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Analytic hypoellipticity for sums of squares of vector fields

by A. Alexandrou Himonas (Notre Dame, Ind.)

Abstract. We discuss the open problem of analytic hypoellipticity for sums of squares
of vector fields, including some recent partial results and a conjecture of Treves.

1. Introduction. Let Mn be an analytic manifold and X = {X1, . . .
. . . ,Xν} be a collection of real vector fields with coefficients in Cω(Mn),
the real analytic functions on Mn. In this paper, Mn will be an open set
Ω in Rn, or the n-dimensional torus, Tn. The sum of squares operator or
sublaplacian associated with the vector fields X is the second order partial
differential operator defined by

(1.1) P = ∆X
.
= X2

1 + . . . + X2
ν .

We recall that an operator P is called analytic hypoelliptic in Mn if for
every open subset U of Mn we have

(1.2) Pu = f, u ∈ D′(U), f ∈ Cω(U) ⇒ u ∈ Cω(U).

P is called hypoelliptic in Mn if (1.2) holds with Cω replaced with C∞, and
globally analytic hypoelliptic in Mn if (1.2) holds for U = Mn. The well
known Laplacian in Rn is the typical example of an analytic hypoelliptic
operator. If ν < n then P = (∂/∂x1)

2 + . . . + (∂/∂xν)2 is not hypoelliptic,
nor analytic hypoelliptic in Rn since there are “missing” directions. The
vector fields X are said to satisfy the bracket condition at a point x ∈ Mn

if the Lie algebra generated by them spans the tangent space to Mn at x.
Moreover, the length k = k(x) ≥ 1 of the longest bracket needed to generate
the tangent space at x is called the type of the point x. Here, each Xj is
considered to be a bracket of length 1, [Xj ,Xl] is a bracket of length 2, and
so on. For example, if k = 1 for all x in Mn then the operator ∆X is elliptic
and therefore hypoelliptic, and analytic hypoelliptic.
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The following theorem follows from the celebrated theorem of Hörmander
[Ho] (see also Kohn [K], Olĕınik and Radkevich [OR2], Rothschild and
Stein [RS]) and a result of Derridj in [D].

Theorem 1.1. The operator ∆X is hypoelliptic in Mn if and only if the

bracket condition holds at every point x ∈ Mn.

Therefore, in the case of analytic coefficients the hypoellipticity of the
operator ∆X is equivalent to the bracket condition. In the case of C∞ co-
efficients the bracket condition implies the hypoellipticity of ∆X (see [Ho]).
However, there are operators ∆X which are hypoelliptic and the bracket
condition does not hold (see Fedĭı [F], Kusuoka and Strook [KS], Bell and
Mohammed [BM]).

Here we only consider real-analytic vector fields X and discuss the prob-
lem of local and global analytic hypoellipticity. By the above theorem we
must assume that the bracket condition holds in Mn.

2. Local analytic hypoellipticity. In 1972 Baouendi and Goulaouic
[BG] gave the first example of an operator ∆X which satisfies the bracket
condition and yet is not analytic hypoelliptic. They proved that the operator

(2.1) ∆X =

(
∂

∂x1

)2

+

(
∂

∂x2

)2

+

(
x1

∂

∂x3

)2

is not analytic hypoelliptic. This operator is elliptic except at the points
on the plane x1 = 0, where [∂/∂x1, x1∂/∂x3] = ∂/∂x3, and therefore the
bracket condition holds. This operator was the starting point for many other
counterexamples and partial positive results on analytic hypoellipticity by
different authors trying to understand the following problem.

Open Problem 1. Assume that the bracket condition holds. What is a

necessary and sufficient condition for the analytic hypoellipticity of ∆X?

Let

(2.2) P (x, ξ) = X2
1 (x, ξ) + . . . + X2

ν (x, ξ)

be the principal symbol of ∆X and

(2.3) Σ = {X1(x, ξ) = . . . = Xν(x, ξ)}
be its characteristic set. The following theorem of Tartakoff [Ta1] and Treves
[Tr1] provides a sufficient condition in terms of the geometry of Σ.

Theorem 2.1. Let Ω be an open set in Rn. The operator ∆X is analytic

hypoelliptic in Ω if :

(a) The characteristic set Σ is an analytic symplectic submanifold of

T ∗(Ω) − 0.
(b) The symbol P (x, ξ) vanishes exactly to order two on Σ.
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This theorem has been generalized by Métivier [Met1] and Sjöstrand [S]
to more general operators with multiple characteristics, symplectic set Σ,
and higher but fixed order of vanishing of the symbol on Σ. We recall that
Σ is called symplectic if the restriction of the fundamental symplectic form

σ =
n∑

j=1

dξj ∧ dxj

to TΣ is non-degenerate.

The symplecticity of Σ does not allow the existence of Treves curves in
it. We recall that a non-constant curve α(t) inside the characteristic set Σ
is called a Treves curve if dα/dt is orthogonal to TΣ with respect to σ at
every point of α. That is,

(2.4) σ(dα/dt,Θ) = 0, ∀Θ ∈ TΣ, at every point on α.

In the case of the operator (2.1) the principal symbol is P (x, ξ) = ξ2
1 + ξ2

2 +
x2

1ξ
2
3 , the characteristic set is Σ = {x1 = ξ1 = ξ2 = 0}, and the x2-lines

inside Σ are Treves curves. In [Tr3] Treves conjectured that the existence
of such curves inside Σ should imply the non-hypoellipticity of ∆X . More
precisely, he proposed the following conjecture.

Conjecture 1. A necessary condition for ∆X to be analytic hypoelliptic

is that its characteristic set contains no Treves curves.

This conjecture still remains unsettled. However, the next result by
Hanges and Himonas [HH4] shows that the condition in Conjecture 1 is not
sufficient.

Theorem 2.2. Let k be an odd positive integer. Then for the operator

Pk in R3 defined by

(2.5) Pk =

(
∂

∂x1

)2

+

(
x

(k−1)/2
1

∂

∂x2

)2

+

(
xk

1

∂

∂x3

)2

one can construct non-analytic solutions to the equation Pku=0 near x1 =0.

Observe that for k = 1 we obtain the Baouendi–Goulaouic operator
which has non-symplectic characteristic set containing Treves curves, while
for k = 3, 5, 7, . . . the characteristic set is Σ = {x1 = ξ1 = 0}, which is
symplectic and thus contains no Treves curves. Therefore, the absence of
Treves curves does not imply analytic hypoellipticity.

The operators Pk in (2.5) form a subclass of the following class of oper-
ators:

(2.6) P =

(
∂

∂x1

)2

+

(
xm

1

∂

∂x2

)2

+

(
xk

1

∂

∂x3

)2

,
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where m, k are non-negative integers with 0 ≤ m ≤ k, studied by Olĕınik
and Radkevich [OR1]. They proved that P is analytic hypoelliptic if and
only if m = k. The non-hypoellipticity was proved by indirect methods.

Here we outline an explicit and elementary construction of singular so-
lutions to Pku = 0 presented in [HH4]. By using separation of variables we
find that

(2.7) u(x) =

∞\
0

ei̺k+1x3e
√

µx2̺(k+1)/2

A(̺x1)w(̺) d̺

is a formal solution to Pku = 0 if A satisfies the eigenvalue problem

(2.8)

(
− d2

dt2
+ t2k

)
A(t) = µtk−1A(t).

For u to be well defined and non-trivial we require

(2.9) A ∈ S(R) − {0},
and

w(̺) = e−̺(k+1)/2

.

Then by letting

(2.10) A(t) = B(t)e−
1

k+1 tk+1

equation (2.8) takes the form

(2.11) −B′′ + 2tkB′ − µtk−1B = 0.

If k = 1 then (2.11) is the Hermite equation. To solve (2.11) we proceed as
for the Hermite equation. We look for solutions in the form of a power series
B(x) =

∑∞
j=0 bjx

j and we find that if µ is in the set

(2.12) M = {µ : µ = 2j(k+1)+k or µ = 2j(k+1)+k+2, j = 0, 1, 2, . . .},
then B is a polynomial Bµ. In addition we show that only for µ ∈ M do we

have Aµ(t) = Bµ(t)e−
1

k+1 tk+1 ∈ S(R). Therefore, for each µ ∈ M we have a
solution

(2.13) uµ(x) =

∞\
0

ei̺k+1x3+(
√

µx2−1)̺(k+1)/2

Aµ(̺x1) d̺

to Pkuµ = 0 which is well defined for {|x2| < 1/
√

µ}. It is easy to check that
uµ is C∞. To check that uµ is not analytic at x = 0 we assume Aµ(0) 6= 0
(otherwise A′

µ(0) 6= 0) and obtain

(2.14) |∂j
x3

uµ(0)| =
∣∣∣Aµ(0)

∞\
0

̺j(k+1)e−̺(k+1)/2

d̺
∣∣∣ ≥ C2j(2j)!.

This shows that uµ is not analytic near 0 ∈ R3. In fact uµ is in Gevrey class
2. It can be shown (see Christ [Ch5]) that this is optimal.
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If µ = k then (2.13) gives the following explicit solution to Pku = 0:

(2.15) u(x) =

∞\
0

ei̺k+1x3+(
√

kx2−1)̺(k+1)/2− 1
k+1 (̺x1)k+1

d̺.

Poisson strata. To state a revised conjecture of Treves [Tr3] about a
necessary and sufficient condition for the analytic hypoellipticity of ∆X we
need to introduce a certain stratification of the characteristic set. We define

Σ1 =̇ Σ = {Xj(x, ξ) = 0 : j = 1, . . . , ν},
Σ2 =̇ Σ1 ∩ {{Xi,Xj}(x, ξ) = 0 : i, j = 1, . . . , ν},
Σ3 =̇ Σ2 ∩ {{Xl, {Xi,Xj}}(x, ξ) = 0 : l, i, j = 1, . . . , ν}, . . .

We recall that for two functions f(x, ξ) and g(x, ξ) defined in T ∗Ω the
Poisson bracket {·, ·} is defined by

{f, g} =
n∑

j=1

∂f

∂ξj

∂g

∂xj
− ∂f

∂xj

∂g

∂ξj
.

The sets Σj are called the Poisson strata defined by the symbols of the
vector fields Xj . Since the bracket condition holds, only a finite number of
the Poisson strata Σj are non-empty.

Example 2.1. Consider the operator Pk in (2.5) when k = 3. That is,
we let

(2.16) ∆X =

(
∂

∂x1

)2

+

(
x1

∂

∂x2

)2

+

(
x3

1

∂

∂x3

)2

.

In this case the symbols of the vector fields are

X1(x, ξ) = ξ1, X2(x, ξ) = x1ξ2, X3(x, ξ) = x3
1ξ3.

The first Poisson stratum is given by the characteristic set Σ. That is,

Σ1 = {x1 = ξ1 = 0} ⊂ T ∗R3 − 0.

Since the non-zero brackets of length two are

{X1,X2} = ξ2, {X1,X3} = 3x2
1ξ3

the second Poisson stratum Σ2 is

Σ2 = Σ1 ∩ {ξ2 = 3x2
1ξ3 = 0} = {x1 = ξ1 = ξ2 = 0, ξ3 6= 0}.

Since the non-zero bracket of length three is {X1, {X1,X3}} = 6x1ξ3 we
have

Σ3 = Σ2 ∩ {6x1ξ3 = 0} = Σ2.

Finally, {X1, {X1, {X1,X3}}} = 6ξ3, and since ξ3 6= 0 on Σ3 we have

Σ4 = ∅ = Σ5 = Σ6 = . . .
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Observe that the first Poisson stratum is symplectic while Σ2 and Σ3 are
not. This observation has led Treves [Tr3] to the following new conjecture.

Conjecture 2. A necessary and sufficient condition for ∆X to be an-

alytic hypoelliptic is that all Poisson strata defined by the symbols of the

vector fields Xj are symplectic.

We mention that Bove and Tartakoff in [BTa1] and [BTa2] have formu-
lated a conjecture on the optimal Gevrey, Gs, regularity of ∆X based on the
Poisson strata Σj . We do not formulate it here. However, for our example
above it reads as follows:

Best s =
length of bracket needed to obtain ∂x3

length of bracket needed to obtain ∂x2

=
4

2
= 2.

Observe that the singular solutions (2.13) constructed above have optimal
regularity 2. For the more general operators (2.6) of Olĕınik and Radkevich
it has been shown in [Ch5] that P is Gs hypoelliptic if and only if s ≥
(k + 1)/(m + 1). Thus the optimal exponent is (k + 1)/(m + 1), which is
equal to 2 in the case of the operators in (2.5).

For more results on the local analytic hypoellipticity for sums of squares
of vector fields we refer the reader to the following incomplete list of works:
Christ [Ch2], Derridj and Zuily [DZ], Grigis and Rothschild [GR], Grigis and
Sjöstrand [GS], Hanges and Himonas [HH1], Helffer [He], Matsuzawa [M],
Menikoff [Me], Métivier [Met2], and Pham The Lai and Robert [PR].

3. Global analytic hypoellipticity. Next we discuss the problem of
global analytic hypoellipticity for the case where the manifold is a torus.
Let b be a real-valued and real-analytic function defined near 0 ∈ R. It was
shown in [HH2] that the operator

(3.1) ∂2
t + ∂2

x + (b(t)∂y)2

is analytic hypoelliptic near 0 ∈ R3 if and only if b(0) 6= 0. By the results
in [Tr1], [Ta1], and [Ch1] the operator

(3.2) ∂2
t + (∂x + b(t)∂y)2, b(0) = 0,

is analytic hypoelliptic near 0 ∈ R3 if and only if b′(0) 6= 0. However, if b is
a real-valued function in Cω(T) then the first operator is globally analytic
hypoelliptic in T3 if and only if b is not identically zero, and the second
operator is globally analytic hypoelliptic in T3 if and only if b′ is not identi-
cally zero. In both cases the condition is equivalent to the bracket condition
in T3. Thus these operators provide examples where global analytic hypoel-
lipticity holds under the bracket condition and local analytic hypoellipticity
fails. The global analytic hypoellipticity of these operators follows from the
following result in Cordaro–Himonas [CH2].
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Theorem 3.1. Consider the torus TN = Tm × Tn with variables (x, t),
x = (x1, . . . , xm), t = (t1, . . . , tn), and let

Xj =
n∑

k=1

ajk(t)
∂

∂tk
+

m∑

k=1

bjk
(t)

∂

∂xj
, j = 0, . . . , ν,

be real vector fields with coefficients in Cω(Tn), and c = c(x, t) ∈ Cω(Tm+n)
be complex-valued. Suppose the following two conditions hold :

(i) Every point of Tm+n is of finite type.

(ii) The vector fields
∑n

k=1 ajk(t)∂/∂tk, j = 1, . . . , ν, span Tt(T
n) for

every t ∈ Tn.

Then the operator

(3.3) P =
ν∑

j=1

X2
j + X0 + c

is globally analytic hypoelliptic in TN .

A generalization of Theorem 3.1 was obtained by Christ [Ch3] under
the assumption of a certain symmetry condition, which does not hold here
because of the dependence of c on x. A different generalization has been
proved by Tartakoff [Ta3] under the restriction ν = n, but with P in a more
general form and assumed to satisfy a maximal estimate. Also, we mention
the related work of Chen [C], Komatsu [Ko], Derridj–Tartakoff [DT], [Ta2],
and [CH1]. Theorem 3.1 is only a partial result on the problem of global
analytic hypoellipticity. It is far from clear what is a necessary and sufficient
condition for the global analytic hypoellipticity of a sum of squares operator
on a torus.

Open Problem 2. On a torus, and more generally on an analytic man-

ifold , find necessary and sufficient conditions for the global analytic hypoel-

lipticity of the sum of squares operator.

We mention that the bracket condition is not sufficient for global analytic
hypoellipticity (see [Ch4]). It is not necessary either. This follows from the
following generalization of operator (3.2). It also provides some insight into
the kind of conditions needed for global analytic hypoellipticity.

Theorem 3.2. Let a, b in Cω(T) be real-valued. Then the operator

(3.4) P = −∂2
t − (a(t)∂x + b(t)∂y)2

is globally analytic hypoelliptic in T3 if and only if a is not identically zero

and b 6= λa for any λ ∈ Q ∪ Le where Q are the rationals and Le are the

exponentially Liouville numbers.
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We recall that an irrational number λ is exponentially Liouville if there
is an ε0 > 0 such that

(3.5) |λ − p/q| ≤ e−ε0q for infinitely many (p, q) ∈ Z × N.

Equivalently, λ is not exponentially Liouville if for any ε > 0 there is Cε > 0
such that

(3.6) |λ − p/q| ≥ Cεe
−εq for all (p, q) ∈ Z × N.

Observe that (3.5) obviously holds for λ ∈ Q. Also, we recall that u ∈
D′(Tn), the space of distributions, is analytic in Tn if and only if its Fourier
transform (coefficients) satisfies the estimate

|û(ξ)| ≤ ce−ε|ξ|, ξ ∈ Zn,

for some ε > 0 and c > 0.

Proof of Theorem 3.2. If a = 0 then P in (3.4) is not globally analytic
hypoelliptic since any function u = u(x) is a solution to Pu = 0. If a 6= 0
and b = λa for some λ ∈ Q ∪Le then P takes the form P = −∂2

t − a(t)2L2,
where L = ∂x + λ∂y. Since λ ∈ Q ∪ Le by (3.5) there exists a sequence
(ξj , ηj) ∈ Z × N with ηj → ∞ such that

(3.7) |L(ξj , ηj)| = |ξj + ληj | = |ηj ||ξj/ηj + λ| ≤ c0e
−ε0ηj .

If we define

(3.8) u(x, y) =
∞∑

j=1

ei(xξj+yηj),

then u ∈ D′(T2) − Cω(T2) and

(3.9) Lu(x, y) =

∞∑

j=1

iL(ξj , ηj)e
i(xξj+yηj).

By (3.7) we can find J ∈ N such that if j ≥ J then |(ξj , ηj)| ≤ cηj for some
c > 0. This together with (3.7) gives

|L(ξj , ηj)| ≤ c′0e
−ε0|(ξj ,ηj)| for all j ∈ N,

which implies that Lu ∈ Cω(T2). Since Pu = −a(t)2L(Lu) we see that
Pu is analytic in T3 while u is not analytic. Therefore P is not globally
analytic hypoelliptic. This part of the proof was along the lines of the work
of Greenfield and Wallach [GW].

Conversely, assume that a 6= 0 and b 6= λa for all λ ∈ Q ∪ Le. Let
u ∈ D′(T3) and f ∈ Cω(T3) be such that

(3.10) Pu = f.
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We need to show that u ∈ Cω(T3). For this we take partial Fourier transform
with respect to (x, y) and obtain

(3.11) −ûtt(t, ξ, η) + (a(t)ξ + b(t)η)2û(t, ξ, η) = f̂(t, ξ, η).

Since equation (3.11) is elliptic in t we have û(·, ξ, η) ∈ Cω(T). Multiplying
by û(t, ξ, η) and integrating by parts with respect to t gives

(3.12) ‖û(·, ξ, η)‖2
w =

\
T

f̂(t, ξ, η)û(t, ξ, η) dt,

where for ϕ ∈ C1(T) we define

(3.13) ‖ϕ‖2
w = ‖ϕ′‖2

L2(T) +
\
T

w2(t, ξ, η)|ϕ(t)|2dt with w = a(t)ξ + b(t)η.

If b = λa for some λ ∈ R− (Q∪Le) then w2(t, ξ, η)=a2(t)(ξ +λη)2. If η = 0
then w2 ≥ a2(t)ξ2 ≥ a2(t) for ξ 6= 0. For η 6= 0 we have

w2(t, ξ, η) = a2(t)η2

(
ξ

η
+ λ

)2

≥ a2(t)Cεe
−ε|η| for any ε > 0.

Since a 6= 0 there is an open interval of positive length δ = δ(a), and a
constant α1 = α1(a) such that for any ε > 0,

(3.14) w2(t, ξ, η) ≥ α1Cεe
−ε|(ξ,η)|, t ∈ I, (ξ, η) ∈ Z2 − 0,

for some Cε > 0 depending on ε.

If b 6= λa for all λ ∈ R then there is t0 ∈ (−π, π) such that (b/a)′(t0) 6= 0
for all t near t0. In this case we can find a δ > 0 depending only on (a, b)
such that for each (ξ, η) 6= 0 there is an open interval I = I(ξ, η) of length
δ and

(3.15) w2(t, ξ, η) ≥ α2, t ∈ I,

where α2 > 0 is independent of (ξ, η).

By the fundamental theorem of calculus, the Cauchy–Schwarz inequality,
and integration for t ∈ (−π, π) and s ∈ I, we obtain

(3.16) ‖ϕ‖2
L2(T) ≤ c

(
‖ϕ′‖2

L2(T) +
\
I

|ϕ(s)|2 ds

)
.

Moreover, by (3.14) and (3.15) we have

(3.17)
\
I

|ϕ(s)|2 ds ≤ αC ′
εe

ε|(ξ,η)|
\
T

w2(t, ξ, η)|ϕ(s)|2 ds,

for some α > 0 depending on (a, b), and C ′
ε > 0 depending on ε. By (3.16)

and (3.17) we obtain

(3.18) ‖ϕ‖2
L2(T) ≤ c1C

′
εe

ε|(ξ,η)|‖ϕ‖2
w .
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Finally, (3.18) applied with ϕ(t)= û(t, ξ, η), (3.12), and the Cauchy–Schwarz
inequality give

(3.19) ‖û(·, ξ, η)‖L2(T)

≤ cC ′
εe

ε|(ξ,η)|‖f̂(·, ξ, η)‖L2(T) for all (ξ, η) ∈ Z2 − 0.

Since f is analytic there is ε0 > 0 such that

(3.20) ‖f̂(·, ξ, η)‖L2(T) ≤ c0e
−ε0|(ξ,η)|.

If we choose ε = ε1 = ε0/2 then (3.19) and (3.20) give

(3.21) ‖û(·, ξ, η)‖L2(T) ≤ c1e
−ε1|(ξ,η)|.

Then (3.21) and the Cauchy–Schwarz inequality give

(3.22) |û(τ, ξ, η)| ≤ c2e
−ε1|(ξ,η)|, (τ, ξ, η) ∈ Z3 − 0, (ξ, η) 6= (0, 0).

Now let (τ0, ξ0, η0) with (ξ0, η0) 6= (0, 0). If we choose

m0 = 2max{τ0/|(ξ0, η0)|, 1},
then the cone Γ0 = {(τ, ξ, η) : |τ | < m0|(ξ, η)|} is a conic neighborhood of
(τ0, ξ0, η0), and (3.22) gives

(3.23) |û(τ, ξ, η)| ≤ c2e
−ε2|(τ,ξ,η)|, (τ, ξ, η) ∈ Γ0,

for some ε2 > 0. By microlocal elliptic theory, estimates similar to (3.23) are
also valid near each elliptic point (τ0, 0, 0). Thus u is analytic in T3. This
completes the proof of Theorem 3.2.

4. Concluding remark. The general sum of squares operator is of the
form ∆X +X0+c. If X0 is a complex vector field then additional phenomena
may appear in both local and global analytic hypoellipticity. For example
the Grushin operator ∂2

t +(t∂x)2+i(µ+1)∂x is hypoelliptic in R2 if and only
if µ 6= 2j, j = 0, 1, . . . ; if µ = 0 then this operator takes the form LL with
L = ∂t + it∂x, and one can easily construct singular solutions to Lu = 0.
For this type of phenomena we refer the reader to Grushin [Gr], Boutet de
Monvel and Treves [BT], Treves [T2], Gilioli [G], Gilioli and Treves [GT],
and Hanges and Himonas [HH3].

For the global problem consider the operator P = LL + c, where L is
a vector field in T2 of the form L = ∂t + ib(t)∂x, with b(t) a real-analytic
and real-valued function in T. It was shown in [CH2] that if all zeros of
b are of odd order and if c 6= 0 then P is globally analytic hypoelliptic.
Conversely, if b has a zero of odd order and if c = 0 then P is not globally
analytic hypoelliptic. Similar results for other operators have been obtained
by Stein [St] and Kwon [Kw].
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