The Bergman kernel functions of certain unbounded domains

by Friedrich Haslinger (Wien)

Abstract. We compute the Bergman kernel functions of the unbounded domains
\(\Omega_p = \{ (z', z) \in \mathbb{C}^2 : 3z > p(z') \} \), where \(p(z') = |z'|^{\alpha} / \alpha \).
It is also shown that these kernel functions have no zeros in \(\Omega_p \).
We use a method from harmonic analysis to reduce the computation of the 2-dimensional case
to the problem of finding the kernel function of a weighted space of entire functions in
one complex variable.

1. Introduction. Let \(\Omega_p \) be a domain in \(\mathbb{C}^{n+1} \) of the form
\(\Omega_p = \{ (z', z) : z' \in \mathbb{C}^n, z \in \mathbb{C}, 3z > p(z') \} \).
Such domains can be viewed as generalizations of the Siegel upper half space,
where \(p(z') = |z'|^2 \) (see [S]).
Weakly pseudoconvex domains of this kind were investigated by Bonami
and Lohoué [BL], Boas, Straube and Yu [BSY], McNeal [McN1], [McN2],
[McN3] and Nagel, Rosay, Stein and Wainger [NRSW1], [NRSW2]. For the
case where \(p(z') = |z'|^k \), \(k \in \mathbb{N} \), Greiner and Stein [GS] found an explicit
expression for the Szegő kernel of \(\Omega_p \).

If \(p \) is a subharmonic function on \(\mathbb{C} \) which depends only on the real or
only on the imaginary part of \(z' \), then one can find analogous expressions
and estimates in [N] (see also [Has1]). In [D] and in [K] properties of the
Szegő projection for such domains are studied. The asymptotic behavior
of the corresponding Szegő kernel was investigated in [Han] and [Has2].

There have been several recent papers obtaining explicit formulas for
the Bergman and Szegő kernel function on various weakly pseudoconvex
domains ([D'A], [BFS], [FH1], [FH2], [FH3] and [OPY]). From the explicit
formulas one can find examples of bounded convex domains whose Bergman
kernel functions have zeros (see [BSF]).

1991 Mathematics Subject Classification: Primary 32A07, 32H10; Secondary 32A15.
Key words and phrases: Bergman kernel, Szegő kernel.
Research partially supported by a FWF-grant P11390-MAT of the Austrian Ministry
of Sciences.
In this paper we compute the Bergman kernel functions of the unbounded domains \(\Omega_p = \{(z', z) \in \mathbb{C}^2 : \Im z > p(z')\} \), where \(p(z') = |z'|^\alpha / \alpha \), and we also show that these kernel functions have no zeros in \(\Omega_p \).

2. Computation of the Bergman kernel. We suppose that the weight function \(p : \mathbb{C}^n \rightarrow \mathbb{R}_+ \) is (pluri)subharmonic and of a growth behavior guaranteeing that the corresponding Bergman spaces \(H_\tau \) of entire functions are nontrivial, where \(H_\tau (\tau > 0) \) consists of all entire functions \(\phi : \mathbb{C}^n \rightarrow \mathbb{C} \) such that
\[
\int_{\mathbb{C}^n} |\phi(z')|^2 e^{-4\pi \tau p(z')} d\lambda(z') < \infty.
\]
The Bergman kernels of these spaces are denoted by \(K_\tau (z', w') \). A result on parameter families of Bergman kernels of pseudoconvex domains of Diederich and Ohsawa [DO] can be adapted to our case, showing that for fixed \((z', w')\) the function \(\tau \mapsto K_\tau (z', w') \) is continuous. Then we can apply a method from [Has1] to obtain the following formulas for the Szegő kernel \(S \) of the Hardy space \(H^2(\partial \Omega_p) \) and the Bergman kernel \(B \) of the domain \(\Omega_p \) (see [Has3]):

Proposition 1.

(a) If \(\partial \Omega_p \) is identified with \(\mathbb{C}^n \times \mathbb{R} \), then the Szegő kernel on \(\partial \Omega_p \times \partial \Omega_p \) has the form
\[
S((z', t), (w', s)) = \int_0^\infty K_\tau (z', w') e^{-2\pi \tau (p(z') + p(w'))} e^{-2\pi i \tau (s-t)} d\tau,
\]
where \(z', w' \in \mathbb{C}^n \) and \(s, t \in \mathbb{R} \).

(b) For \((z', z), (w', w) \in \Omega_p \) \((z', w' \in \mathbb{C}^n; z, w \in \mathbb{C})\) the Szegő kernel can be expressed in the form
\[
S((z', z), (w', w)) = \int_0^\infty K_\tau (z', w') e^{-2\pi i \tau (w-z)} d\tau.
\]

(c) The Bergman kernel of \(\Omega_p \) is
\[
B((z', z), (w', w)) = 4\pi \int_0^\infty \tau K_\tau (z', w') e^{-2\pi i \tau (w-z)} d\tau.
\]

We first compute the Bergman kernel \(K_\tau (z', w') \) of the weighted spaces of entire functions \(H_\tau \). Here we only consider the one-dimensional case. There are several possibilities to generalize to the higher dimensional case, where the corresponding formulas become quite complicated.

We suppose that the weight function \(p \) has the property that the Taylor series of an entire function in \(H_\tau \) is convergent in \(H_\tau \). For instance, these assumptions are satisfied in the following case:
Proposition 2 (see [T]). Suppose that p is a convex function on $\mathbb{R}^2 = \mathbb{C}$ such that H_τ contains the polynomials. Then the polynomials are dense in H_τ.

We further suppose that p depends only on $|z|$ and has a continuously differentiable inverse q as a function from \mathbb{R}_+ to \mathbb{R}_+. Then the Bergman kernel of H_τ can be computed as follows:

Proposition 3.

$$K_\tau(z', w') = \frac{1}{2\pi \tau} \sum_{n=0}^{\infty} \frac{n+1}{a_n(\tau)} z'^n w'^n,$$

where $a_n(\tau) = \mathcal{L}(q^{2n+2})(4\pi \tau)$ is the Laplace transform of q^{2n+2} at the point $(4\pi \tau)$:

$$\mathcal{L}(q^{2n+2})(4\pi \tau) = \int_0^\infty (q(s))^{2n+2} e^{-4\pi \tau s} \, ds.$$

Proof. Since the monomials $(z'^n)_{n \geq 0}$ constitute a complete orthogonal system in H_τ the Bergman kernel can be expressed in the form

$$K_\tau(z', w') = \sum_{n=0}^{\infty} \frac{z'^n w'^n}{c_n(\tau)},$$

where

$$c_n(\tau) = \int_{\mathbb{C}} |z'|^{2n} \exp(-4\pi \tau p(z')) \, d\lambda(z')$$

(see [Kr] or [R]). Using polar coordinates we get

$$c_n(\tau) = 2\pi \int_0^{\infty} r^{2n+1} \exp(-4\pi \tau p(r)) \, dr,$$

and after substituting $p(r) = s$ we obtain

$$c_n(\tau) = 2\pi \int_0^{\infty} (q(s))^{2n+1} \exp(-4\pi \tau s) q'(s) \, ds.$$

Now partial integration gives

$$2\pi \int_0^{\infty} (q(s))^{2n+1} \exp(-4\pi \tau s) q'(s) \, ds = \frac{2\pi \tau}{n+1} \int_0^{\infty} (q(s))^{2n+2} \exp(-4\pi \tau s) \, ds,$$

which proves the proposition. \[\square \]

In the next step we compute the Bergman kernel of $\Omega_p \subset \mathbb{C}^2$:

Proposition 4. Let the weight function p be as in Proposition 3. Then the Bergman kernel $B((z', z), (w', w))$ of $\Omega_p = \{(z', z) \in \mathbb{C}^2 : \Im z > p(z')\}$
can be written in the form
\[
B((z', z), (w', w)) = 2 \int_0^\infty \left(\sum_{n=0}^\infty (n+1) \frac{e^{-2\pi i (\overline{w} - z) \tau}}{L(g^{2n+2})(4\pi \tau)} z^n \overline{w}^n \right) d\tau.
\]

Proof. Combine Propositions 1(c) and 3.

In the sequel we concentrate on weight functions of the form \(p(z') = |z'|^\alpha/\alpha \), where \(\alpha \in \mathbb{R}, \alpha \geq 1 \). It is easily seen that in this case the assumptions of Propositions 2 and 3 are satisfied. Hence we can apply Proposition 4 to get

Proposition 5. Let \(p(z') = |z'|^\alpha/\alpha \), where \(\alpha \in \mathbb{R}, \alpha \geq 1 \). Then the Bergman kernel \(B((z', z), (w', w)) \) of \(\Omega_p = \{(z', z) \in \mathbb{C}^2 : \Im z > p(z')\} \) has the form
\[
B((z', z), (w', w)) = \frac{2}{\pi i (\overline{w} - z)^2} \frac{[\frac{\alpha i}{2} (\overline{w} - z)]^{2/\alpha} \left[(2 + \alpha) \frac{\alpha i}{2} (\overline{w} - z) \right]^{2/\alpha} + (2 - \alpha) z' \overline{w}'}{\left[\left[\frac{\alpha i}{2} (\overline{w} - z) \right]^{2/\alpha} - z' \overline{w}' \right]^3}.
\]

We always take the principal values of the multi-valued functions involved.

Proof. First we compute the Laplace transform \(L(g^{2n+2})(4\pi \tau) \). In our case we have \(g(s) = (\alpha s)^{1/\alpha} \), hence
\[
L(g^{2n+2})(4\pi \tau) = \int_0^\infty (\alpha s)^{(2n+2)/\alpha} e^{-4\pi \tau s} ds
\]
\[
= (4\pi \tau)^{-1-(2n+2)/\alpha} \alpha^{(2n+2)/\alpha} \int_0^\infty t^{(2n+2)/\alpha} e^{-t} dt
\]
\[
= (4\pi \tau)^{-1-(2n+2)/\alpha} \alpha^{(2n+2)/\alpha} \Gamma(1 + (2n + 2)/\alpha).
\]

In the sequel of the proof it will become apparent that summation and integration in Proposition 4 can be interchanged. We now obtain
\[
B((z', z), (w', w)) = 2 \sum_{n=0}^\infty \frac{(n+1)(4\pi)^{1+(2n+2)/\alpha}}{\alpha^{(2n+2)/\alpha} \Gamma(1 + (2n + 2)/\alpha)} \int_0^\infty \tau^{1+(2n+2)/\alpha} e^{-2\pi i (\overline{w} - z) \tau} d\tau z^n \overline{w}^n.
\]

The integral in brackets can be expressed in the form
\[
\int_0^\infty \tau^{1+(2n+2)/\alpha} e^{-2\pi i (\overline{w} - z) \tau} d\tau = (2\pi i (\overline{w} - z))^{-2-(2n+2)/\alpha} \int_0^\infty \sigma^{1+(2n+2)/\alpha} e^{-\sigma} d\sigma,
\]
since $\Re(2\pi i(\overline{w} - z)) > 0$; this follows by Cauchy’s theorem (see for instance [He], p. 33). Now we obtain
\[
\int_0^\infty \tau^{1+(2n+2)/\alpha} e^{-2\pi i(\overline{w} - z)\tau} d\tau
= (2\pi i(\overline{w} - z))^{-2-(2n+2)/\alpha} \Gamma(2 + (2n + 2)/\alpha)
= (2\pi i(\overline{w} - z))^{-2-(2n+2)/\alpha} (1 + (2n + 2)/\alpha) \Gamma(1 + (2n + 2)/\alpha).
\]

We can now continue computing the Bergman kernel:
\[
B((z', z), (w', w))
= 2 \sum_{n=0}^{\infty} \frac{(n+1)(1+ (2n+2)/\alpha)(4\pi)^{1+(2n+2)/\alpha}}{\alpha^{2n+2}/\alpha (2\pi i(\overline{w} - z))^{2+(2n+2)/\alpha}} z^n \overline{w}^n
= \frac{2}{\pi i(i(\overline{w} - z))^2} \sum_{n=0}^{\infty} \left[\frac{2(n+1)^2}{\alpha} + (n+1) \right] \left[\frac{\alpha i}{2} (\overline{w} - z) \right]^{-2(n+1)/\alpha} z^n \overline{w}^n.
\]

For the summation we use the formulas
\[
\sum_{n=0}^{\infty} (n+1)^2 x^n = \frac{1+x}{(1-x)^3} \quad \text{and} \quad \sum_{n=0}^{\infty} (n+1)x^n = \frac{1}{(1-x)^2},
\]
where $|x| < 1$. Since $\Im z > |z'|^{\alpha}/\alpha$ and $\Im w > |w'|^{\alpha}/\alpha$ it follows that
\[
|z'| < \left| \frac{\alpha i}{2} (\overline{w} - z) \right|^{2/\alpha}
\]
and hence
\[
B((z', z), (w', w))
= \frac{2}{\pi i(i(\overline{w} - z))^2} \left[\frac{\alpha i}{2} (\overline{w} - z) \right]^{-2/\alpha} \left[2 + \alpha + (2- \alpha) \left[\frac{\alpha i}{2} (\overline{w} - z) \right]^{-2/\alpha} z' \overline{w} \right]
= \frac{2}{\pi i(i(\overline{w} - z))^2} \left[\frac{\alpha i}{2} (\overline{w} - z) \right]^{2/\alpha} \left[(2+\alpha) \left[\frac{\alpha i}{2} (\overline{w} - z) \right]^{2/\alpha} + (2-\alpha) z' \overline{w} \right] \left[\left[\frac{\alpha i}{2} (\overline{w} - z) \right]^{2/\alpha} - z' \overline{w} \right]^{-3/\alpha},
\]
which proves Proposition 5. ■

Proposition 6. Let $p(z') = |z'|^{\alpha}/\alpha$, where $\alpha \in \mathbb{R}$, $\alpha > 1$. Then the Bergman kernel $B((z', z), (w', w))$ of $\Omega_p = \{(z', z) \in \mathbb{C}^2 : \Im z > p(z')\}$ has no zeros in Ω_p.

Proof. By Proposition 5 the Bergman kernel $B((z', z), (w', w))$ has a zero if and only if

$$
\left[\frac{\alpha i}{2} (\overline{w} - z) \right]^{2/\alpha} = \frac{\alpha - 2}{\alpha + 2} z' w'.
$$

Since $\Im z > 0$ and $\Im w > 0$, the factor $\overline{w} - z$ never vanishes on Ω_p. So we have a contradiction in the case $\alpha = 2$.

Now suppose that $\alpha \neq 2$. If the Bergman kernel has a zero, then

$$
\left| \frac{\alpha i}{2} (\overline{w} - z) \right|^2 = \left| \frac{\alpha - 2}{\alpha + 2} \right|^\alpha |z'|^\alpha |w'|^\alpha.
$$

We set $w = u + iv$, $z = x + iy$ and know that $\alpha y > |z'|^\alpha$ and $\alpha v > |w'|^\alpha$, hence

$$(u - x)^2 + (v + y)^2 < 4 \left| \frac{\alpha - 2}{\alpha + 2} \right|^\alpha vy.$$

Since both v and y are positive and $4vy \leq (v + y)^2$, this inequality can only hold if at least

$$1 < \left| \frac{\alpha - 2}{\alpha + 2} \right|^\alpha.$$

It is clear that the last inequality is false, so the Bergman kernel has no zeros in Ω_p. ■

References

Bergman kernel functions

Institut für Mathematik
Universität Wien
Strudlhofgasse 4
A-1090 Wien, Austria
E-mail: has@pap.univie.ac.at
Web: http://radon.mat.univie.ac.at/~fhasling

Reçu par la Rédaction le 29.12.1997
Révisé le 14.8.1998