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A characterization of linear automorphisms
of the Euclidean ball

by Hidetaka Hamada (Kitakyushu) and Tatsuhiro Honda (Omuta)

Abstract. Let B be the open unit ball for a norm on Cn. Let f : B → B be a
holomorphic map with f(0) = 0. We consider a condition implying that f is linear on Cn.
Moreover, in the case of the Euclidean ball B, we show that f is a linear automorphism
of B under this condition.

1. Introduction. Let ∆={z ∈ C : |z|<1} denote the open unit disc in
the complex plane C. Let f : ∆→ ∆ be a holomorphic map with f(0) = 0.
By the classical Schwarz lemma, if there exists a single point z0 ∈ ∆ \ {0}
such that |f(z0)| = |z0|, then f(z) = λz with a complex number λ such that
|λ| = 1 for all z ∈ ∆. That is, f is a linear automorphism of ∆.

Let ‖·‖ be a norm on Cn. It is natural to consider a generalization of the
above classical Schwarz lemma to the open unit ball B = {z ∈ Cn : ‖z‖ < 1}
in Cn. Let f : B → B be a holomorphic map with f(0) = 0.

J. P. Vigué [13], [14] proved that if every boundary point of B in Cn is
a complex extreme point of B and

(1.1) CB(f(0), f(w)) = CB(0, w) or equivalently ‖f(w)‖ = ‖w‖

holds on an open subset U of B, then f is a linear automorphism of Cn,
where CB denotes the Carathéodory distance on the open set B. The first
author [4], [5] generalized the above classical Schwarz lemma to the case
where (1.1) holds on some local complex submanifold of codimension 1. We
note that a single point z0 ∈ ∆\{0} is a complex submanifold of codimension
1 in C. The second author [7], [8] extended those results to the case where
(1.1) holds on a subset mapped onto a non-pluripolar subset in the projective
space. We note that an open set is non-pluripolar.

In this paper, we show the following theorems.
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Theorem A. Let ‖ · ‖ be a norm on Cn and let B = {z ∈ Cn : ‖z‖ < 1}
be the open unit ball. Assume that every boundary point p ∈ ∂B is a complex
extreme point of the closure B of B. Let f : B → B be a holomorphic map
with f(0) = 0. Assume that there exist an open subset U of B and a totally
real , real-analytic (n− 1)-dimensional submanifold X of U such that there
exists a point a ∈ X with 0 6∈ a + Ta(X) ⊕ iTa(X). If CB(f(0), f(w)) =
CB(0, w) or equivalently ‖f(w)‖ = ‖w‖ for every w ∈ X, then f is linear
on Cn.

Theorem B. Let ‖ · ‖2 be the Euclidean norm on Cn. Let B = {z =
(z1, . . . , zn) ∈ Cn : ‖z‖2 = (

∑n
j=1 |zj |2)1/2 < 1} be the Euclidean unit ball.

If U , X, f are as in the assumption of Theorem A, then f : B → B is a
linear automorphism of B.

2. Preliminaries. Let ∆ be the open unit disc in the complex plane
C. The Poincaré distance % on ∆ is defined by

%(z, w) =
1
2

log
1 +

∣∣∣∣ z − w1− zw

∣∣∣∣
1−

∣∣∣∣ z − w1− zw

∣∣∣∣ (z, w ∈ ∆).

Let D be a domain in Cn. The Carathéodory distance CD on D is defined
by

CD(p, q) = sup{%(f(p), f(q)) : f ∈ Hol(D,∆)} (p, q ∈ D).
A holomorphic map ϕ : ∆→ D is called a complex geodesic on D if

CD(ϕ(z), ϕ(w)) = %(z, w) (for all z, w ∈ ∆).

The following proposition is well known (cf. S. Dineen [3], M. Jarnicki and
P. Pflug [9], E. Vesentini [11], [12]).

Proposition 2.1. Let E be a complex Banach space with norm ‖ ·‖. Let
B be the open unit ball of E for the norm ‖ · ‖. Then CB(0, x) = C∆(0, ‖x‖)
for all x ∈ B.

This proposition implies that the conditions ‖f(x)‖ = ‖x‖ and CB(f(0),
f(x)) = CB(0, x) are equivalent.

We recall the definition of a complex extreme point. Let V be a convex
subset of Cn. A point x∈V is called a complex extreme point of V if y = 0
is the only vector in Cn such that the function ζ 7→ x+ ζy maps ∆ into V .
For example, C2-smooth strictly pseudoconvex boundary points are complex
extreme points (cf. p. 257 of M. Jarnicki and P. Pflug [9]).

Using the uniqueness of complex geodesics on B at the origin in the
direction of complex extreme points, we obtain the following proposition
(cf. H. Hamada [4], [5], T. Honda [7], [8], J. P. Vigué [13], [14]).
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Proposition 2.2. Let ‖ · ‖ be a norm on Cn and let B = {z ∈ Cn : ‖z‖
< 1} be the open unit ball. Assume that every p ∈ ∂B is a complex extreme
point of B. Let f : B → B be a holomorphic map with f(0) = 0. Let f(z) =∑∞
m=1 Pm(z) be the development of f by m-homogeneous polynomials Pm

in a neighborhood of 0 in Cn. If CB(f(0), f(w)) = CB(0, w) or equivalently
‖f(w)‖ = ‖w‖ at a point w ∈ B \ {0}, then Pm(w) = 0 for all m ≥ 2.

3. Totally real submanifolds. Let X be a real submanifold of an open
subset U ⊂ Cn. Then X is said to be totally real if Tp(X)∩iTp(X) = {0} for
all p ∈ X, where Tp(X) denotes the tangent space of X at p. The following
lemma is proved in H. Hamada and J. Kajiwara [6], when k = 0 (cf. A.
Andreotti and G. A. Fredricks [1]).

Lemma 3.1. Let U be an open subset of Cn. Let X be a totally real , real-
analytic (n− k)-dimensional submanifold of U , where 0 ≤ k ≤ n− 1. Then
for every a ∈ X, there exist an open subset Ũ of U , an (n− k)-dimensional
complex submanifold M of Ũ , a connected open subset W of Cn−k and an
injective holomorphic map ψ : W → Ũ such that a ∈ ψ(Rn−k ∩ W ) =
X ∩ Ũ ⊂M = ψ(W ).

P r o o f. From the condition on X, for every a∈X, there exist an open
neighborhood Ũ of a in Cn = {(w1, . . . , wn) : wj ∈ C} and an open neigh-
borhood V of 0 in Rn−k = {(x1, . . . , xn−k) : xj ∈ R} and real-analytic
functions ψj (1 ≤ j ≤ n) on V such that ψ = (ψ1, . . . , ψn) : V → X ∩ Ũ
is bijective with ψ(0) = a. Since ψ is real-analytic, there exists a neighbor-
hood W of 0 in Cn−k = {(z1, . . . , zn−k) : zj ∈ C} such that ψ is holomorphic
on W . Then

(3.1) rank
∂(ψ1, . . . , ψn, ψ1, . . . , ψn)

∂(x1, . . . , xn−k)
(0) = n− k.

We set M = {ψ(z′) : z′ = (z1, . . . , zn−k) ∈ W} = ψ(W ). We will show that
M is an (n− k)-dimensional complex submanifold of Ũ , upon shrinking M
and Ũ if necessary.

Now we have (ψ∗(∂/∂x1))(a), . . . , (ψ∗(∂/∂xn−k))(a) ∈ T (X)⊗ Ca and

ψ∗

(
∂

∂xj

)
=

n∑
β=1

∂ψβ
∂xj

∂

∂wβ
+

n∑
β=1

∂ψβ
∂xj

∂

∂wβ
.

We put
n−k∑
j=1

αj
∂ψβ
∂xj

(0) = 0 for αj ∈ C, 1 ≤ β ≤ n.
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Then
n−k∑
j=1

αj

(
ψ∗

(
∂

∂xj

))
(a)

=
n−k∑
j=1

αj

( n∑
β=1

∂ψβ
∂xj

(0)
∂

∂wβ
+

n∑
β=1

∂ψβ
∂xj

(0)
∂

∂wβ

)
(a)

=
n∑
β=1

( n−k∑
j=1

αj
∂ψβ
∂xj

(0)
)

∂

∂wβ
(a) +

n∑
β=1

( n−k∑
j=1

αj
∂ψβ
∂xj

(0)
)

∂

∂wβ
(a)

=
n∑
β=1

( n−k∑
j=1

αj
∂ψβ
∂xj

(0)
)

∂

∂wβ
(a)

∈ HT(X,Cn)a.

Since X is totally real, HT(X,Cn) = {0}. So
n−k∑
j=1

αj

(
ψ∗

(
∂

∂xj

))
(a) = 0.

From (3.1), {(ψ∗(∂/∂xj))(a)}n−kj=1 is linearly independent over C. Then αj
= 0, 1 ≤ j ≤ n− k. Therefore

rank
∂(ψ1, . . . , ψn)
∂(x1, . . . , xn−k)

(0) = n− k.

Since ψ1, . . . , ψn are holomorphic, we have

rank
∂(ψ1, . . . , ψn)
∂(z1, . . . , zn−k)

(0) = n− k.

Hence M = ψ(W ) is an (n − k)-dimensional complex submanifold of Ũ ,
upon shrinking M , Ũ and W if necessary.

The following lemma is proved in H. Hamada [5].

Lemma 3.2. Let U be an open subset of Cn. Let M be a complex sub-
manifold of U of dimension n − 1. Assume that there exists a point a in
M such that a + Ta(M) does not contain the origin. Then there exists a
neighborhood U1 of a in Cn such that U1 ⊂ CM = {tx : t ∈ C, x ∈M}.

Proof of Theorem A. By Lemma 3.1, there exists an (n− 1)-dimensional
complex submanifold M of an open subset Ũ ⊂ Cn such that a ∈ X ∩ Ũ ⊂
M ∩ Ũ = M . Let f(z) =

∑∞
m=1 Pm(z) be the development of f by m-

homogeneous polynomials Pm in a neighborhood of 0 in Cn. By Proposi-
tion 2.2, Pm ≡ 0 on X for all m ≥ 2. Since Pm|M is holomorphic, we have
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Pm ≡ 0 on M for all m ≥ 2. Since 0 6∈ a+Ta(X)⊕ iTa(X) = a+Ta(M), by
Lemma 3.2, there exists a neighborhood Ω of a in Cn such that Ω ⊂ CM.
Then ‖Pm(tz)‖ = |t|m‖Pm(z)‖ = 0 for all z ∈ M and t ∈ C. So Pm ≡ 0 on
CM ⊃ Ω. By the identity theorem, Pm ≡ 0 on Cn for all m ≥ 2. Therefore
f = P1, i.e. f is linear on Cn.

4. Non-pluripolar subsets. Let Ω be a complex manifold. A subset
S ⊂ Ω is said to be pluripolar in Ω if there exists a non-constant plurisub-
harmonic function u on Ω such that S ⊂ u−1(−∞).

By the definition of a pluripolar set, we have the following lemma.

Lemma 4.1. Let Ω be a connected complex manifold. Let Σ be a subset
of Ω. Then Σ is a non-pluripolar subset of Ω if and only if all plurisubhar-
monic functions u on Ω with u ≡ −∞ on Σ satisfy u ≡ −∞ on Ω.

Let k be a positive number. A non-negative function u : Cn → [0,+∞)
is said to be complex homogeneous of order k if u(λx) = |λ|ku(x) for all
λ ∈ C, x ∈ Cn.

The following lemma is proved in T. Honda [8] (cf. T. J. Barth [2]).

Lemma 4.2. Let u : Cn → [0,+∞) be an upper semicontinuous func-
tion. If u is a complex homogeneous function of order k, then the following
conditions are equivalent :

(1) u is plurisubharmonic on Cn;
(2) log u is plurisubharmonic on Cn.

Proof of Theorem B. By Theorem A, f is linear. By Lemma 3.1, for
a ∈ X, there exist an open subset Ũ of U , an (n− 1)-dimensional complex
submanifold M of Ũ , a connected open subset W of Cn−1 and an injective
holomorphic map ψ : W → Ũ such that ψ(Rn−1 ∩W ) = X ∩ Ũ ⊂M ∩ Ũ =
ψ(W ).

We will show X ∩ Ũ is non-pluripolar in M ∩ Ũ . Let u be a plurisubhar-
monic function on M ∩ Ũ with u ≡ −∞ on X ∩ Ũ . Then u ◦ ψ ≡ −∞ on
Rn−1 ∩W . By Lemma 3.5 of K. H. Shon [10], Rn−1 ∩W is a non-pluripolar
subset of W . So, by Lemma 4.1, we have u ◦ ψ ≡ −∞ on W , i.e. u ≡ −∞
on M ∩ Ũ . Hence X ∩ Ũ is non-pluripolar in M ∩ Ũ .

By Proposition 2.1 and the distance decreasing property of the Carathéo-
dory distances, we have for all z ∈ B,

C∆(0, ‖z‖2) = CB(0, z) ≥ CB(0, f(z)) = C∆(0, ‖f(z)‖2).

Since C∆(0, r) is strictly increasing for 0 ≤ r < 1, we obtain ‖f(z)‖2 ≤ ‖z‖2
for all z ∈ B. Since f is linear on Cn, ‖f(z)‖2 ≤ ‖z‖2 for all z ∈ Cn. So we
define a non-negative function

g(z) = ‖z‖22 − ‖f(z)‖22 ≥ 0 for z ∈ Cn.
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Since f is linear, there exists an n× n matrix A such that

f(z) = Az =
( n∑
k=1

ajkzk

)
.

So, for ζ = (ζ1, . . . , ζn) ∈ Cn,
n∑

α,β=1

∂2g

∂zα∂zβ
ζαζβ =

n∑
α,β=1

∂2(‖z‖22 − ‖f(z)‖22)
∂zα∂zβ

ζαζβ

=
n∑

α,β=1

∂2‖z‖22
∂zα∂zβ

ζαζβ −
n∑

α,β=1

∂2‖Az‖22
∂zα∂zβ

ζαζβ

= ‖ζ‖22 − ‖Aζ‖22 = ‖ζ‖22 − ‖f(ζ)‖22 ≥ 0.

Therefore g is plurisubharmonic on Cn. Since g is complex homogeneous of
order 2, by Lemma 4.2, log g is plurisubharmonic on Cn. So log g is plurisub-
harmonic on M ∩ Ũ . Since ‖w‖2 = ‖f(w)‖2 for every w ∈ X, log g ≡ −∞
on X ∩ Ũ ⊂M ∩ Ũ . Since X ∩ Ũ is non-pluripolar in M ∩ Ũ , by Lemma 4.1
log g ≡ −∞ on M ∩ Ũ , i.e. g ≡ 0 on M ∩ Ũ . Therefore ‖f(w)‖2 = ‖w‖2 for
all w ∈M ∩ Ũ . Since M ∩ Ũ is an (n−1)-dimensional complex submanifold
of Ũ and 0 6∈ a+Ta(M) = a+Ta(X)⊕iTa(X), by Corollary 1 of H. Hamada
[5], f is a linear automorphism of B.

Remark. We set f(z) = (z1, . . . , zn−1, z
2
n). Then f maps B into itself

and f(0) = 0.

(1) Let X = {(x1 + iy1, . . . , xn + iyn) ∈ B: y1 = b, xn = y2 = . . . =
yn = 0}, where 0 < |b| < 1. Then X is a totally real, real-analytic (n− 1)-
dimensional submanifold of B. Moreover, 0 6∈ a+Ta(X) and 0 ∈ a+Ta(X)⊕
iTa(X) for any a ∈ X. We have ‖f(w)‖ = ‖w‖ for every w ∈ X. However,
f is not linear. So the condition that 0 6∈ a + Ta(X) ⊕ iTa(X) cannot be
weakened to 0 6∈ a+ Ta(X) in our theorems.

(2) Let Xn−k = {xn−k+1 = b, xn−k+2 = . . . = xn = y1 = . . . = yn = 0}
for k ≥ 2, where 0 < |b| < 1. Then Xn−k is a totally real, real-analytic
(n − k)-dimensional submanifold of B, and 0 6∈ a + Ta(Xn−k) ⊕ iTa(Xn−k)
for any a ∈ Xn−k. We have ‖f(w)‖ = ‖w‖ for every w ∈ Xn−k. However, f
is not linear. So the condition that the real dimension of X is n− 1 cannot
be omitted in our theorems.

(3) In the case n = 3, let X = {(x1 + iy1, x2 + iy2, x3 + iy3) ∈ C3 : x2 =
b, x3 = y2 = y3 = 0} ∼= R2, where 0 < |b| < 1. Then X ∩B is a real-analytic
2-dimensional submanifold, and 0 6∈ a + Ta(X) + iTa(X) for any a ∈ X.
We have ‖f(w)‖ = ‖w‖ for every w ∈ X. However, f is not linear. So the
condition that X is totally real cannot be omitted either.
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