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Special normal form of a hyperbolic
CR-manifold in C4

by Vladimir V. Ežov (Adelaide, S.A.) and Gerd Schmalz (Bonn)

Abstract. We give a special normal form for a non-semiquadratic hyperbolic CR-
manifold M of codimension 2 in C4, i.e., a construction of coordinates where the equation
ofM satisfies certain conditions. The coordinates are determined up to a linear coordinate
change.

Introduction. In 1907 Poincaré [Poi07] posed the problem of local bi-
holomorphic equivalence of two real-analytic hypersurfaces in C2. It is in-
teresting to consider this problem for real hypersurfaces in CN or, more
generally, for real-analytic CR-submanifolds in CN . One approach to this
problem, due to Chern and Moser [CM74], is the construction of normal
forms of the hypersurfaces, i.e., special coordinate systems with the prop-
erty that certain monomials in the equation of the hypersurface, considered
as a power series, vanish. This construction is universal for all hypersur-
faces with a given signature of the Levi form. The normal form condition
determines the coordinate system up to a rather complicated action of the
finite-dimensional isotropy group of the quadric of maximal osculation. This
group is covered by SU(n − p, p + 1), where n = N − 1 and p is the signa-
ture of the Levi form. If both hypersurfaces are given in normal form the
equivalence problem reduces to the (still complicated) problem of finding a
transformation out of a finite-dimensional variety that maps one hypersur-
face to the other.

Webster [Web78] introduced in 1978 a special normal form that takes into
account higher order terms of a given hypersurface. By imposing additional
requirements he reduces the freedom in the choice of normal coordinates to
a subgroup of GL(n,C) that acts by linear transformations.
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In this paper we construct a special normal form for hyperbolic
CR-manifolds of codimension 2 in C4. By a hyperbolic CR-manifold we mean
a CR-submanifold M ⊂ C4 that can be written in the form

(1) v1 = |z1|2 +N1(z, z, u), v2 = |z2|2 +N2(z, z, u),

where z1, z2, w1, w2 are coordinates in C4, wj = uj + ivj and Nj does not
contain any terms of order less than 3. Hyperbolic CR-manifolds in C4 can
also be characterised as the strictly pseudoconvex CR-manifolds of codimen-
sion 2 in C4. For such manifolds Loboda [Lob88] constructed a normal form
that is analogous to Chern–Moser’s normal form for hypersurfaces. Loboda’s
normal form conditions can be described as follows:

Set
Nj(z, z, u) = N1

j (zj , zj , uj) +N2
j (z, z, u),

where N1
j (zj , zj , uj) consists of all monomials that depend only on zj , zj , uj .

Then
N1
j = 2 Re(hj42(u)z4

j z
2
j ) +

∑
k,l≥2
k+l≥7

hjkl(u)zkj z
l
j ,

where hjkl(u) are real-analytic functions of u. Notice that these are exactly
Chern–Moser’s conditions for the normal form of a hypersurface in C2.

For the terms N2
j the following holds:

(N2
j )k0 ≡ 0 for k ≥ 1, (N2

j )11 ≡ 0,

∂

∂zj
(N2

j )k1 ≡ 0 for k ≥ 2,
∂2

∂z1∂z2
(N2

j )21 ≡ 0,

∂4

∂z1∂z2∂z1∂z2
(N2

j )22 ≡ 0,

We denote by N0(M) the family of biholomorphic, origin preserving trans-
formations that map M (in normal form) into M ′ that also has normal form.
If Φ ∈ N0(M) is given by z′ = f(z, w), w′ = g(z, w) then

(2) LC : z′ = Cz, w′ = %w

with

C =
(
∂f

∂z

)∣∣∣∣
0

, % =
(
∂g

∂w

)∣∣∣∣
0

also belongs to N0(M). Moreover, C and % must then have the form

C =
(
λ1e

iψ1 0
0 λ2e

iψ2

)
, % =

(
λ2

1 0
0 λ2

2

)
,

or

C =
(

0 λ1e
iψ1

λ2e
iψ2 0

)
, % =

(
0 λ2

1

λ2
2 0

)
,
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where λj > 0, ψj ∈ R. The group of all (C, %)-transformations will be
denoted by GL(Q).

Thus, any Ψ ∈ N0(M) can be decomposed into Ψ = LC ◦ Ψid with
Ψid ∈ N0,id(M), where

N0,id(M) =
{
Φ ∈ N0(M) :

(
∂f

∂z

)∣∣∣∣
0

= id
}
.

It follows from Loboda’s theorem that any Φ ∈ N0,id(M) is uniquely
determined by the data

aj :=
∂fj
∂wj

∣∣∣∣
0

, rj :=
1
2
∂2gj

(∂wj)2

∣∣∣∣
0

.

If M is the hyperbolic quadric

M : v1 = |z1|2, v2 = |z2|2

then for any possible initial data there exists an automorphism, hence any
normalisation is automatically an automorphism.

For arbitrary M the right hand side of equation (1) can be expanded
into a series of homogeneous polynomials where the weighted degree of each
monomial is the sum of the degrees with respect to z and z and twice the
degree with respect to u. If M is non-quadratic and given in normal form
then there is a smallest weight γ such that the homogeneous component
Nγ with weight γ of N = (N1, N2) is different from 0. We will refer to
this Nγ as to the first non-quadratic term. It can be easily verified that any
normalisation Φ ∈ N0(M) is equal to the quadratic automorphism with the
same initial data up to terms of weighted degree ≥ γ (for more elaborate
explanation see [Sch95]).

Among the non-quadratic hyperbolic manifolds there is a special type of
manifolds that are called semiquadratic manifolds and should be separately
dealt with. A semiquadratic manifold is given by the equations

v1 = |z1|2, v2 = |z2|2 +N2(z2, z2, u2),

where z1, z2, w1, w2 are normal coordinates, i.e., they are a Cartesian product
of a sphere in C2 and a non-spherical hypersurface in C2 that is given in
Chern–Moser’s normal form.

The construction of a special normal form reduces then to Chern–Moser–
Webster’s special normal form for hypersurfaces. A coordinate change from
one special normal form to another is a fractional linear sphere automor-
phism in the variables z1, w1 and a linear transformation in the variables
z2, w2.

Now, we may restrict ourselves to the case of non-semiquadratic mani-
folds. The construction and the condition of the special normal form for a
given non-semiquadratic manifold M depend on the concrete form of the
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first non-quadratic, resp. non-semiquadratic, term. We will consider 4 dif-
ferent cases of non-semiquadratic manifolds that appeared in [Sch95] where
it was proved that for such manifolds there exist normal coordinates where
all automorphisms are linear. This is, of course, necessary for a construction
of special normal forms with the property that passing to another special
normal coordinates is provided by linear transformations because any auto-
morphism is in particular a transformation to other special normal coordi-
nates.

In Section 2 we recall the rough scheme of the proof of the following
theorem from [Sch95]:

Theorem 1. Let M be a non-semiquadratic, real-analytic CR-manifold
in C4. Then any isotropic automorphism Φ = (f, g), considered as a nor-
malisation, is uniquely determined by the parameter

C =
∂f

∂z

∣∣∣∣
0

.

Section 3 is devoted to the description of the special normal form and to
the proof of the existence and uniqueness (up to linear coordinate changes)
of special coordinates.

We remark that a special normal form for non-umbilic hyperbolic
CR-manifolds of codimension 2 in C4 was constructed by Loboda in [Lob90].

2. Sketch of the proof of Theorem 1. The proof of Theorem 1 is
very long and very technical. Here we only sketch the main ideas.

Step 1. One has to show that any automorphism with C = id is triv-
ial. Any such automorphism can be embedded in some one-parameter sub-
group Φt. From

(3) Im gt(z, w)− 〈ft(z, w), ft(z, w)〉 −N(ft, f t,Re gt)|Imw=〈z,z〉+N ≡ 0

one deduces that the derivative with respect to t must vanish for t = 0.
Denote this function by P (z, z, u).

Step 2. The function P (z, z, u) can be expressed as

P (z, z, u) = 2 Reχ(v − 〈z, z〉 −N(z, z, u))|Imw=〈z,z〉+N ,

where χ is a vector field that decomposes into a series of homogeneous
components with respect to the weight

χ = χ1 + χ2 + χγ−1 + . . .

Here, one has to take into account that the basis vectors ∂/∂zj , resp. ∂/∂wj ,
have weight−1, resp. −2. Then the index indicates the weight of the compo-
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nent. The vector fields χ1 and χ2 do not depend on M and have the explicit
form

χ1 =
∑
j=1,2

(ajwj + 2iaj(zj)2)
∂

∂zj
+ 2iajzjwj

∂

∂wj
,

χ2 =
∑
j=1,2

rjzjwj
∂

∂zj
+ rj(wj)2

∂

∂wj
.

Step 3. Besides the weighted degree, there is another characteristic of a
monomial that plays an important rôle in the proof. It is called the j-defect
(for j = 1, 2) and is defined as the difference of the degrees in zj and in zj .

Now, suppose that aj 6= 0. Without loss of generality one can assume
that a1 = i. One has to show that then equation (3) cannot be satisfied. This
implies that there are no isotropic automorphisms Φ of M with Φ ∈ Aut0,id.
We distinguish four different cases:

1. M has the form

(4) v1 = |z1|2 +N1(z, z, u), v2 = |z2|2 +N2(z, z, u),

where N1
γ1,δ1

6≡ 0 is the term of maximal 1-defect δ1 + 1 of the first non-
vanishing term of N1. Then the term in P 1 of weight γ1 and 1-defect δ1
takes the form

P 1
γ1+1,δ1+1 = χ(1)|v1=|z1|2N

1
γ1,δ1 − 2z1N1

γ1,δ1 +χγ1−1,δ1+1|v1=|z1|2(|z1|2− v1),

where

χ(j) = iaj

(
2(zj)2

∂

∂zj
+ 2(uj + ivj)zj

∂

∂wj
− i(uj − ivj)

∂

∂zj

)
is the part of the vector field χ1 that increases the j-defect by 1.

Due to (3), this expression must vanish. For the first case we suppose
that the sum of the terms including N1 is different from 0. Then they must
be compensated by the last term that includes χγ1−1,δ1+1. This turns out
to be impossible because then the last term has non-normal components
that cannot occur in the first two terms. Hence, a1 6= 0 implies that the
polynomials P 1

γ1+1,δ1+1 cannot vanish, i.e., for a1 running over C they form
a one-dimensional subspace in the space of polynomials with weight γ1 + 1
and j-defect δ1 + 1.

2. For the second case we assume that M has the form

(5) v1 = |z1|2, v2 = |z2|2 +N2(z, z, u),

where N2
γ2,δ2

6≡ 0 is the first non-vanishing term with maximal 2-defect,
N2
γ1,δ1

is the first term that depends on one of the variables z1, z1, u1 with
weight γ1 and maximal 1-defect δ1. Then a1 6= 0 implies P 2

γ1+1,δ1+1 6= 0
(even without the assumption N1 ≡ 0). Furthermore, the second case can
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be characterised by a2 6= 0 implies P 2
γ2+1,δ2+1 6= 0, as above. In this case

the polynomials P jγj+1,δj+1 form one-dimensional subspaces in the spaces of
polynomials with weight γj + 1 and j-defect δj + 1 for aj running over C.

3. For the third case M has the form (4) but a1 6= 0 does not imply that
P 1
γ1+1 6= 0. Then one finds that N1

γ1 must have the special form

v1 = |z1|2 + (u1 + i|z1|2)(u1 − i|z1|2)Π2(z2, z2, u2) + . . . ,

where Π2 is not constant and depends only on the indicated variables. Then
it follows from a2 6= 0 that P 1

γ1+1 6= 0. There are two possibilities for N2:
either there is a first component N2

γ2 that depends on one of the variables
z1, z1, u1 and a1 6= 0 implies P 2

γ2+1 6= 0, or N2 depends only on z2, z2, u2.
The first alternative characterises the third case. Then one finds out that aj
running over C produces one-dimensional subspaces of P lγj+1,δj+1 (j 6= l) in
the space of polynomials with weight γj + 1 and j-defect δj + 1.

4. The second alternative above constitutes the fourth case. Then there
exists a number k with 2 ≤ k ≤ γ such that P 1

γ1+k
6= 0. We will call M

exceptional of order k.

Step 4. If rj 6= 0 then Pγ+2 6= 0.

3. The special normal form. Consider the vector fields

χ(j) = iaj

(
2(zj)2

∂

∂zj
+ 2(uj + ivj)zj

∂

∂wj
− i(uj − ivj)

∂

∂zj

)
,(6)

χj2 = rjwjzj
∂

∂zj
+ rj(wj)2

∂

∂wj
,(7)

χγ = fγ+1(z, w)
∂

∂z
+ gγ+2(z, w)

∂

∂w
, γ ≥ 3,(8)

with aj ∈ C, rj ∈ R. Notice that χ(j) increases the j-defect of a monomial
by 1 and that

2 Reχ1 = χ(1) + χ(2) + χ(1) + χ(2), χ2 = χ1
2 + χ2

2.

We denote by χγ,δj , resp. χγ,d, the component of the j-defect δj , resp.
of the total defect d = δ1 + δ2, in χγ .

We now distinguish four types of manifolds in dependence on the first
non-quadratic terms in the expansion of the equation in normal form. Since
the first order term of any renormalisation is a linear mapping LC as de-
scribed above, the first non-quadratic terms in the equation of M depend in
a simple way on the normal coordinates chosen: only the coefficients of the
monomials change. Therefore, the definitions below are correct.

These four types of manifolds are according to the four cases in Step 3
of the proof above.
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1. Both N j 6≡ 0 and do not have the special form indicated in case 3. Let
N j
γj

be the first non-quadratic terms. Collect in N j
γj

the terms of maximal
total defect dj , then within this polynomial the terms of maximal j-defect
δj and then the terms of maximal weight ωj with respect to (zj , zj , uj).
Finally, in the resulting expression choose a polynomial of the form

N̂ j
γj ,dj

= Ñ j
ωj ,δj

(zj , zj , uj)Πj ,

where Πj is a monomial in zl, zl, ul (l 6= j) of minimal degree with respect
to zl, zl. Consider the space

(9) Pj = {P jγj+1,δj+1 = χ(j)N̂
j
γj ,δj

− 2zjN̂
j
γj ,δj

+ χγj−1,δj+1(|zj |2 − vj)|vj=|zj |2},
where χγj−1,δj+1 is uniquely determined for given aj by the condition that
P j consists of normal terms. The arguments from [Sch95] (cf. Section 2)
applied to normalisations (instead of automorphisms) show that these spaces
are 1-dimensional complex spaces for aj running over C. We can make use of
these arguments because the actions of automorphisms and normalisations
on the first non-quadratic terms are the same.

Analogously, we define the 1-dimensional real spaces

(10) Qj = {Qjγj+2,δj
= χj2N̂

j
γj ,dj
|vj=|zj |2}.

2. One of the N j is 0, say N1 ≡ 0. Since M is not semiquadratic, N2

must then depend on one of the z1, z1, u1. We define N̂2 in the same way as
above. N̂1 will be defined analogously, but starting from N2

γ1,δ1
, the term in

N2 of minimal weight γ1 and maximal 1-defect δ1 that depends on one of
the variables z1, z1, u1. Now, we define by (9), resp. (10), the 1-dimensional
complex spaces Pj , resp. the 1-dimensional real spaces Qj .

3. One of the N j has the special form from case 3 and, therefore, must
depend on one of the variables zl, zl, ul (l 6= j), and N l depends on zj , zj , uj .
N̂ j is then derived from N l

γj ,δj
(l 6= j), the component of minimal weight

and maximal j-defect that contains one of the variables zj , zj , uj .
The spaces Pj and Qj will also be defined by (9) and (10). According

to [Sch95], Pj are complex 1-dimensional for aj running over C and the Qj
are real 1-dimensional for rj running over R.

4. One of the N j , say N1, has the special form from case 3, and N2

does not depend on z1, z1, u1. Then there exist an integer k such that the
spaces generated by P 1

γ1+k,1
, resp. P 1

γ1+1,δ2+1, for a1, resp. a2, in C are
one-dimensional. In this case N̂2, P2 and Qj are defined as for manifolds
of type 3. N̂1 will be derived from N1

γ1,δ1
(γ1 = γ2 + k − 1), the term of

minimal weight and maximal 1-defect that produces a one-dimensional space
of polynomials Pγ2+k,1.
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Set

P1 = {P 1
γ1+k,δ1+1 = χ(j)N̂

1
γj ,δj

− 2z1N̂1
γ1+k−1,δ1

+ χγ1+k−2,δ1+1(|z1|2 − v1)|v1=|z1|2}.
In the spaces of polynomials with given weight we introduce an inner

product such that the monomials form an orthonormal basis. We will use
this inner product in order to choose complementary subspaces.

Now we are ready to give the definition of the s.n.f.

Definition 1. A non-semiquadratic CR-manifold M has special normal
form (s.n.f.) if for some choice of N̂ j the following conditions are satisfied:

• If M is of type 1, then

N j
γj+1,δj+1 ∈ P

j⊥ and N j
γj+2,δj

∈ Qj⊥.
• If M is of type 2, then

N2
γj+1,δj+1 ∈ Pj⊥ and N2

γj+2,δj
∈ Qj⊥.

• For M of type 3,

N l
γj+1,δj+1 ∈ Pj⊥ and N l

γj+2,δj
∈ Qj⊥ (l 6= j).

• For M of exceptional type,

N1
γ1+k,δ1+1 ∈ P1⊥, N1

γ1+1,δ2+1 ∈ P2⊥, N j
γj+2,δj

∈ Qj⊥.
By definition M also has s.n.f. if its equation can be obtained from one

of the equations above by interchanging z1 with z2 and w1 with w2.

Theorem 2. If M is a hyperbolic non-semiquadratic CR-manifold in C4

of codimension 2 then there exist coordinates such that the equation of M
has special normal form. The coordinates where M has s.n.f. are determined
up to a linear transformation of the form (2).

P r o o f. Let M be given in normal form in the sense of Loboda and
let Φa = (fa, ga) be a normalisation of M with parameters (C = id, a =
(a1, a2), r = 0). The expansion of this normalisation into weighted homo-
geneous components differs from a quadratic automorphism only starting
from terms of weight γ in fa and of weight γ + 1 in ga. The spaces Pj were
chosen so that for suitable a1, a2 the Pj-component of the corresponding
term in the new equation can be made equal to zero.

After performing a normalisation with parameters (C = id, a = 0, r =
(r1, r2)) with suitable rj the condition that involves the Qj will also be
satisfied.

Now we turn to the proof of the uniqueness statement. By inspection
one easily verifies that any linear mapping of the form (2) preserves the
s.n.f. Now, let Φ be a local coordinate change such that the new equation
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also has s.n.f. Then Φ is a renormalisation and its linear part is equal to
some LC . The mapping L−1

C ◦ Φ is also a coordinate change that takes M
to s.n.f. and its linear part is the identity. Such renormalisations act on
the first non-quadratic terms like quadratic automorphisms and, therefore,
would produce non-normal terms if one of the aj , rj were different from 0.
This shows that aj = rj = 0. But, according to Loboda’s theorem, then
L−1
C ◦ Φ = id, i.e., Φ = LC .
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Reçu par la Rédaction le 5.1.1998
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