A characterization of linear automorphisms
of the Euclidean ball

by Hidetaka Hamada (Kitakyushu) and Tatsuhiro Honda (Omuta)

Abstract. Let B be the open unit ball for a norm on \mathbb{C}^n. Let $f : B \to B$ be a holomorphic map with $f(0) = 0$. We consider a condition implying that f is linear on \mathbb{C}^n. Moreover, in the case of the Euclidean ball B, we show that f is a linear automorphism of B under this condition.

1. Introduction. Let $\Delta = \{z \in \mathbb{C} : |z| < 1\}$ denote the open unit disc in the complex plane \mathbb{C}. Let $f : \Delta \to \Delta$ be a holomorphic map with $f(0) = 0$. By the classical Schwarz lemma, if there exists a single point $z_0 \in \Delta \setminus \{0\}$ such that $|f(z_0)| = |z_0|$, then $f(z) = \lambda z$ with a complex number λ such that $|\lambda| = 1$ for all $z \in \Delta$. That is, f is a linear automorphism of Δ.

Let $\|\cdot\|$ be a norm on \mathbb{C}^n. It is natural to consider a generalization of the above classical Schwarz lemma to the open unit ball $B = \{z \in \mathbb{C}^n : \|z\| < 1\}$ in \mathbb{C}^n. Let $f : B \to B$ be a holomorphic map with $f(0) = 0$.

J. P. Vigué [13], [14] proved that if every boundary point of B in \mathbb{C}^n is a complex extreme point of B and

$$C_B(f(0), f(w)) = C_B(0, w) \quad \text{or equivalently} \quad \|f(w)\| = \|w\|$$

holds on an open subset U of B, then f is a linear automorphism of \mathbb{C}^n, where C_B denotes the Carathéodory distance on the open set B. The first author [4], [5] generalized the above classical Schwarz lemma to the case where (1.1) holds on some local complex submanifold of codimension 1. We note that a single point $z_0 \in \Delta \setminus \{0\}$ is a complex submanifold of codimension 1 in \mathbb{C}. The second author [7], [8] extended those results to the case where (1.1) holds on a subset mapped onto a non-pluripolar subset in the projective space. We note that an open set is non-pluripolar.

In this paper, we show the following theorems.

1991 Mathematics Subject Classification: Primary 32A10.

Key words and phrases: totally real, non-pluripolar, Schwarz lemma, complex extreme point, automorphism.
Theorem A. Let $\| \cdot \|$ be a norm on \mathbb{C}^n and let $B = \{ z \in \mathbb{C}^n : \| z \| < 1 \}$ be the open unit ball. Assume that every boundary point $p \in \partial B$ is a complex extreme point of the closure \overline{B} of B. Let $f : B \to B$ be a holomorphic map with $f(0) = 0$. Assume that there exist an open subset U of B and a totally real, real-analytic $(n-1)$-dimensional submanifold X of U such that there exists a point $a \in X$ with $0 \notin a + T_a(X) \oplus iT_a(X)$. If $C_B(f(0), f(w)) = C_B(0, w)$ or equivalently $\| f(w) \| = \| w \|$ for every $w \in X$, then f is linear on \mathbb{C}^n.

Theorem B. Let $\| \cdot \|_2$ be the Euclidean norm on \mathbb{C}^n. Let $B = \{ z = (z_1, \ldots, z_n) \in \mathbb{C}^n : \| z \|_2 = (\sum_{j=1}^n |z_j|^2)^{1/2} < 1 \}$ be the Euclidean unit ball. If U, X, f are as in the assumption of Theorem A, then $f : B \to B$ is a linear automorphism of B.

2. Preliminaries. Let Δ be the open unit disc in the complex plane \mathbb{C}. The Poincaré distance ϱ on Δ is defined by

$$\varrho(z, w) = \frac{1}{2} \log \frac{1 + \frac{z - w}{1 - z \overline{w}}}{1 - \frac{z - w}{1 - z \overline{w}}} \quad (z, w \in \Delta).$$

Let D be a domain in \mathbb{C}^n. The Carathéodory distance C_D on D is defined by

$$C_D(p, q) = \sup \{ \varrho(f(p), f(q)) : f \in \text{Hol}(D, \Delta) \} \quad (p, q \in D).$$

A holomorphic map $\varphi : \Delta \to D$ is called a complex geodesic on D if $C_D(\varphi(z), \varphi(w)) = \varrho(z, w)$ (for all $z, w \in \Delta$).

The following proposition is well known (cf. S. Dineen [3], M. Jarnicki and P. Pflug [9], E. Vesentini [11], [12]).

Proposition 2.1. Let E be a complex Banach space with norm $\| \cdot \|$. Let B be the open unit ball of E for the norm $\| \cdot \|$. Then $C_B(0, x) = C_{\Delta}(0, \| x \|)$ for all $x \in B$.

This proposition implies that the conditions $\| f(x) \| = \| x \|$ and $C_B(f(0), f(x)) = C_B(0, x)$ are equivalent.

We recall the definition of a complex extreme point. Let V be a convex subset of \mathbb{C}^n. A point $x \in V$ is called a complex extreme point of V if $y = 0$ is the only vector in \mathbb{C}^n such that the function $\zeta \mapsto x + \zeta y$ maps Δ into V. For example, C^2-smooth strictly pseudoconvex boundary points are complex extreme points (cf. p. 257 of M. Jarnicki and P. Pflug [9]).

Using the uniqueness of complex geodesics on B at the origin in the direction of complex extreme points, we obtain the following proposition (cf. H. Hamada [4], [5], T. Honda [7], [8], J. P. Vigué [13], [14]).
Proposition 2.2. Let \(\| \cdot \| \) be a norm on \(\mathbb{C}^n \) and let \(B = \{ z \in \mathbb{C}^n : \| z \| < 1 \} \) be the open unit ball. Assume that every \(p \in \partial B \) is a complex extreme point of \(B \). Let \(f : B \to B \) be a holomorphic map with \(f(0) = 0 \). Let \(f(z) = \sum_{m=1}^{\infty} P_m(z) \) be the development of \(f \) by \(m \)-homogeneous polynomials \(P_m \) in a neighborhood of \(0 \) in \(\mathbb{C}^n \). If \(C_B(f(0), f(w)) = C_B(0, w) \) or equivalently \(\| f(w) \| = \| w \| \) at a point \(w \in B \setminus \{ 0 \} \), then \(P_m(w) = 0 \) for all \(m \geq 2 \).

3. Totally real submanifolds. Let \(X \) be a real submanifold of an open subset \(U \subset \mathbb{C}^n \). Then \(X \) is said to be totally real if \(T_p(X) \cap iT_p(X) = \{ 0 \} \) for all \(p \in X \), where \(T_p(X) \) denotes the tangent space of \(X \) at \(p \). The following lemma is proved in H. Hamada and J. Kajiwara [6], when \(k = 0 \) (cf. A. Andreotti and G. A. Fredricks [1]).

Lemma 3.1. Let \(U \) be an open subset of \(\mathbb{C}^n \). Let \(X \) be a totally real, real-analytic \((n-k)\)-dimensional submanifold of \(U \), where \(0 \leq k \leq n-1 \). Then for every \(a \in X \), there exist an open set \(\tilde{U} \) of \(U \), an \((n-k)\)-dimensional complex submanifold \(M \) of \(\tilde{U} \), a connected open subset \(W \) of \(\mathbb{C}^{n-k} \) and an injective holomorphic map \(\psi : W \to \tilde{U} \) such that \(a \in \psi(\mathbb{R}^{n-k} \cap W) = X \cap \tilde{U} \subset M = \psi(W) \).

Proof. From the condition on \(X \), for every \(a \in X \), there exist an open neighborhood \(\tilde{U} \) of \(a \) in \(\mathbb{C}^n = \{(w_1, \ldots, w_n) : w_j \in \mathbb{C} \} \) and an open neighborhood \(V \) of \(0 \) in \(\mathbb{R}^{n-k} = \{(x_1, \ldots, x_{n-k}) : x_j \in \mathbb{R} \} \) and real-analytic functions \(\psi_j \) (\(1 \leq j \leq n \)) on \(V \) such that \(\psi = (\psi_1, \ldots, \psi_n) : V \to X \cap \tilde{U} \) is bijective with \(\psi(0) = a \). Since \(\psi \) is real-analytic, there exists a neighborhood \(W \) of \(0 \) in \(\mathbb{C}^{n-k} = \{(z_1, \ldots, z_{n-k}) : z_j \in \mathbb{C} \} \) such that \(\psi \) is holomorphic on \(W \). Then

\[
\text{rank} \left(\frac{\partial (\psi_1, \ldots, \psi_n, \overline{\psi}_1, \ldots, \overline{\psi}_n)}{\partial (x_1, \ldots, x_{n-k})} \right)(0) = n-k.
\]

We set \(M = \{ \psi(z') : z' = (z_1, \ldots, z_{n-k}) \in W \} = \psi(W) \). We will show that \(M \) is an \((n-k)\)-dimensional complex submanifold of \(\tilde{U} \), upon shrinking \(M \) and \(\tilde{U} \) if necessary.

Now we have \((\psi_*(\partial/\partial x_1))(a), \ldots, (\psi_*(\partial/\partial x_{n-k}))(a) \in T(X) \otimes \mathbb{C}_a \) and

\[
\psi_*(\frac{\partial}{\partial x_j}) = \sum_{\beta=1}^{n} \frac{\partial \psi_\beta}{\partial x_j} \frac{\partial}{\partial w_\beta} + \sum_{\beta=1}^{n} \frac{\partial \overline{\psi}_\beta}{\partial x_j} \frac{\partial}{\partial \overline{w}_\beta}.
\]

We put

\[
\sum_{j=1}^{n-k} \alpha_j \frac{\partial \psi_\beta}{\partial x_j}(0) = 0 \quad \text{for } \alpha_j \in \mathbb{C}, \ 1 \leq \beta \leq n.
\]
Then
\[\sum_{j=1}^{n-k} \pi_j \left(\psi_\ast \left(\frac{\partial}{\partial x_j} \right) \right)(a) = \sum_{j=1}^{n-k} \pi_j \left(\sum_{\beta=1}^{n} \frac{\partial \psi_\beta}{\partial x_j} (0) \frac{\partial}{\partial w_\beta} + \sum_{\beta=1}^{n} \frac{\partial \psi_\beta}{\partial w_\beta} \frac{\partial}{\partial x_j} \right)(a) \]
\[= \sum_{\beta=1}^{n} \left(\sum_{j=1}^{n-k} \pi_j \frac{\partial \psi_\beta}{\partial x_j} (0) \right) \frac{\partial}{\partial w_\beta} (a) + \sum_{\beta=1}^{n} \left(\sum_{j=1}^{n-k} \pi_j \frac{\partial \psi_\beta}{\partial x_j} (0) \right) \frac{\partial}{\partial w_\beta} (a) \]
\[= \sum_{\beta=1}^{n} \left(\sum_{j=1}^{n-k} \pi_j \frac{\partial \psi_\beta}{\partial x_j} (0) \right) \frac{\partial}{\partial w_\beta} (a) \]
\[\in \text{HT}(X, \mathbb{C}^n)_a. \]
Since X is totally real, HT(X, \mathbb{C}^n) = \{0\}. So
\[\sum_{j=1}^{n-k} \pi_j \left(\psi_\ast \left(\frac{\partial}{\partial x_j} \right) \right)(a) = 0. \]
From (3.1), \{ \left(\psi_\ast \left(\frac{\partial}{\partial x_j} \right) \right)(a) \}_{j=1}^{n-k} \] is linearly independent over \mathbb{C}. Then \pi_j = 0, 1 \leq j \leq n - k. Therefore
\[\text{rank} \left(\frac{\partial (\psi_1, \ldots, \psi_n)}{\partial (x_1, \ldots, x_{n-k})} \right)(0) = n - k. \]
Since \psi_1, \ldots, \psi_n are holomorphic, we have
\[\text{rank} \left(\frac{\partial (\psi_1, \ldots, \psi_n)}{\partial (z_1, \ldots, z_{n-k})} \right)(0) = n - k. \]
Hence \(M = \psi \ast (W) \) is an \((n - k)\)-dimensional complex submanifold of \(\tilde{U} \), upon shrinking \(M, \tilde{U} \) and \(W \) if necessary.

The following lemma is proved in H. Hamada [5].

Lemma 3.2. Let \(U \) be an open subset of \(\mathbb{C}^n \). Let \(M \) be a complex submanifold of \(U \) of dimension \(n - 1 \). Assume that there exists a point \(a \) in \(M \) such that \(a + T_a(M) \) does not contain the origin. Then there exists a neighborhood \(U_1 \) of \(a \) in \(\mathbb{C}^n \) such that \(U_1 \subset CM = \{ tx : t \in \mathbb{C}, x \in M \} \).

Proof of Theorem A. By Lemma 3.1, there exists an \((n - 1)\)-dimensional complex submanifold \(M \) of an open subset \(\tilde{U} \subset \mathbb{C}^n \) such that \(a \in X \cap \tilde{M} \subset M \cap \tilde{U} = M \). Let \(f(z) = \sum_{m=1}^{\infty} P_m(z) \) be the development of \(f \) by \(m \)-homogeneous polynomials \(P_m \) in a neighborhood of \(0 \) in \(\mathbb{C}^n \). By Proposition 2.2, \(P_m \equiv 0 \) on \(X \) for all \(m \geq 2 \). Since \(P_m|_M \) is holomorphic, we have
\[P_m \equiv 0 \text{ on } M \text{ for all } m \geq 2. \]

Since \(0 \notin \mathbb{C} \), by Lemma 3.2, there exists a neighborhood \(\Omega \) of \(a \) in \(\mathbb{C}^n \) such that \(\Omega \subset \mathbb{C}M \).

Then \(\|P_m(tz)\| = |t|^m \|P_m(z)\| = 0 \) for all \(z \in M \) and \(t \in \mathbb{C} \). So \(P_m \equiv 0 \) on \(\mathbb{C}M \supset \Omega \). By the identity theorem, \(P_m \equiv 0 \) on \(\mathbb{C}^n \) for all \(m \geq 2 \). Therefore \(f = P_1 \), i.e. \(f \) is linear on \(\mathbb{C}^n \). \(\blacksquare \)

4. Non-pluripolar subsets. Let \(\Omega \) be a complex manifold. A subset \(S \subset \Omega \) is said to be pluripolar in \(\Omega \) if there exists a non-constant plurisubharmonic function \(u \) on \(\Omega \) such that \(S \subset u^{-1}(-\infty) \).

By the definition of a pluripolar set, we have the following lemma.

Lemma 4.1. Let \(\Omega \) be a connected complex manifold. Let \(\Sigma \) be a subset of \(\Omega \). Then \(\Sigma \) is a non-pluripolar subset of \(\Omega \) if and only if all plurisubharmonic functions \(u \) on \(\Omega \) with \(u \equiv -\infty \) on \(\Sigma \) satisfy \(u \equiv -\infty \) on \(\Omega \).

Let \(k \) be a positive number. A non-negative function \(u : \mathbb{C}^n \to [0, +\infty) \) is said to be complex homogeneous of order \(k \) if \(u(\lambda x) = |\lambda|^k u(x) \) for all \(\lambda \in \mathbb{C}, x \in \mathbb{C}^n \).

The following lemma is proved in T. Honda [8] (cf. T. J. Barth [2]).

Lemma 4.2. Let \(u : \mathbb{C}^n \to [0, +\infty) \) be an upper semicontinuous function. If \(u \) is a complex homogeneous function of order \(k \), then the following conditions are equivalent:

1. \(u \) is plurisubharmonic on \(\mathbb{C}^n \);
2. \(\log u \) is plurisubharmonic on \(\mathbb{C}^n \).

Proof of Theorem B. By Theorem A, \(f \) is linear. By Lemma 3.1, for \(a \in X \), there exist an open subset \(\tilde{U} \) of \(U \), an \((n-1)\)-dimensional complex submanifold \(M \) of \(\tilde{U} \), a connected open subset \(W \) of \(\mathbb{C}^{n-1} \) and an injective holomorphic map \(\psi : W \to \tilde{U} \) such that \(\psi(\mathbb{R}^{n-1} \cap W) = X \cap \tilde{U} \subset M \cap \tilde{U} = \psi(W) \).

We will show \(X \cap \tilde{U} \) is non-pluripolar in \(M \cap \tilde{U} \). Let \(u \) be a plurisubharmonic function on \(M \cap \tilde{U} \) with \(u \equiv -\infty \) on \(X \cap \tilde{U} \). Then \(u \circ \psi \equiv -\infty \) on \(\mathbb{R}^{n-1} \cap W \). By Lemma 3.5 of K. H. Shon [10], \(\mathbb{R}^{n-1} \cap W \) is a non-pluripolar subset of \(W \). So, by Lemma 4.1, we have \(u \circ \psi \equiv -\infty \) on \(W \), i.e. \(u \equiv -\infty \) on \(M \cap \tilde{U} \). Hence \(X \cap \tilde{U} \) is non-pluripolar in \(M \cap \tilde{U} \).

By Proposition 2.1 and the distance decreasing property of the Carathéodory distances, we have for all \(z \in \mathbb{B} \),

\[
C_\Delta(0, \|z\|, z) = C_\Delta(0, z) \geq C_\Delta(0, f(z)) = C_\Delta(0, \|f(z)\|).
\]

Since \(C_\Delta(0, r) \) is strictly increasing for \(0 \leq r < 1 \), we obtain \(\|f(z)\| \leq \|z\| \) for all \(z \in \mathbb{B} \). Since \(f \) is linear on \(\mathbb{C}^n \), \(\|f(z)\| \leq \|z\| \) for all \(z \in \mathbb{C}^n \). So we define a non-negative function

\[
g(z) = \|z\|^2 - \|f(z)\|^2 \geq 0 \quad \text{for } z \in \mathbb{C}^n.
\]
Since f is linear, there exists an $n \times n$ matrix A such that

$$f(z) = Az = \left(\sum_{k=1}^{n} a_{jk}z_k \right).$$

So, for $\zeta = (\zeta_1, \ldots, \zeta_n) \in \mathbb{C}^n$,

$$\sum_{\alpha, \beta=1}^{n} \frac{\partial^2 g}{\partial z_{\alpha} \partial \overline{z}_{\beta}} \zeta_{\alpha} \overline{\zeta}_{\beta} = \sum_{\alpha, \beta=1}^{n} \frac{\partial^2 (\|z\|^2 - \|f(z)\|^2)}{\partial z_{\alpha} \partial \overline{z}_{\beta}} \zeta_{\alpha} \overline{\zeta}_{\beta}$$

$$= \sum_{\alpha, \beta=1}^{n} \frac{\partial^2 \|z\|^2}{\partial z_{\alpha} \partial \overline{z}_{\beta}} \zeta_{\alpha} \overline{\zeta}_{\beta} - \sum_{\alpha, \beta=1}^{n} \frac{\partial^2 \|A\|_{\beta}}{\partial z_{\alpha} \partial \overline{z}_{\beta}} \zeta_{\alpha} \overline{\zeta}_{\beta}$$

$$= \|\zeta\|^2 - \|A\|_{\beta} \geq 0.$$

Therefore g is plurisubharmonic on \mathbb{C}^n. Since g is complex homogeneous of order 2, by Lemma 4.2, $\log g$ is plurisubharmonic on \mathbb{C}^n. So $\log g$ is plurisubharmonic on $M \cap \tilde{\mathcal{U}}$. Since $\|w\|_2 = \|f(w)\|_2$ for every $w \in X$, $\log g \equiv -\infty$ on $X \cap \tilde{\mathcal{U}} \subset M \cap \tilde{\mathcal{U}}$. Since $X \cap \tilde{\mathcal{U}}$ is non-pluripolar in $M \cap \tilde{\mathcal{U}}$, by Lemma 4.1 $\log g \equiv -\infty$ on $M \cap \tilde{\mathcal{U}}$, i.e. $g \equiv 0$ on $M \cap \tilde{\mathcal{U}}$. Therefore $\|f(w)\|_2 = \|w\|_2$ for all $w \in M \cap \tilde{\mathcal{U}}$. Since $M \cap \tilde{\mathcal{U}}$ is an $(n-1)$-dimensional complex submanifold of $\tilde{\mathcal{U}}$ and $0 \not\in a + T_a(M) = a + T_a(X) \oplus iT_a(X)$, by Corollary 1 of H. Hamada [5], f is a linear automorphism of \mathbb{B}. ■

Remark. We set $f(z) = (z_1, \ldots, z_{n-1}, z_n^2)$. Then f maps \mathbb{B} into itself and $f(0) = 0$.

1. Let $X = \{x_1 + iy_1, \ldots, x_n + iy_n\} \subset \mathbb{B}$: $y_1 = b$, $x_n = y_2 = \ldots = y_n = 0$, where $0 < |b| < 1$. Then X is a totally real, real-analytic $(n-1)$-dimensional submanifold of \mathbb{B}. Moreover, $0 \not\in a + T_a(X)$ and $0 \not\in a + T_a(X) \oplus iT_a(X)$ for any $a \in X$. We have $\|f(w)\| = \|w\|$ for every $w \in X$. However, f is not linear. So the condition that $0 \not\in a + T_a(X) \oplus iT_a(X)$ cannot be weakened to $0 \not\in a + T_a(X)$ in our theorems.

2. Let $X_{n-k} = \{x_{n-k+1} = b, x_{n-k+2} = \ldots = x_n = y_1 = \ldots = y_n = 0\}$ for $k \geq 2$, where $0 < |b| < 1$. Then X_{n-k} is a totally real, real-analytic $(n-k)$-dimensional submanifold of \mathbb{B}, and $0 \not\in a + T_a(X_{n-k}) \oplus iT_a(X_{n-k})$ for any $a \in X_{n-k}$. We have $\|f(w)\| = \|w\|$ for every $w \in X_{n-k}$. However, f is not linear. So the condition that the real dimension of X is $n-1$ cannot be omitted in our theorems.

3. In the case $n = 3$, let $X = \{(x_1 + iy_1, x_2 + iy_2, x_3 + iy_3) \in \mathbb{C}^3 : x_2 = b, x_3 = y_2 = y_3 = 0\} \cong \mathbb{R}^2$, where $0 < |b| < 1$. Then $X \cap \mathbb{B}$ is a real-analytic 2-dimensional submanifold, and $0 \not\in a + T_a(X) \oplus iT_a(X)$ for any $a \in X$. We have $\|f(w)\| = \|w\|$ for every $w \in X$. However, f is not linear. So the condition that X is totally real cannot be omitted either.
References