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Projective quartics revisited

by T. Szemberg and H. Tutaj-Gasińska (Kraków)

Abstract. We classify all smooth projective varieties of degree 4 and describe their
syzygies.

0. Introduction. The aim of this note is to present a new proof of the
classification of projective quartics obtained first by Swinnerton-Dyer in [8].
Our method uses adjunction and follows the pattern set by Ionescu [5], [6]
for varieties of degree 5≤d≤8. Whereas the method is not new it becomes
particularly transparent in the case of the lower degree and therefore seems
worth presenting. Additionally, we completely describe syzygies of projective
quartics. We also correct a small mistake made in [8, p. 404].

We prove the following

Theorem. Let X ⊂ PN be a nondegenerate smooth projective variety of
dimension n and degree 4. Then

(a) either X is linearly normal and it is one of the following :
• a hypersurface,
• a complete intersection of two quadrics,
• the Veronese surface in P5,
• one of the scrolls: S4, S1,3, S2,2, S1,1,2, S1,1,1,1;

(b) or X is not linearly normal and it is either
• a smooth rational quartic curve in P3, or
• a projection of the Veronese surface into P4.

In the above Theorem we follow Harris [3] and denote by Si1,...,ir
the

scroll P(OP1(i1)⊕ . . .⊕OP1(ir)) polarized by the tautological bundle.
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Remark. The correspondence between our notation and that of [8] is
the following: V1 = S1,1,1,1, V2 = the Veronese surface in P5, V3 = projection
of V2 into P4, V4 = S1,1,2, V5 = S2,2, V6 = S1,3.

We work throughout over the field C of complex numbers. A variety in
a projective space is supposed to be nondegenerate unless otherwise stated.

1. Preliminaries. We begin by recalling the following

Definition 1.1. A smooth subvariety X in PN is called linearly normal
if the restriction mapping H0(OPN (1)) → H0(OX(1)) is surjective, i.e. if
X is embedded by a complete linear system. A variety is called projectively
normal if the restriction mappings H0(OPN (d))→ H0(OX(d)) are surjective
for all d ≥ 1.

Clearly, to be projectively normal is a property of the embedding. A line
bundle L on X is normally generated if it is very ample and X is projectively
normal under the embedding ϕL : X → P = P(H0(L)∗) defined by L. Given
such an embedding we have

H0(OP(d)) ∼= SymdH0(OP(1)) ∼= SymdH0(L),

so we can reformulate the above definition by requiring that the canonical
maps SymdH0(L)→ H0(dL) are surjective for d ≥ 2, the very ampleness of
L being automatic (see [7]). Thus a line bundle L is normally generated if
the mappings H0((d− 1)L)⊗H0(L)→ H0(dL) are surjective for d ≥ 2.

Definition 1.2. LetX be a smooth projective variety and let L be a very
ample line bundle on X. The line bundle L is said to be normally presented
if the ideal IX of X under the embedding ϕL is generated by quadrics.

Now we recall two notions from the theory developed by Fujita.

Definition 1.3. Let (X,L) be a polarized nonsingular variety of dimen-
sion n.

(a) The number ∆(L) := Ln + n− h0(L) is the ∆-genus of L.
(b) The number g(L) := 1 + 1

2 (KX + (n − 1)L).Ln−1 is the sectional
genus of L.

It is well known that these two quantities vanish simultaneously, i.e.

Lemma 1.4 (Fujita, [2], Corollary 1). ∆(L) = 0 if and only if g(L) = 0.

The following property of adjoint linear systems will be useful.

Proposition 1.5 (Fujita, [2], Theorem 1). Let (X,L) be a polarized
smooth variety of dimension n. The line bundle KX + (n+ 1)L is nef , and
KX + nL is nef unless (X,L) ∼= (Pn,OPn(1)).
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In the sequel we need the following elementary inequality for a nonde-
generate subvariety X in a projective space:
(1) codimX + 1 ≤ degX.

We finish this section by the following observation:

Lemma 1.6. Let X be a smooth projective surface such that c21(X) > 0.
Then 3c2(X) ≥ c21(X).

P r o o f. First we observe that it is enough to prove the lemma for minimal
surfaces. Indeed, under blowing up c21 drops by one and c2 increases by one
so if the inequality holds for the minimal model of X it also holds for X.
Then the assertion follows from the Miyaoka–Yau inequality for surfaces of
general type [1, Theorem VII.4.1] and straightforward checking for other
surfaces (cf. [1, p. 188, Table 10]).

2. Quartics of codimension 3. Let X ⊂ Pn+3 be a smooth subvariety
of dimension n and degree 4 and let L = OX(1). From inequality (1) we
see that X is linearly normal. It follows that ∆(L) = 0 and consequently
g(L)=0 by Lemma 1.4. The main idea of this section is to study the adjoint
linear system KX + nL.

Lemma 2.1. The dimension of h0(KX + nL) equals 3.

P r o o f. If n = 1 then X ∼= P1 and L = OP1(4) so the assertion is clear.
For n ≥ 2 let D ∈ |L| be a smooth irreducible and reduced divisor. From
the adjunction formula we have

(KX + nL)|D ∼= KD + (n− 1)L|D.
Of course, L|D is again very ample, L|(n−1)

D = 4 and from (1) we obtain
∆(L|D) = 0. The exact sequence

0→ KX + (n− 1)L→ KX + nL→ (KX + nL)|D → 0
together with Kodaira vanishing implies that

h0(KX + nL) = h0(KD + (n− 1)L|D) + h0(KX + (n− 1)L).
The second summand vanishes since (KX + (n − 1)L)Ln−1 < 0 and L is
ample. Thus it is enough to show the assertion for (D,L|D). Proceeding by
induction we are done.

Lemma 2.2. The linear system KX + nL is base point free.

P r o o f. If n = 1 then X ∼= P1 and KX + L = OP1(2).
Now suppose that n ≥ 2 and let x ∈ X be a fixed point. Since L is

very ample there is an irreducible reduced smooth divisor D ∈ |L| passing
through x. Exactly as in the proof of the previous lemma we get

H0(KX + nL) ∼= H0(KD + (n− 1)L|D),
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so it is enough to show that KD +(n−1)L|D is base point free. By induction
we again reduce the situation to the curve case.

Proposition 2.3. Let X ⊂ Pn+3 be a smooth quartic of dimension n.
Then X is either the Veronese surface or a rational normal scroll.

P r o o f. Let ϕ be the morphism defined by the linear system KX + nL.
Its image ϕ(X) is either P2 or a curve in P2. Since g(L) = 0 this curve must
be a smooth conic. We now study these two cases.

Case 1. Suppose that ϕ(X) = P2. Then n ≥ 2. If n = 2 then ϕ is
a generically finite morphism and we have

0 < (KX + 2L)2 = K2
X + 4(KX + L)L = K2

X − 8.
Applying Riemann–Roch to the line bundle −L we get χ(OX) = 1. Since
K2

X > 8 it follows from Lemma 1.6 that c2(X) ≥ 3, which in turn implies
K2

X = 9 by the Noether formula. Hence (KX +2L)2 = 1 and ϕ is a birational
morphism. If X were not isomorphic to P2 there would be a curve C ⊂ X
contracted by ϕ. Since g(L) = 0 we have (KX + L)L = −2, which implies
KX .L = −6. Thus in the Hodge inequality

((KX + 2L).L)2 ≥ (KX + 2L)2L2

we have equality, which implies that KX + 2L and L are algebraically pro-
portional. This shows that KX + 2L is ample, hence it cannot contract any
curves. Thus X ∼= P2 and L = OP2(2).

We want to show that this case is not possible for n ≥ 3. Indeed, if n ≥ 3
then (KX +nL)n = 0 but (KX +nL)2 is effective—the class of a fiber of ϕ.
This implies
(2) (KX + nL)2Ln−2 > 0.
Let D ∈ |L| be a smooth irreducible and reduced divisor. Since

(KX + nL)2Ln−2 = (KD + (n− 1)L|D)2(L|D)n−3

and L|D is very ample with g(L|D) = ∆(L|D) = 0 we can restrict our
considerations to the case n = 3. In this situation a smooth divisor D ∈ |L|
must be isomorphic to P2 by the same argument as in the case n = 2.
Thus L|D ∼= OD(2). From the formula for the sectional genus of L we get
(KX + 2L)L2 = −2, hence KXL

2 = −10. Since (KX + 3L)3 = 0 we obtain
K3

X + 9K2
XL = 162. Now, from (2) we get K2

XL > 24.
Now consider the line bundle KX +4L. It is nef according to Proposition

1.5 and it is also big since
(KX + 4L)3 = K3

X + 9K2
XL+ 3K2

XL+ 48KXL
2 + 64L3

> 162 + 3 · 24− 480 + 256 > 0.
In the exact sequence

0→ 2KX + 4L→ 2KX + 5L→ (2KX + 5L)|D → 0
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we have h1(2KX +4L) = h1(KX +(KX +4L)) = 0 by Kodaira vanishing and
2KX +5L|D ∼= OD. Hence either there is an effective divisor F ∈ |2KX +5L|
or 2KX +5L is trivial. The latter possibility is easily excluded by computing
the selfintersection. Thus we have

0 < L2.F = L2.(2KX + 5L) = 0,

a contradiction.

Case 2. Suppose that ϕ(X) ∼= P1. Let F be a fiber of ϕ. Then we
have OF (F ) = OF and by the adjunction formula KF

∼= KX |F . Moreover,
(KX + nL)|F ∼= OF implies that KF

∼= −nL|F with L|F ample. Applying
Proposition 1.5 we obtain F ∼= Pn−1. This means that X is a Pn−1-bundle
over P1. Since every such bundle arises as a projectivization of a vector
bundle and every vector bundle on P1 decomposes, we get X ∼= P(OP1(a1)⊕
. . .⊕OP1(an)). Since L is very ample it follows that ai > 0 for i = 1, . . . , n
and Ln = 4 = a1 + . . . + an. Thus we are left with a few possibilities of
scrolls: S4, S2,2, S1,3, S1,1,2 and S1,1,1,1.

3. Quartics of codimension 2. Let X ⊂ Pn+2 be a smooth quartic of
dimension n and let L = OX(1). First we suppose that X is linearly normal.

Proposition 3.1. Let X ⊂ Pn+2 be a smooth linearly normal quartic of
dimension n. Then X is a complete intersection of two quadrics.

P r o o f. We observe that ∆(L) = 1 and by Lemma 1.4, g(L) ≥ 1.
If X is a curve then the assertion follows either by a straightforward

computation or from the classification of curves in P3 as in [4, Ex. IV.6.4.2].
Now we suppose that n ≥ 2. Let H be a hyperplane in Pn+2 such that Y =
X ∩H is smooth and irreducible. Then we have the following commutative
diagram:

0 0 0

0 IX(1) OPn+2(1) L 0

0 IX(2) OPn+2(2) OX(2) 0

0 IY (2) OH(2) OY (2) 0

0 0 0

�� �� ��
// //

��

//

��

//

��
// //

��

//

��

//

��
// //

��

//

��

//

��
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Computing the cohomology, in the upper row we get an isomorphism
H0(OPn+2(1)) ∼= H0(L) and by the snake lemma an isomorphism

H0(IX(2)) ∼= H0(IY (2)).
Since g(L) = g(L|Y ) we can reduce the whole situation to the curve case.

If X is not linearly normal then we have the following

Proposition 3.2. Let X ⊂ Pn+2 be a smooth nonlinearly normal quartic
of dimension n. Then X is either a rational quartic curve in P3 or the
Veronese surface in P4.

P r o o f. From (1) it follows that X is a projection of a smooth quartic
Z in Pn+3. We listed all these quartics in the previous section. As rational
varieties they may be easily parametrized and explicit calculations show
that only S4 and the Veronese surface admit a smooth projection. We omit
these simple but lengthy computations here.

4. The free resolution of quartics. In this section we compute the
free resolution of all smooth quartics. For a hyperplane in PN we have
IX
∼= OPN (−4) and for a complete intersection of two quadrics we have

0← IX ← OPN (−2)2 ← OPN (−4)← 0.
The vector bundle maps

OP1(2)⊕OP1(2)

OP1(1)4 OP1(1)2 ⊕OP1(2) OP1(4)

OP1(1)⊕OP1(3)

OOOOOOOOOO''
//

kkk
kkk

kkk
kkk

k 55

SSSSSSSSSSSSS )) oo
oo
oo
oo
oo

77

induce inclusions of scrolls:
S2,2

S1,1,1,1 S1,1,2 S4

S1,3

||xx
xx
xx
x

oo

aaBBBBBB

}}||
||
||

bbFFFFFFF

as hyperplane sections. They all have the same free resolution:
(3) 0← IX ← O(−2)6 ← O(−3)8 ← O(−4)3 ← 0.
We also get the same free resolution for the Veronese surface.
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For nonlinearly normal quartics we get
0← IX ← O(−3)7 ← O(−4)10 ← O(−5)5 ← O(−6)← 0

for the Veronese surface in P4 and
0← IX ← O(−2)⊕O(−3)3 ← O(−4)4 ← O(−5)← 0

for the rational quartic curve in P3.

Corollary 4.1. Let X be a smooth linearly normal quartic. Then X
is projectively normal. Moreover , X is normally presented unless it is a
hypersurface.

From the resolution (3) it clearly follows that the argument provided by
Swinnerton-Dyer to distinguish between the scrolls S1,3 and S2,2 is incorrect:
both surfaces are contained in ∞5 quadrics. Although it can be deduced
from the general statements on Hirzebruch surfaces that these scrolls are
not isomorphic we give here a simple direct argument.

Proposition 4.2. The scrolls S1,3 and S2,2 are not isomorphic.

P r o o f. Suppose that there is an isomorphism ϕ : S1,3 → S2,2. First we
note that S2,2 is a join variety of two smooth conics sitting in disjoint planes
in P5. There is an isomorphism
P1 × P1 3 ((s : t), (x : y))→ (sx2 : sxy : sy2 : tx2 : txy : ty2) ∈ S2,2 ⊂ P5.

Let F1, F2 be generators of H2(S2,2,Z) such that F 2
1 = F 2

2 = 0 and
F1.F2 = 1.

The scroll S1,3 is in turn a join variety of a line D1 ⊂ P5 and a rational
normal cubic D2 sitting in the complementary P3 ⊂ P5. Let F denote the
class of the ruling on S1,3. Since F 2 = 0 and it is effective we can assume
that F = ϕ∗(F1). We denote the second generator by G = ϕ∗(F2). Then
Di = αiF + βiG for i = 1, 2. Since Di.F = 1 we have βi = 1. Since D1 and
D2 are disjoint we have

0 = D1.D2 = α1 + α2.

This combined with D2
i = 2αi implies α1 = α2 = 0, since there are no curves

on P1×P1 with negative selfintersection. Thus D1 and D2 are homologous,
which is absurd because their intersection number with a hyperplane in P5

is 1 and 3 respectively.
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