, the point x is
in W3(a;) for an attracting point a;. Let V,; be the neighbourhood of a;
on which ¢; and v, are topologically conjugate. Decompose the set P; into
disjoint components in the following way:

Pij = {ZE S .PZ T € W;(CLJ)}
Let, furthermore,
tij :=sup{t: ¢(x,t) € B(a;,r/2) \ B(aj,r/4), v € P;j},

where 7 is chosen in such a way that B(aj;,r) C V,,. It is obvious that
ti; € (0,00). Denote by €, the error after the nth step of the Euler method.
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Choose h;; so small that ¢p, and ¢, are topologically conjugate on V,, and
Ehi; < r/2. Moreover, let t;; = nahi;, ne € {1,2,...}. Then ¢(z,t;;) €
B(aj,r/2) for every z € P;;. By (3) and the choice of h;j,

T = om0 (2), 072 (2)) < /2.
Hence
he, () € Blaj, 7).
Assuming that there are I saddle points and J attracting points, set
(19) ho = z‘e{l,...,f?ly‘ne{l,...,J}{hij}'
AsV,, C W;ho (aj) and the cascades are locally topologically conjugate, we
have V,; C Wy, (a;) for every h € [0, ho. Hence

w2 (zx) € Wfph (aj).

Therefore, every x € Uy, is either in Wj, (¢;) or in Wj (a;), where a; is an
attracting point. This implies that 5, has no saddle-saddle connections. =

REMARK. By Lemma 4.10 and Theorem 4.2, if (8™, ¢) is a gradient
Morse—Smale system, then so are the cascade (S™, ¢5,) (for every positive h)
and (8™, y) (for sufficiently small h).

COROLLARY 4.11. Let Uy, be a neighbourhood of saddle point q; on which
the cascades ¢p, and 1y are conjugate by a homeomorphism gq, : U, —
9q:(Ug,). Then there exists a constant hy > 0 such that for every h € (0, hy)
and x € Uy, "W (gi) if v € W, (a;), where a; is an attracting fized point,
then gi(z) € Wy, (aj).

Proof. STEP 1. Define
(20) Hij =Wy, (qi) N (B(qi,m:) \ int B(qi,7:/2)) N W5, (a;).

First, it will be shown that there exists hg > 0 so small that for every
h € (0,ho) and every x € H;; we have g;(v) € Wy (a;). The radius r; is
chosen such that B(g;,r;) C U,,.

The definition (20) implies that H;; is closed in M, hence compact.
The stable manifold W3, (a;) is open and H;; C Wj (a;). Thus, for every
x € H;j there exists r, > 0 such that B(z,r,) C W;, (a;). The set

K :={B(z,re) "W} (¢:)}

is a covering of H;;. Thus, we can choose a finite subcovering K*. Let r;; be
the smallest radius of the balls B(z,r,) used to construct K*. Take ho;; > 0
such that g,,(z) € B(x,r;;) for every point x € H;;. Then g, (z) € W5, (a;).
It can be shown (in the same way as in the second step of the proof of
Corollary 4.10) that there exists hi;; such that g(H;;) C W, (a;) for every
h € (0, hlij)- Set hij = min{hgij, hlij}-
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STEP 2. Suppose, by contradiction, that there exists y € Wj (g;) N
int B(gi,7:/2) such that y1 € W3 (a;) and 21 := g;(y1) € W, (ax), where
ar is an attracting fixed point and k # j. Corollary 4.7 implies that, for
sufficiently small h, there exists a natural mg such that

wo(y1) € Blgs,ri) \ int B(gi, ri/2).

As y1 € W§, (a;), the point ya := ¢, (y1) is in W3, (a;). Therefore, by
Step 1, 22 := gi(y2) € Wy, (a;) as y2 € P;;. However

20 = g(y2) = g(&7° (1)) = (g0 dn) (&~ (1))
= (Ynogodn)(d)° (1))
= (Wnotnog)(®p (1) = ... = ;" (g9(y1)) = ¥ (1),

and ¥, (21) € Wy, (ax) as 21 € W, (ax), which leads to a contradiction. m

5. Proof of Theorem. Firstly, we prove that the map « defined in (18)
is a bijection. Then we prove that it is continuous on M. This implies that «
is a homeomorphism. The map « conjugates the cascades ¢, and 1y, which
follows directly from its definition (see (16)—(18)).

Injectivity. Let z1,2o € S2. If at least one of them is a repelling singu-
larity of the system ¢, then a(x1) # a(x2) by the definition of a.. Otherwise
the following two cases have to be considered:

CASE 1: The points lie in different orbits. Then
= (@) £ 67 2) =1,

The system ¢ has only a finite number of singularities and every singularity
¢; is a fixed point of g;. The sphere S? is compact so every point is contained
in the stable manifold of a stable point: z1 € Wj(c;), z2 € Wj(c;).

If i = j, then 21 := ¢;(y1) # 9i(y2) = 22 as g; is a bijection. Since g; is
a local conjugating homeomorphism, the images of different orbits do not
intersect. Thus wno(wl)( 1) # wno(m)( 2), which implies that a(z1) # a(x2).

If ¢ # j, then we can choose the domains V; of the homeomorphisms g;
in such a way that V; N V; = 0 and ¢;(V;) N g;(V;) = 0 for i # j. Thus
21 = gi(y1) # g;(y2) =: 22. As z1 € W5, o and @2 € W¢}“aj, the points
z1 and 23 lie in the disjoint manifolds Wy~ and Wi, a; respectively. This
implies that a(z1) # a(z2).

CASE 2: The points lie in the same orbit. We can assume that F(z) >
E(z1). Then z1 = ¢} (z2) for some positive natural number m = m(z1, x2).
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Thus

a(zs) = ( T;L(wl)—&-m 0 ge, © ¢Zo(w1)+m)(x2)

= (™, 0 "5 0 g, 0 90V (21) = ¥ (al21)) # ala).

Surjectivity. If y € S? is a repelling fixed point, then y = a(y) (see
definition of ). Otherwise y € Wy, . for some fixed point ¢; (attracting or
saddle). Let ng = no(y) be such that

Yno—1 1= 5" (y) € int(g(Ke, 0) \ 9(Ke, 1)) and yng = 13" (y) € g(Ke, 0)-

As g is a conjugating homeomorphism,

(6n' 09" o Un) Wno—1) = 9~ (Yno—1)-

Furthermore, since 5 (Yny—1) = Yn,y, We have

(05" 09 ) (Wne) = 9 (Yng—1)-
Set
xno = g_l(yno) and xno—l = g_l(yno—l) = ¢}:1(mn0)'
Since g, is a homeomorphism, z,,_1 € (intye K, 0\ K, 1) and zp,, € K, 1.
This means that for 2* = ¢"9 (x,,) the natural number ng is the same as
in the definition of «, which implies that y = (¢, " 0 g 0 ¢,°)(2*) = a(x™).

Continuity

CASE 1: Continuity on the stable manifold of an attracting point. Let x
lie on the stable manifold of an attracting point a;. There exists ng = ng(x)
such that

ZO(CIJ) < Kai,l and ¢ZO_1($) < int(KahO \ Kai,1)~

If ¢;°(x) € int K4, 1, then as int K4, 1 and int(K,, 0 \ Kq,,1) are open
and the map ¢(-, ) is continuous, there exists a neighbourhood U, of = such
that

"0(U,) Cint Ky, 1 and ¢ N (Uy) Cint(Ka, o\ Kay1)-

As gi, Y_n(,t) and ¢p(-,t) are continuous, the map o = ¥™9 o g; o ¢,° is
continuous at z.

If y := ¢,°(x) € 0K,, 1, then every neighbourhood U, of y intersects
int(Kq, 0\ Ka,,1). Let (yn)o2; C int(Ky,, 0\ Kq, 1) converge to y. Then there
exists N such that for every natural n greater than N, ¢y (y,) € int K, 1.
Indeed, suppose otherwise. Then there exists a subsequence (y,, ) such that
On((Yny)52y) € int K, 1. However, ¢p,(y) € int K,, 1 because the potential
E is constant on 0K, 1 and decreases along a trajectory. This means that

for every k, om(on(y), on(Yn,)) > inf{om(én(y),w) : w € 0K,, 1)} > 0.
This is a contradiction because ¢ is continuous.
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We have demonstrated that for every y € 0K,, 1 there exists a neigh-
bourhood U with ¢p,(Uy) C Ky, 1. The neighbourhood Uy; has two disjoint
components: the first one, Uy 1 is included in int K,, 1 whereas the second,
Uf, is not. The point z is transformed by the map « in such a way that
U;l is transformed by g;, and Uf by ¥_p 0 g; o ¢p. Afterwards U;l U U;2
is transformed by the map ¥™} . But g; is a conjugating homeomorphism so

(Y—n o giodn)(Uy?) = (—p oty 0 g:)(U;?) = g:(U}?)
and therefore we can say that the whole neighbourhood U is transformed
by g;. The continuity of ¢, g; and ©¥_j implies that « is continuous at x.

CASE 2: Continuity at repelling fixed points. There are two possibilities
in this case: either

(i) the repelling point, say p, is in the closure of the stable manifold of
a saddle point ¢, or
(ii) p is in the closures of the stable manifolds of attracting points.

Suppose first that (i) holds.

STEP 1: Restriction to the stable manifold. Let {xy}ren C Wge pE
cl W(z(q) and limyg_ o xx = p.

Let V, be a neighbourhood of ¢ such that the homeomorphism gy, 4 conju-
gating ¢, and 9y, is defined on V. For sufficiently small i and every natural
N almost all elements of the sequence {z }xen have the following property:

P () €int Kyq, ¢ H(an) € int(Kyo \ Kq1), 1% > N,

which follows from Lemma 4.7 (for the definition of the sets K, ¢ and K, 1,
see Lemma 4.3). The same lemma also implies that there exists r > 0 such
that yx = ¢(xk, nrh) € B(q,r)NW5(q) = Ky 2 for all k. In other words, since
the step on the manifold M is small, all the y;, lie near 0K, ;. Since ¢ is a
fixed point of g ¢, gn,q(Vy) is a neighbourhood of g and gs,q(Vy) NW3, (¢) C
Wi, .q 88 Gh,q locally conjugates ¢y and . Since p is also a repelling point
of ¥y, it lies in Wy, (¢) (by Corollary 4.11). As gp 4 is a homeomorphism,
9q(Yk) & gn,q(Kg2) for every k. Let Wf;f(q) be the maximal connected
component of Wj (¢) \ {¢} containing p. Then, for every ¢ > 0, there exists
N such that

Y (Wit(g) \ Ky 2) C B(p,e)  foralln > N.

Since almost all ny are greater than N and every y; is in Wif(q) \ Kq.2,
almost all ™% (y;,) lie in B(p, €). This means that

Jim 9, (g4(yr)) = p-

Thus, we have shown that the map « restricted to W, (¢)U{p} is continuous
at p.
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STEP 2: Continuity at the repelling point. Let € > 0. Since « is continuous
on the stable manifold of every saddle point (see case 3), for every z* in such
a manifold and &1 > 0, there exists d; > 0 such that if € B(z*,0;) then
a(z) € B(xz*,e1). On the other hand, p is a fixed point of a, and a|W3(q)
is continuous at p (see step 1). Thus, for every 5 > 0 there exists d3 > 0
such that if 2* € B(p, d2), then a(z*) € B(p,e2). Let £1 and 2 be such that
£1 + €2 = €. Then the triangle inequality implies that if x € B(p,d1 + d2)
then a(x) € B(p,e1 +€2).

Suppose now that (ii) holds. Corollary 4.9 implies that there exists only
one attracting singularity a such that p € Wj(a), whereas Lemma 4.8 implies
that only one repelling point can lie in ¢ W (a). This means that there exists
a neighbourhood V), of p such that

tlim o(z,t) =a
for all z € V,, \ {p} and there exists a neighbourhood V, of a such that
tlim Y(y,—t)=p forallyeV,\{a}.

We can now repeat the first step of subcase (i) to show that the map « is
continuous at p.

CASE 3: Continuity on the stable manifold of a saddle point. Let g; be
a saddle point. If the restriction ¢,|W3 (g;) is considered, then ¢; is an
attracting singularity and, repeating the argument from case 1, we have
continuity of « in the relative topology on the stable manifold.

Thus, let zo € W3 (¢;) and = € Uy, \ W, (¢i), where Uy, is a neighbour-
hood of xq. Since there are no saddle-saddle connections, there exist attract-
ing points a;, ag, not necessarily different, such that W3 (¢:)1 C W, (a;)
and W§ (gi)2 C Wg, (ax), where W3 (¢;)1 and W} (g;)2 are the connected
components of the manifold W}, (g;)-

For every zo € Wj(g:), each neighbourhood Vi, of ¢; and sufficiently
small A > 0, there exists 6; > 0 and n; such that

n (B(x,01)) C V.
Suppose Vg, N W§(g;) = int K, 1, and h and n; are such that
'~ (Bwo, 81) N Wi(a:) C int(Kg, 0\ Ky 1)-
Thus 2™ := ¢;* () lies in the local stable manifold W3 ,,.(¢;). Denote by Dy

a disc transversal to W | (i), containing 2", z™ := gbzlm and embedded
in V,,. According to the A-lemma, for every d, > 0 and sufficiently small h,
there exists ng such that

Dy, = 2 (D(‘;)
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is do-close to ngwc(qi). Thus, for every y € D;,, there exists a point 7 in one
of the connected components of Wj(g;), for instance in Wi(g;)1 C Wj(ay),
such that

om(y,7) < 2.

For every neighbourhood U,, C V,, of ¢; we can choose z so close to z( that
Y= d’ZH_nQ (z) € Vg,

We will trace the behaviour of the point y lying near the W;}(qz) using a
“spying point” § whose behaviour is known because it lies in W} .(¢i)1 C
W;(aj), where a; is an attracting point. Since ¥ is in the attracting basin
of a;, there exists a neighbourhood V5 C Wj(a;). For every d2 > 0, by
the A-lemma and continuity of ¢, we can choose x so close to xy that
y € B(y,02). According to Lemmas 4.7 and 4.5 we can choose ngz such that

23 (g) = yTS € int Kaj,h 23_1(§) € int(Kaj,O \ Kaj,l)
and
ZS (y) = yTLS E lnt Kaj,lv ZS_I(y) E int(Kaj,O \ Kaj,l)'

The map ¢y, is continuous so, for every d3 > 0, there exists do > 0 such that
if om(7,y) < 2, then oaq(y™s,y™*) < d3. Define

T = (0 00, )@, 2" = 07 (g, (570)),

where g,; is a local conjugating homeomorphism constructed in Lemma 4.6.
Then the definition of g, 4, (see formula (12)) implies that

94:(y) = 23,

where g,, is a local homeomorphism conjugating ¢, and v, in a neighbour-
hood of g;. This follows from the definition since

27 = (Y25, 0 ggsa; © ¢75)(F) = (VI 0 (% 0 gg, © 8™5,) © 9,°)(¥) = 94, (¥)-

Thus, for every neighbourhood U,, of ¢;, if o (z, x0) is sufficiently small,
then the points y, 7 and yo := g,, (¢} T2 (20)) all lie in U,,. The continuity
of the map g,, and the equality g, (¢;) = ¢; imply that for every = > 0 there
exists a neighbourhood U,, such that 273, ¢, (yo) € B(g;,r). Furthermore,
2" is also in this ball by the continuity of 9" 0 gy, 4, 09", and the equality
9q:(¥) = z™. The continuity of 1_j assures that for every r; > 0 there
exists a radius r such that

om(W25, (1), ¥, (o)) < 1.

On the other hand g4, (z3") = ¥™3 (yo) because
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"2 0 gq, 0 ¢p2)(wp") = (Y137 o by 0 gy, 0 Pn 0 PR ) ()
"2 odh_p 0 by 0 gg, 0 G2 ) ()

"2l o gy 0 dp2 ) (agt) = .. = (Yon 0 gy, 0 D1) (")

= (¢p_potpo g%‘)(xgl) = 9q; (xgl)-

Recapitulating, for every r; > 0 we can choose the radius r of the ball
B(qgi,r) such that

?ﬁﬁi(yo)

(¥
(¢
(¥

om (wgzh(y)v 9q; (mgl )) <.
The continuity of ¢y, implies that for every € > 0 there exists r; such that

om (W2, (W55, ()), ¥ (94, (267))) = om(a(z), alzo)) <e.
This completes the proof. m
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