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On the multivariate transfinite diameter

by Thomas Bloom (Toronto) and Jean-Paul Calvi (Toulouse)

Abstract. We prove several new results on the multivariate transfinite diameter and
its connection with pluripotential theory: a formula for the transfinite diameter of a general
product set, a comparison theorem and a new expression involving Robin’s functions. We
also study the transfinite diameter of the pre-image under certain proper polynomial
mappings.

1. Introduction. We present several new results on the multivariate
transfinite diameter which, we believe, should clarify its rather close con-
nection with well-known objects of pluripotential theory. We shall first recall
the definition, fix the notation and provide the necessary background. An
outline of the paper appears at the end of this introductory section.

The space of all polynomials in C
n is denoted by P(Cn) and the subspace

of polynomials of degree at most d by Pd(Cn). The dimension of the latter
is N := Nd(n) :=

(
d+n

d

)
, which is also the number of multi-indices whose

length does not exceed d. We arrange the multi-indices in a sequence (αi),
i = 1, 2, . . . , such that αi ≺ αi+1 for every i where ≺ is the usual graded
lexicographic order. Recall that this order is defined by α ≺ β if either
|α| ≤ |β| or |α| = |β| but the first (starting from the left) non-zero entry of
α−β is negative. Thus, for example, α1 = (0, . . . , 0, 0) and αN = (d, 0, . . . , 0)
and the zαi , i = 1, . . . , Nd(n), form the usual monomial basis of Pd(Cn).

The Vandermonde determinant of a collection of Nd(n) points zi =
(zi1, . . . , zin) ∈ C

n is the N × N determinant defined by

(1.1) VDM(z1, . . . , zN ) = det(z
αj

i )N
i,j=1.

As a function of the N × n complex variables zij , VDM is a polynomial of
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degree

(1.2) ld =
d∑

j=1

jhj(n) = n

(
n + d

n + 1

)
where hj(n) :=

(
n + j − 1

j

)

is the dimension of the space of homogeneous polynomials of degree j.

Now, given a compact set E ⊂ C
n, we define the dth diameter of E by

(1.3) Dd(E) = ld

√
sup
zi∈E

|VDM(z1, . . . , zN )|.

When n = 1, we have Nd = d + 1, |VDM(z1, . . . , zN )| =
∏

1≤i<j≤N |zi − zj |
and ld =

(
d+1
2

)
so that Dd(E) converges to the classical transfinite diameter

of Fekete that coincides—this is a basic result of potential theory in the
complex plane—with the logarithmic capacity. The question whether or not
the sequence Dd(E) converges as well for every compact set E ⊂ C

n was
posed by Leja in 1959 and answered affirmatively by Zakharyuta [Za] in
1975. This limit

(1.4) D(E) = lim
d→∞

Dd(E)

is naturally called the (multivariate) transfinite diameter. The proof of this
result provides an interesting link with approximation theory.

Given a compact set E ⊂ C
n and a multi-index α we define

(1.5) T (α,E) = inf
{∥∥∥zα +

∑

β≺α

aβzβ
∥∥∥

E

}

where the infimum runs over all the possible choices of the coefficients aβ .
A polynomial tα,E(z) = zα +

∑
β≺α aβzβ for which the infimum above is

attained, i.e.

(1.6) ‖tα,E‖E = T (α,E),

will be termed a P(α)-minimal polynomial. Such a polynomial is, in general,
not unique.

Now, for every θ ∈ Σ0 where

(1.7) Σ0 :=
{

θ ∈ R
n :

n∑

i=1

θi = 1, θi > 0 (i = 1, . . . , n)
}

is the interior of the standard simplex in R
n, Zakharyuta [Za] proved that

the following limit exists:

(1.8) τ(E, θ) = lim
α/|α|→θ

T (α,E)1/|α|, |α| → ∞,
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and established the existence of D(E) via the following remarkable formula:

(1.9) D(E) = exp

(
1

m(Σ0)

\
Σ0

log(τ(E, θ)) dm(θ)

)
.

The numbers τ(E, θ) are called the directional Chebyshev constants of E. In
the course of the proof, Zakharyuta [Za, Lem. 6, p. 356] also showed that

(1.10) D(E) = lim
d→∞

( ∏

|α|=d

T (α,E)
)1/(dhd)

,

which will be used in the sequel.

This multivariate transfinite diameter is involved in several questions of
pluripotential or approximation theory but few relevant results can be found
in the literature. We list here some known results.

(i) (Transfinite diameter of a product of planar compact sets) If Ei ⊂ C,
i = 1, . . . , n, and E = E1 × . . . × En then

D(E) = n
√

D(E1) . . . D(En).

This is a result of Schiffer and Siciak [SS].
(ii) (Shĕınov’s formula) If A ∈ GLn(C) and E ⊂ C

n then

(1.11) D(A(E)) = n
√

|det A| · D(E).

The original (elementary) proof of [Sh] is somewhat cumbersome. In fact the
result is not difficult to establish directly from the definition when A is a
diagonal matrix while when A is unitary, Levenberg and Taylor have given
a fairly simple proof in [LT]. Since unitary and diagonal automorphisms
generate GLn(C), formula (1.11) follows.

(iii) (Continuity under decreasing sequences of compact sets) If Ei ⊂ C
n

is a decreasing sequence (Ei ⊃ Ei+1, i = 1, 2, . . .) of compact sets such that
E =

⋂∞
i=1 Ei then D(Ei) ց D(E) as i tends to ∞. This is a result of

Znamienskĭı, subsequently (independently) proved by Levenberg [Le].

(iv) D(E) has been computed for balls of the form E = {
∑n

i=1 |zi|pi ≤
M} by Jȩdrzejowski [Je] and for E = {x2

1 + x2
2 = 1} ⊂ R

2 ⊂ C
2 by Bos

who was motivated by a problem on multivariate Lagrange interpolation
(see [Bo] and [BBCL]).

(v) Finally we mention that there exist some comparison theorems be-
tween the transfinite diameter and the logarithmic capacity (see [LT]). In
particular D(E) = 0 if and only if E is pluripolar.

In the next section we shall extend the result (i) above to the case where
the factor sets are not necessarily plane. The third section will exhibit a close
relationship between the transfinite diameter and the Robin function of a
regular (see below) compact set. Several applications will be given. The final
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section will study the transfinite diameter of the pre-image of a compact set
under suitable polynomial mappings, thus giving a partial generalization of
the corresponding classical one variable theorem of Fekete.

We assume that the reader is familiar with the basic notions of pluripo-
tential theory—the standard reference is the book of Klimek [Kl]—but we
shall provide the necessary background on Robin’s functions. Let us just re-
call here that a compact set E ⊂ C

n is said to be regular if its pluricomplex
Green function VE is continuous on C

n.

2.Transfinite diameter of a product set. The purpose of this section
is to prove the following

Theorem 1. Let E ⊂ C
n and F ⊂ C

m be compact sets. Then

(2.1) D(E × F ) = n+m
√

Dn(E) · Dm(F ).

The proof will use a connection of independent interest between the
transfinite diameter and orthogonal polynomials with respect to suitable
probability measures.

Let µ be a probability measure on a compact set E ⊂ C
n. We say that

µ satisfies the Bernstein–Markov inequality if for every ε > 0, there exists a
finite positive constant M = M(ε) such that for every (analytic) polynomial
p we have

(2.2) ‖p‖E ≤ M(1 + ε)deg p‖p‖µ,

where ‖p‖2
µ :=

T
|p|2 dµ. Roughly, (2.2) means that the L2(µ) norm and the

supremum norm of polynomials are asymptotically comparable. For such
measures and for E unisolvent the monomials zα are linearly independent
and, using the standard Gram–Schmidt procedure, we can therefore form
the sequence of monic orthogonal polynomials pα, that is, polynomials pα

of the form

(2.3) pα(z) = zα +
∑

β≺α

cβzβ

such that

β ≺ α ⇒ (pα, zβ) = 0

where (·, ·) is the hermitian product of L2(µ).

Lemma 1. Let E be a compact unisolvent set in C
n and µ a probability

measure on E satisfying (2.2). Then

(2.4) D(E) = lim
d→∞

( ∏

|α|=d

‖pα‖µ

)1/(dhd)

.
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Note. The assumption of this lemma is satisfied on every regular com-
pact set for example by the equilibrium measure µE of E (see [Kl, Cor. 5.6.7])
and [NZ]).

P r o o f. Due to the L2 minimality property of monic orthogonal polyno-
mials we have, for every multi-index α,

(2.5) ‖pα‖µ ≤ ‖tα,E‖µ ≤ ‖tα,E‖E = T (α,E)

while, given ε > 0, the Bernstein–Markov inequality (2.2) gives

(2.6) T (α,E) = ‖tα,E‖E ≤ ‖pα‖E ≤ M(1 + ε)|α|‖pα‖µ.

Inequalities (2.5) and (2.6) give upper and lower bounds for
∏

|α|=d ‖pα‖µ

in terms of
∏

|α|=d T (α,E) and the lemma follows from (1.10) since ε can
be made arbitrarily small.

Note. Under the same hypothesis but using (1.8) rather than (1.10) it
follows (see [Le]) that

(2.7) τ(E, θ) = lim
α/|α|→θ

‖pα‖1/|α|
µ , |α| → ∞.

(This will be used in Section 3.)

Lemma 1 shows that, as in the one variable case, the transfinite diameter
reflects the asymptotic behavior of orthogonal polynomials with respect to
a measure satisfying (2.2). It would be interesting to know if the equality
(2.4) is a sufficient condition for µ to satisfy (2.2) on E.

The idea of applying orthogonal polynomials to the study of the multi-
variate transfinite diameter is not new. Bos [Bo] employed it in a slightly dif-
ferent formulation. Roughly, he proved that the Vandermonde determinant
(1.1) can be replaced by the Gram determinant of the zαi , i = 1, . . . , Nd, in
the definition of the transfinite diameter.

The following remark should explain the interest in considering orthog-
onal polynomials for computing the transfinite diameter of a product set.

Let µ1 (resp. µ2) be a measure satisfying (2.2) on E⊂C
n (resp. F ⊂C

m)
for which the orthogonal polynomials can be constructed. Then we can also
construct the orthogonal polynomials with respect to the product measure
µ1⊗µ2 and these polynomials can be easily expressed in terms of the former.
Here is a precise statement.

If α is an n+m-multi-index, we write α = (α1, α2) where α1 (resp. α2) is
an n-multi-index (resp. an m-multi-index). We denote by p, q and r (properly
indexed) the monic orthogonal polynomials for the measures µ := µ1 ⊗ µ2,
µ1, µ2 respectively. Recall that the three families are constructed using the
graded lexicographic order in the corresponding space. It is easily seen that
if α = (α1, α2) then

(2.8) pα(z) = qα1
(z1)rα2

(z2), z = (z1, z2) ∈ C
n × C

m,
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and consequently

(2.9) ‖pα‖µ = ‖qα1
‖µ1

‖rα2
‖µ2

.

Indeed, this follows from the fact that if α = (α1, α2) ≺ β = (β1, β2) then
α1 ≺ β1 or α2 ≺ β2.

We shall need the following

Lemma 2. Let µ1 (resp. µ2) be a measure satisfying (2.2) on E ⊂ C
n

(resp. F ⊂C
m) with E,F unisolvent. Then µ1⊗µ2 satisfies (2.2) on E×F ⊂

C
n+m = C

n × C
m.

P r o o f. We use the previous discussion. Fix ε > 0. We want to find a
positive constant C such that

(2.10) ‖p‖E×F ≤ C(1 + ε)deg p‖p‖µ (p ∈ P(Cn+m)).

Since both µ1 and µ2 are regular, we can find positive constants C1 and C2

such that for every P ∈ P(Cn) and Q ∈ P(Cm) we have

‖P‖E ≤ C1(1 + ε/2)deg P ‖P‖µ1
, ‖Q‖F ≤ C2(1 + ε/2)deg Q‖Q‖µ2

.

Now, take p∈P(Cn+m) and set d := deg p. Using the orthogonal polynomial
basis of (2.8), we can write

(2.11) p =
∑

|α|≤d

aαpα

where ‖pα‖2
µaα = (p, pα). Using the Cauchy–Schwarz inequality and (2.8)

we deduce

‖p‖E×F ≤ ‖p‖µ

∑

|α|≤d

‖pα‖E×F

‖pα‖µ

≤ ‖p‖µ

∑

|α|≤d

‖qα1
‖E‖rα2

‖F

‖qα1
‖µ1

‖rα2
‖µ2

≤ ‖p‖µC1C2

∑

|α|≤d

(1 + ε/2)|α1|(1 + ε/2)|α2|

≤ C1C2‖p‖µNd(m + n)(1 + ε/2)d ≤ C3‖p‖µ(1 + ε)d.

(The last inequality holds true because, as d → ∞, Nd(n + m) grows slower
than any δd with δ > 1.) This shows that µ1 ⊗ µ2 satisfies (2.2) and the
lemma is proved.

Remark. Z. B locki [Blo] has shown that µE×F = µE ⊗ µF (answering
a question of J. Szczepański).

Proof of Theorem 1. It suffices to prove formula (2.1) in the case where
both E and F are regular. The general case can be deduced by using Prop-
erty (iii) (in the introduction) and approximating E and F by sequences
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of decreasing regular compact sets. Such sequences always exist (see [Kl,
Cor. 5.1.5]).

Now take a probability measure µ1 (resp. µ2) satisfying (2.2) on E (resp.
F ). This is possible since these compact sets are regular. Then, by Lemmas 1
and 2, using again the orthogonal polynomials pα with respect to µ = µ1⊗µ2

and the notation α = (α1, α2) we have

D(E × F ) = lim
d→∞

( ∏

|α|=d

‖pα‖µ

)1/(dhd(n+m))

,

hence

(2.12) D(E × F ) = lim
d→∞

( ∏

|α|=d

‖qα1
‖µ1

‖rα2
‖µ2

)1/(dhd(n+m))

.

Define sequences (uk) and (vk) by

uk :=
∏

|α1|=k

‖qα1
‖µ1

, vk :=
∏

|α2|=k

‖rα2
‖µ2

,

and take 0 < λ < 1 < Λ < ∞. According to Lemma 1, there exist four
positive constants c1 < C1 and c2 < C2 such that

c1(λD(E))khk(n) ≤ uk ≤ C1(ΛD(E))khk(n) (k ∈ N),(2.13)

c2(λD(F ))khk(m) ≤ vk ≤ C2(ΛD(F ))khk(m) (k ∈ N).(2.14)

Now, returning to (2.12), we have
∏

|α|=d

‖qα1
‖µ1

‖rα2
‖µ2

=
∏

|α|=d

‖qα1
‖µ1

∏

|α|=d

‖rα2
‖µ2

=

d∏

k=0

u
hd−k(m)
k

d∏

k=0

v
hd−k(n)
k .

Using (2.13) and (2.14) we can find lower and upper bounds of the quantity

above that involve D(E) to the power
∑d

k=0 khk(n)hd−k(m) and D(F ) to

the power
∑d

k=0 khk(m)hd−k(n). Assume for a while that for every integer
m and n,

d∑

k=0

khk(n)hd−k(m) =
n

n + m
dhd(n + m);

then the lower bound of
∏

|α|=d ‖qα1
‖µ1

‖rα2
‖µ2

is precisely

c
Nd(m)
1 (λD(E))

n
n+m

dhd(n+m) · cNd(n)
2 (λD(F ))

m
n+m

dhd(n+m)

while the upper bound is given by

C
Nd(m)
1 (ΛD(E))

n
n+m

dhd(n+m) · CNd(n)
2 (ΛD(F ))

m
n+m

dhd(n+m).
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Since limd→∞ Nd(n)/(dhd(n + m)) = 0, we deduce, by taking roots, that

(λD(E))n/(n+m)(λD(F ))m/(n+m) ≤ lim
d→∞

( ∏

|α|=d

‖pα‖µ

)1/(dhd(n+m))

and

lim
d→∞

( ∏

|α|=d

‖pα‖µ

)1/(dhd(n+m))

≤ (ΛD(E))n/(n+m)(ΛD(F ))m/(n+m).

Since λ (< 1) and Λ (> 1) can be taken arbitrarily close to 1 the desired
formula follows. This proof will therefore be completed as soon as the simple
combinatorial lemma below is proved.

Remark. As pointed out by Prof. Siciak, it is sufficient to prove the
result for the δ-neighborhoods of a compact set E and on these sets the
Lebesgue measure itself is known to satisfy the Bernstein–Markov inequality.
Also the spirit of our proof can be compared with that of Siciak’s [Si1] proof
of the product formula for the extremal function.

Lemma 3. Let m and n be positive integers. Then

d∑

k=0

khk(n)hd−k(m) =
n

n + m
dhd(n + m).

P r o o f. Set cd :=
∑d

k=0 khk(n)hd−k(m) and consider the formal power
series F1 and F2 defined by

F1(X) =

∞∑

d=0

dhd(n)Xd = X

∞∑

d=1

dhd(n)Xd−1

= X
d

dX

1

(1 − X)n
=

nX

(1 − X)n+1
,

F2(X) =

∞∑

d=0

hd(m)Xd =
1

(1 − X)m
.

Now cd is the coefficient of Xd in

F1(X)F2(X) =
nX

(1 − X)m+n+1

that is,

cd = n

(
m + n + d − 1

d − 1

)
.

Hence we get

1

dhd(m + n)

d∑

k=0

khk(n)hd−k(m) =
n
(
m+n+d−1

d−1

)

d
(
m+n+d−1

d

) =
n

m + n
.
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3. Transfinite diameter and Robin’s functions. Let E be a regular
compact set in C

n with pluricomplex Green function VE(z). The Robin

function of E is defined in complex projective (n− 1)-space P
n−1 (see [BT])

via

(3.1) ̺E([z]) = lim
|λ|→∞

(VE(λz) − log |λz|)

where z ∈ C
n − {0}, | · | is the euclidean norm on C

n and [z] is the point
that z determines in P

n−1. Of course, the pluricomplex Green function VE

and the Robin function are defined whether or not E is regular but we shall
only use these notions in the regular case. In this case, ̺E([z]) is continuous
on P

n−1 ([Le] or [Si2]). The logarithmic capacity of E, denoted by C(E), is
defined (see e.g. [BT]) by

(3.2) C(E) = exp(− sup
Pn−1

̺E([z])).

We remark that the Robin function (and the logarithmic capacity) de-
pends on the norm we work with. Replacing the euclidean norm | · | by any
complex norm ν in the definition above, we may similarly define the Robin
function ̺ν

E and the capacity Cν(E). The two functions ̺E and ̺ν
E behave

essentially in the same way (for the two norms are equivalent) but the values
of C(E) and Cν(E) are different and this will play some role in our study.
(Note that the computation of the transfinite diameter does not require the
use of a norm on C

n.) Another function is often called the Robin function
in the literature. It is the function

(3.3) ̺E(z) = lim
|λ|→∞

(VE(λz) − log |λ|) (z 6= 0),

which has the advantage of being independent of the norm but the inconve-
nience of not being homogeneous and therefore not defined on the projective
space. Of course for every complex norm we have

(3.4) ̺E(z) = ̺ν
E(z) + log ν(z).

Another description of this function is the following. Under the above reg-
ularity assumption on E there exists (see e.g. [Si2]) a unique homogeneous
continuous plurisubharmonic function VE(z) on C

n ×C such that for t 6= 0,

(3.5) VE(z, t) = log |t| + VE(z/t)

for every z ∈ C
n. (We refer to [Si2] for the meaning of “homogeneous” in

this context.) Then we have

(3.6) ̺E(z) = VE(z, 0).

Much of the content of this section will be based on a polynomial approx-
imation theorem of Bloom [Bl, Th. 3.2]. We first need to consider another
polynomial approximation problem.
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Let h be an homogeneous polynomial of degree d. Then an h-minimal

polynomial for a compact set E is a polynomial of the form h + p where
p ∈ Pd−1(Cn) which is of least deviation from 0 on E, that is,

(3.7) ‖h + p‖E = inf{‖h + r‖E : r ∈ Pd−1(Cn)}.
Such a polynomial is generally not unique. The notation CheE(h) will be
used for any of these polynomials.

Of course the uniform norm ‖CheE(h)‖E depends only on h and E and
we have

(3.8) ‖CheE(λh)‖E = |λ| · ‖CheE(h)‖E (λ ∈ C
∗).

Theorem 2. Let E be a regular polynomially convex compact subset of

C
n and let {Qd} (d = 1, 2, 3, . . .) be a sequence of homogeneous polynomials

such that deg Qd strictly increases. If

(3.9) lim
d→∞

1

deg Qd
log |Qd(z)| − log |z| ≤ ̺E([z]) (z 6= 0)

then

(3.10) lim
d→∞

‖CheE(Qd)‖1/deg Qd

E ≤ 1.

This theorem is stated in [Bl] with deg Qd = d but the proof works just
as well under the assumption that deg Qd increases. Bloom [Bl] based it on a
Cauchy–Weil integral formula in order to construct explicitly a competitor to
Che(Qd) that satisfies (3.10), and Siciak [Si2] gave an alternate (somewhat
more abstract) proof.

We are now able to relate these notions to the multivariate transfinite
diameter.

Theorem 3. Let E and F be regular compact subsets of C
n. Then

(3.11) inf
Pn−1

e−̺E

e−̺F
≤ D(E)

D(F )
≤ sup

Pn−1

e−̺E

e−̺F
.

In particular ,

(3.12) ̺E = ̺F ⇒ D(E) = D(F ).

Note. Since E and F are regular, both ̺E and ̺F are continuous on
the compact space P

n−1 so that the extrema above are attained and finite.
In (3.11) we may replace simultaneously ̺E by ̺E and ̺F by ̺F , as follows
from (3.4).

Proof (of Theorem 3). First we note we may suppose without loss of
generality that E and F are polynomially convex. Indeed, if K is a regular
compact subset of C

n and if K̂ is its polynomial hull then D(K) = D(K̂)
(see [Za]) and ̺K = ̺

K̂
for VK = V

K̂
(see [Kl]).

Let α be a non-zero multi-index that we keep fixed for a moment.
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Take a P(α)-minimal polynomial tα,F for F (see (1.6)) and consider the
function

(3.13) u(z) =
1

|α| (log |tα,F (z)| − log ‖tα,F ‖F ).

This is a plurisubharmonic function on C
n of logarithmic growth that is

smaller than or equal to zero on F , therefore

(3.14) u(z) ≤ VF (z) (z ∈ C
n),

as VF is the supremum of such functions. Consequently, we have

(3.15) lim
|λ|→∞

(u(λz) − log |λz|) ≤ ̺F ([z]) (z 6= 0).

But an easy calculation shows that

(3.16) lim
|λ|→∞

(u(λz) − log |λz|) =
1

|α| (log |t̂α,F (z)| − log ‖tα,F ‖F ) − log |z|

where t̂α,F is the homogeneous part of degree |α| in tα,F . Hence we deduce

1

|α| (log |t̂α,F (z)| − log ‖tα,F ‖F ) − log |z|

≤ ̺F ([z]) ≤ ̺E([z]) + [̺F ([z]) − ̺E([z])]

≤ ̺E([z]) + sup
Pn−1

[̺F ([z]) − ̺E([z])].

We define the finite number γ by the relation

(3.17) − log γ = sup
Pn−1

[̺F ([z]) − ̺E([z])].

Let Y be a sequence of multi-indices for which |α| increases and α/|α| →
θ ∈ Σ0. Then since (see (1.8))

(3.18) lim
|α|→∞, α∈Y

‖tα,F ‖1/|α|
F = τ(F, θ),

from the inequality above we get

(3.19) lim
|α|→∞, α∈Y

1

|α| log |t̂α,F (z)| − log |z| ≤ ̺E([z]) + log
τ(F, θ)

γ
.

Set finally

(3.20) ν := τ(F, θ)/γ.

The relation (3.19) gives

lim
|α|→∞, α∈Y

1

|α| log

∣∣∣∣
t̂α,F

ν|α|
(z)

∣∣∣∣ − log |z| ≤ ̺E([z]) (z 6= 0).

Therefore Theorem 2 implies

(3.21) lim
|α|→∞, α∈Y

‖CheE(t̂α,F /ν|α|)‖1/|α|
E ≤ 1;
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and, in view of (3.8), this also gives

(3.22) lim
|α|→∞, α∈Y

‖CheE(t̂α,F )‖1/|α|
E ≤ ν.

So, since

(3.23) ‖tα,E‖ ≤ ‖CheE(t̂α,F )‖E ,

taking roots, letting |α| → ∞, α ∈ Y and using (3.22) together with (1.8),
we obtain

(3.24) τ(E, θ) ≤ ν = τ(F, θ)/γ,

that is,

log τ(E, θ) ≤ log τ(F, θ) + sup
Pn−1

[̺F ([z]) − ̺E([z])].

Substituting this inequality in Zakharyuta’s formula (1.9) we obtain

log D(E) ≤ log D(F ) + sup
Pn−1

[̺F ([z]) − ̺E([z])].

Taking exponentials, we have

(3.25)
D(E)

D(F )
≤ sup

Pn−1

e−̺E

e−̺F
.

This is the first of the required inequalities. As for the second, since E and
F play a symmetric role, we also obtain

(3.26)
D(F )

D(E)
≤ sup

Pn−1

e−̺F

e−̺E
, and so

D(E)

D(F )
≥ inf

Pn−1

e−̺E

e−̺F
.

We now apply our result to the computation of the transfinite diameter
of the level sets ER of E. They are defined for R > 1 by

ER = {z ∈ C
n : VE(z) ≤ log R}.

Each ER is compact and VER
(z) = max{0, VE(z) − log R}. It follows that

̺ER
([z]) = ̺E([z]) − log R and C(ER) = RC(E). Taking F = ER in Theo-

rem 3 we immediately obtain the following corollary that answers (affirma-
tively) a question posed by Zakharyuta [Za].

Corollary 1. Let E be compact , polynomially convex and regular in

C
n, and R > 1. Then

D(ER) = RD(E).

Remark. Examination of the proof shows that, in fact, we have τ(ER, θ)
= Rτ(E, θ) for every θ ∈ Σ0.

Corollary 2. For every compact set E ⊂ C
n, n > 1, we have

(3.27) C(E) ≤ exp

(
+

1

2

n∑

k=2

1

k

)
D(E).
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P r o o f. We may assume that E is regular; otherwise we can use an
approximation argument since the transfinite diameter and the logarithmic
capacity are continuous under decreasing sequences of compact sets. Then
the result follows immediately from Theorem 3 on taking F equal to B(0, 1),
the unit (closed) euclidean ball, and using D(B(0, 1)) = exp

(
− 1

2

∑n
k=2

1
k

)
,

which is a result of Jȩdrzejowski [Je].

Inequality (3.27) is sharp—a less precise bound appeared in [LT]—for it
reduces to an equality if E = B(0, R), actually if E is a regular compact set
such that lim|z|→∞(VE(z) − log |z|) exists.

More generally, if E is regular compact set such that there exists a com-
plex norm ν (depending on E) for which the limit

(3.28) lim
|z|→∞

(VE(z) − log ν(z)) exists

then it must be − log Cν(E), and

(3.29) (3.28) ⇒ Cν(E) =
D(E)

D(Bν(0, 1))

where Bν(0, 1) is the closed unit ball for the norm ν. More specifically, if
ν = ‖ · ‖, the polydisc norm, then D(E) = C‖·‖(E).

Of course the hypothesis (3.28) is very strong, but several compact sets
for which one can explicitly find the pluricomplex Green function do have
this property. Let us give two examples that can be derived from the corre-
sponding formulas for VE due to Baran, as in [Kl]. If E = Σ, the standard
simplex in R

n ⊂ C
n, then the norm ν(z) =

∑ |zi| + |∑ zi| works and the
limit in (3.28) is log 2. If E = BR(0, 1), the real euclidean ball in R

n ⊂ C
n,

then we can take ν(z) = ((|z|2 + |∑ z2
i |)/2)1/2 and the limit is again log 2.

Recent results of Baran [Ba] imply existence of such a norm for every convex
symmetric subset of C

n. It would be interesting to study whether this holds
true for other classes of regular compact sets.

Theorem 3 reveals that D(E) is in fact a function of ̺E . We now show
how the transfinite diameter of a regular compact set E can be (theoret-
ically) computed with the sole knowledge of the Robin function of E. In
view of Zakharyuta’s formula, it suffices in fact to express the directional
Chebyshev constant in terms of the Robin function.

We first need some new definitions.

A polynomial p is said to have leading monomial zα if it is of the form
p(z) = aαzα +

∑
β≺α aβzβ with aα 6= 0. The coefficient aα is then termed

the leading coefficient of p and we write aα = Lead(p). (The order ≺ is
defined in the introduction.)

Now let H(α) denote the space of all the homogeneous polynomials of
degree |α| whose leading monomial is zα.
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Definition. Let θ ∈ Σ0. A sequence of homogeneous polynomials Qd,
d = 0, 1, 2, . . . , is said to be a θ-extremal (polynomial) sequence for F if the
following two conditions are satisfied.

(1) For every d, Qd ∈ H(αd) with |αd| increasing as d increases and
αd/|αd| → θ as d → ∞.

(2) For every z 6= 0, |αd|−1 log |Qd(z)| − log |z| ≤ ̺F ([z]).

Corollary 3 (to the proof of Theorem 3). Let F be a regular polyno-

mially convex compact subset of C
n and θ ∈ Σ0. Then

(3.30)
1

τ(F, θ)
= sup{ lim

d→∞
Lead(Qd)1/|αd| :

(Qd) is a θ-extremal sequence for F}.

P r o o f. First we note that τ(F, θ) cannot be zero for otherwise, by [Za,
Cor. 1, p. 353], τ(F, ·) would vanish on the whole of Σ0. This would imply
D(F ) = 0 and thus C(F ) = 0, which would contradict the regularity of F .

Now, take a sequence Y of multi-indices of increasing length such that
α/|α| → θ for α ∈ Y . Then the sequence t̂α,F /‖tα,F ‖ (α ∈ Y ) is a θ-extremal
sequence for F (see the proof of Theorem 3). Since

(
Lead

t̂α,F

‖tα,F ‖

)1/|α|

=

(
1

‖tα,F ‖

)1/|α|

→ 1

τ(F, θ)
(|α| → ∞, α ∈ Y ),

we deduce that 1/τ(F, θ) is not greater than the right hand side in (3.30).

For the reverse inequality, we can proceed as follows. Take a θ-extremal
polynomial sequence Qd for F . In view of condition (2) in the definition, we
may apply Theorem 2 to get

(3.31) lim
d→∞

‖CheF (Qd)‖1/ deg Qd

F ≤ 1.

On the other hand the polynomial CheF (Qd) is of the form

CheF (Qd) = Qd + (lower degree terms) = Lead(Qd)zαd

+
∑

β≺αd

aβzβ ,

which implies that CheF (Qd)/Lead(Qd) is a competitor to be a P(αd)-
minimal polynomial for F and consequently

‖tαd,F ‖F ≤
∥∥∥∥
CheF (Qd)

Lead(Qd)

∥∥∥∥
F

or equivalently

Lead(Qd) · ‖tαd,F ‖F ≤ ‖CheF (Qd)‖F .

Taking |αd|th roots and letting d → ∞ we obtain, using (3.31) and the fact
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that αd/|αd| → θ,

τ(F, θ) · lim
d→∞

Lead(Qd)1/|αd| ≤ 1,

from which the required inequality immediately follows.

We conclude this section by another comparison theorem involving the
second Robin function.

Theorem 4. Let E and F be regular compact subsets of C
n. Then

(3.32)
D(F )

D(E)
≤ sup

S(F )

e̺E

where S(F ) is the Shilov boundary of F .

P r o o f. We return to the orthogonal polynomial method used in Sec-
tion 2. Let µF be the equilibrium measure of the regular compact set F . We
denote by pα the sequence of monic orthogonal polynomials in L2(µF ). Re-
call that (·, ·) denotes the corresponding hermitian product. Now, for a non-
zero multi-index α, we consider once again the polynomial tα,E/‖tα,E‖E . We
have repeatedly used the inequality

1

|α| log

( |t̂α,E(z)|
‖tα,E‖E

)
≤ log |z| + ̺E([z]) = ̺E(z) (z 6= 0),

that is,

|t̂α,E(z)|
‖tα,E‖E

≤ exp(|α|̺E(z)) (z ∈ C
n).

(In fact this holds true even when z = 0 for in this case the left hand side
reduces to 0.) Here this inequality is exploited as follows:

1

‖tα,E‖E
‖pα‖2

µF
=

(
t̂α,E

‖tα,E‖E
, pα

)
≤

∥∥∥∥
t̂α,E

‖tα,E‖E

∥∥∥∥
µF

‖pα‖µF

≤ ‖(exp ̺E)|α|‖µF
‖pα‖µF

.

Now, taking roots and letting |α| → ∞ with α/|α| → θ ∈ Σ0, we derive,
with the help of (2.7),

1

τ(E, θ)
≤ lim

(\
(exp ̺E)2|α| dµF

)1/(2|α|)

· 1

τ(F, θ)
.

(The use of (2.7) is valid here for µF is regular.) Now the limsup above is
equal to the supremum of the integrated function on the support of µF .
Since this support is known to be the Shilov boundary of F (see [BT2]), we
are done.

The bound (3.32) can be improved by using the invariance of the transfi-
nite diameter under translations (z 7→ z+a) and under the group SLn(C) :=
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{A ∈ GLn(C) : |det A| = 1}, i.e., b ∈ C
n and A ∈ SLn imply D(A(F ) + b) =

D(F ). The translation invariance follows via the Zakharyuta formula from
the invariance of the directional Chebyshev constants or, via Theorem 3,
from the simple fact that ̺F+b = ̺F . The SLn invariance follows from
Shĕınov’s formula (1.11).

Corollary. Under the same assumptions as in Theorem 4 we have

(3.33)
D(F )

D(E)
≤ inf

b∈Cn
inf

A∈SLn

sup
z∈S(F )

exp(̺E(A(z) + b)).

P r o o f. Take A ∈ SLn and b ∈ C
n. Applying Theorem 4 to A(F ) + b we

get

D(F )

D(E)
=

D(A(F ) + b)

D(E)
≤ sup

S(A(F )+b)

e̺E(z) = sup
u∈S(F )

e̺E(A(u)+b).

Taking the infimum over A and b we obtain the desired inequality.

This leads in turn to a purely geometric bound for the transfinite diame-
ter. For brevity we work only with the euclidean norm | · |. Given a compact
set K in C

n we define its radius rad(K) by

rad(K) := inf
b∈Cn

sup
z∈K

|z − b|.

We have rad(K) ≤ diam(K) ≤ 2 rad(K). Now, taking n ≥ 2 and E =
B(0, 1) in the corollary above we get

D(F ) ≤ exp

(
−1

2

n∑

k=2

1

k

)
· rad(S(A(F ))

where A is any element of SLn.

Note finally that the use of the SLn invariance could also provide some
improvement in the bound of Theorem 3.

4.Transfinite diameter of a pre-image. Let q(z)=adz
d+ad−1z

d−1+
. . .+a1z+a0 be a univariate polynomial of exact degree d (ad 6= 0). Given a
planar compact set E, a classical theorem of Fekete states that the transfinite
diameter of the compact set F = q−1(E) is

(4.1) D(F ) =

(
D(E)

|ad|

)1/d

.

The classical (mostly algebraic) proof of Fekete can be found in [Go] and
a direct potential-theoretic proof is available e.g. in [Ra]. It is the purpose
of this section to study the generalization of this result to the multivariate
transfinite diameter.
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We consider polynomial mappings q = (q1, . . . , qn) from C
n to C

n such
that

(4.2) deg qi = m ≥ 1 (1 ≤ i ≤ n), q̂ −1(0) := q̂ −1
1 (0)∩. . .∩q̂ −1

n (0) = {0},
where q̂ = (q̂1, . . . , q̂n) and q̂i is as usual the leading homogeneous term of qi.
Under these assumptions, q is a proper polynomial mapping [Kl, Th. 5.3.1]
so that F := q−1(E) is compact if E is. We will study the relation between
D(F ) and D(E). Our first result shows that, as in the one-variable formula
above, the relation between D(E) and D(F ) depends only on the highest
degree components of q.

Theorem 5. Let q be a polynomial mapping satisfying conditions (4.2)

and E a regular compact subset of C
n. If F = q−1(E) and F̂ = q̂−1(E)

then D(F ) = D(F̂ ).

P r o o f. This follows from Theorem 3 since, as shown in the lemma
below, both F and F̂ have the same Robin function.

Lemma 4. Under the above hypothesis, we have ̺F = ̺F̂ .

P r o o f. We prove that for every z ∈ C
n,

(4.3) ̺F (z) =
1

m
̺E(q̂(z)).

Applying this to q̂ instead of q we get ̺F (z) = ̺F̂ (z) and this implies
equality of the Robin functions.

By a theorem of Klimek [Kl, Th. 5.3.1], the pluricomplex Green function
of F is given by VF (z) = m−1VE(q(z)). (Note that the regularity of E
implies that of F .) We use the corresponding homogeneous plurisubharmonic
functions VF (z, t) (see (3.5)). For every z∈C

n and every non-zero t we have

(4.4) VF (z, t) = log |t| + VF (z/t) = log |t| +
1

m
VE(q(z/t)).

One can write q(z/t) = t−m(q̂(z) + R(z, t)) where limt→0 R(z, t) = 0. Fix
z ∈ C

n and define ξ(λ) := q̂(z)+R(z, λ) for λ ∈ C
∗. Note that (ξ(λ), λm) →

(q̂(z), 0) as λ → 0. Now, (4.4) gives

VF (z, λ) =
1

m
VE(ξ(λ), λm).

Letting λ → 0 and using the continuity of VF at (z, 0) and of VE at (q̂(z), 0)
[Si2, Prop. 2.3], in view of (3.6) we get

(4.5) ̺F (z) =
1

m
̺E(q̂(z)).

We are able to give a precise multivariate version of (4.1) only in very
particular cases. A polynomial map q is said to be simple (of degree m)
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if q̂i(z) = zm
i for i = 1, . . . , d. Simple mappings obviously satisfy condi-

tions (4.2).

Theorem 6. Let E be a compact set in C
n, q a simple polynomial map-

ping of degree m and F = q−1(E). Then

(4.6) D(F ) = m
√

D(E).

This is a consequence of the following much stronger statement proved
in [BC]. (We use the notation explained in the introduction.)

Theorem 7. Let E be a compact set in C
n and q a simple polynomial

mapping of degree d. If p is a P(α)-minimal polynomial for E then p ◦ q is

a P(mα)-minimal polynomial for F = q−1(E).

Proof of Theorem 6. The previous theorem says that T (mα,F )=T (α,E)
so that

(4.7) T (mα,F )1/(m|α|) = m

√
T (α,E)1/|α|.

Now since the condition α/|α| → θ is equivalent to mα/|mα| → θ, passing
to the limit in (4.7), we obtain τ(F, θ) = m

√
τ(E, θ), and the theorem then

follows immediately from Zakharyuta’s formula.

Bos [Bo] has proved that the transfinite diameter D(D) of the unit disc
D := {x2

1 + x2
2 ≤ 1}⊂R

2 ⊂ C
2 is 1/

√
2e. Thus, using the mapping q(z) =

(z2
1 , z2

2), we deduce from Theorem 6 that the transfinite diameter of the
triangle T of vertices (0, 0), (0, 1), (1, 0) is D(T) = 1/(2e).

Formula (4.6) can be extended to some more general polynomial map-
pings by using Shĕınov’s formula.

Corollary 1. Let q be a polynomial mapping of degree m satisfying

(4.2). Suppose that the highest homogeneous parts of its components qi are

of the form

(4.8) q̂i(z) = ai1l1(z)m + ai2l2(z)m + . . . + ainln(z)m (1 ≤ i ≤ n)

where A = (aij) is a non-singular matrix and the li’s are linear forms. Then

for every compact set E and F = q−1(E) we have

(4.9) D(F ) = |det l|−1/n|det A|−1/(nm) m
√

D(E)

where l is the linear automorphism of C
n defined by l := (l1, . . . , ln).

P r o o f. Note that since q is proper, l must be invertible and det l does
not vanish. Now, thanks to (4.8), one can find a simple map Q of degree
m such that q = A ◦ Q ◦ l. Hence F = (l−1 ◦ Q−1 ◦ A−1)(E). Using twice
Shĕınov’s formula (1.11) and once Theorem 6 we get



Multivariate transfinite diameter 303

D(F ) = |det l|−1/nD(Q−1(A−1(E))) = |det l|−1/n m
√

D(A−1(E))

= |det l|−1/n m

√
|det A|−1/nD(E).

In fact, every proper map of degree 2 on C
2 that satisfies (4.2) also

satisfies conditions (4.8). Up to a linear change of variable, such a map has
a highest homogeneous part of the form

q̂(z) = (z2
1 , a2z2

1 + 2bz1z2 + c2z2
2) or q̂(z) = (z1z2, a

2z2
1 + 2bz1z2 + c2z2

2),

where, of course, q̂ = (q̂1, q̂2). We can make our result completely explicit in
both cases.

Example 1. Let q be a proper polynomial map of degree 2 on C
2, E a

compact set and F = q−1(E).

(i) If q̂ is of the form q̂(z) = (z2
1 , a2z2

1 + 2bz1z2 + c2z2
2) then D2(F ) =

|c|−1D(E).
(ii) If q̂ is of the form q̂(z) = (z1z2, a

2z2
1 + 2bz1z2 + c2z2

2) then D2(F ) =
|ac|−1/2D(E).

P r o o f. Note that in case (i), since q is proper one must have c 6= 0.
Now, setting l1(z) = z1 and l2(z) = (b/c)z1 + cz2 we have

q̂1(z) = l1(z)2 + 0 · l2(z)2, q̂2(z) = (a2 − b2/c2)l1(z)2 + l2(z)2,

and the claim follows from Corollary 1.
In case (ii), q being proper implies that both a and c are different from

zero. The result is again a consequence of Corollary 1 with the help of

(2ac − 2b)q̂1(z) + q̂2(z) = (az1 + cz2)2,

(−2ac − 2b)q̂1(z) + q̂2(z) = (az1 − cz2)2.

We can also compute the relation in terms of the roots of the q̂i. This is
easy for proper maps of type (i).

Example 2. If q is a proper polynomial map of degree 2 on C
2 such that

q̂(z) = ((az1 + bz2)2, (a′z1 + b′z2)(a′′z1 + b′′z2))

then

D2(F ) = (|b′a − ba′| · |b′′a − ba′′|)−1/2D(E).

P r o o f. This is again a simple computation. We omit the details. The
change of variable Z1 = az1 + bz2 and Z2 = a′z1 + b′z2 which is non-singular
since q is proper brings us back to case (i) of Example 1.

A little can be said on the computation of the transfinite diameter of
the (filled-in) Julia sets of certain polynomial maps. Recall that, given a
polynomial map q, the (filled-in) Julia set of q is

J(q) := {z ∈ C
n : (q(k)(z))k is a bounded sequence}.
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If q is proper then J(q) is a compact set obviously invariant under q, that is,
J(q) = q−1(J(q)). A classical and simple theorem of Brolin (see [Ra]) states
that if q is a one-variable polynomial of the form q(z) = amzm + . . . + a0

with m ≥ 2 then the (one-variable) transfinite diameter D(J(q)) of J(q) is
|am|−1/(m−1).

Example 3. Let q be a proper polynomial mapping as in Corollary 1,
with m ≥ 2. Then the transfinite diameter of the corresponding Julia set is

given by

Dm−1(J(q)) = |det l|−m/n · |det A|−1/n.

P r o o f. It suffices to apply formula (4.9) with E = J(q) = F .

A precise generalization of (4.1) to all polynomial mappings satisfying
(4.2) remains to be found. (We think that such a formula does exist.)

We mention that there is no such formula for the logarithmic capacity
in C

n (n > 1). Klimek [Kl2, p. 2769] showed that for a polynomial mapping
of degree m one has

(4.10) C(F )

(
lim

|z|→∞

|q(z)|
|z|m

)1/m

≤ m
√

C(E) ≤ C(F )

(
lim

|z|→∞

|q(z)|
|z|m

)1/m

,

which follows from (4.5). The example below shows that one may have equal-
ity in either the right or left inequalities in (4.10).

Let E = ∆(0, r) × ∆(0, s) ⊂ C
2 where ∆(0, ̺) is the closed disc in the

plane with center 0 and radius ̺. Then VE(z) = max(0, log |z1/r|, log |z2/s|)
and C(E) = min(r, s).

Let q(z1, z2) = (z2
1 , 2z2

2). Then F = ∆(0,
√

r) ×∆(0,
√

s/2) and if
√

r <√
s/2 then

√
C(E) = C(F ) and there is equality in the left part of (4.10),

whereas if
√

r >
√

s then
√

C(E) =
√

2 C(F ) and there is equality in the
right part of (4.10).
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