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Classification of singular germs of mappings

and deformations of compact surfaces of class VII0

by Georges Dloussky (Marseille) and Franz Kohler (Angers)

Abstract. We classify generic germs of contracting holomorphic mappings which
factorize through blowing-ups, under the relation of conjugation by invertible germs of
mappings. As for Hopf surfaces, this is the key to the study of compact complex surfaces
with b1 = 1 and b2 > 0 which contain a global spherical shell. We study automorphisms
and deformations and we show that these generic surfaces are endowed with a holomorphic
foliation which is unique and stable under any deformation.

Surface means a complex manifold of dimension 2. We denote by bi(S)
the ith Betti number of S.

0. Introduction. Classification of compact complex surfaces S without
non-constant meromorphic functions with Betti numbers b1(S) = 1 and
b2(S) = 0 is now well known thanks to K. Kodaira [KO], M. Inoue [I],
Inoue–Kobayashi–Ochiai [IKO], F. Bogomolov [B], Li–Yau–Zheng [LYZ] and
A. Teleman [T]. Roughly speaking, there are two kinds of surfaces: thosewith
at least one curve, Hopf surfaces, and those without curves, Inoue surfaces

SM , S
(+)
N ;p,q,r;t and S

(−)
N ;p,q,r. All these surfaces admit global foliations.

The first step has been the study of Hopf surfaces, initiated by K. Ko-
daira [KO], based on the classification of invertible contracting mappings
from (C2, 0) to (C2, 0) and their normal forms. It is a preliminary result and
the proofs which are computational are relatively easy because the formal
classification is the same as the analytic classification. Primary Hopf surfaces
which are homeomorphic to the product S1 × S3 of spheres are particular
cases of a wider class of non-kählerian compact complex surfaces, the class
of surfaces containing a global spherical shell (GSS), i.e. surfaces in which
there is an open embedding of a neighbourhood of S3 in C

2 which does not
disconnect the surface.
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In the same way there is a wider class of contracting mappings, that is
to say, mappings F which can be factorized through a finite sequence of
blowing-ups, i.e. F = Πσ, where Π = Π0 . . . Πn−1 is a sequence of n ≥ 0
blowing-ups and σ is a germ of isomorphism (when n = 0 we recover Hopf
surfaces); the corresponding surface S = S(F ) satisfies b2(S) = n. Since all
known surfaces with b2 > 0 contain GSS, the strategy is to repete the one
which has been successful for b2 = 0. This study initiated in [D1] and [D2]
has to overcome two difficulties: for computations it is not possible to write
down a general form of the objects, because there are an enormous number
of possible cases; the second one comes from the fact that the formal classi-
fication is weaker than the analytic classification. Therefore, the method is
to work out simultaneously the classification of germs and the classification
of surfaces, good parameters of the germs (local objects) corresponding to
generators of the cohomology space H1(S,Θ) and thus to versal deforma-
tions of the compact surfaces (global objects) S, where it is possible to apply
the general tools of analytic geometry.

In the case b2(S) > 0, it is an open question whether there exists a curve,
but by [N1], if there are curves, they are necessarily rational or non-singular
elliptic, as in the GSS case; moreover (see [N2]), when the surface contains
exactly b2(S) rational curves (I. Nakamura calls them special surfaces), then
the intersection matrix M(S) is equal to the intersection matrix M(S′) of a
surface S′ with GSS, and these surfaces are deformation equivalent. In the
latter case conjecture 2 (below) would imply that S contains a GSS. Complex
non-singular foliations cannot exist when b2 > 0 because of the Baum–Bott
formula (see [BR]). It is expected that singular foliations play an important
role; in surfaces with a GSS, rational curves are recovered from invariant
curves of the foliation at singular points (such invariant curves always exist
by the Camacho–Sad theorem).

This article is devoted to surfaces with GSS which satisfy tr(S) 6= 0,
i.e. Inoue surfaces or generic surfaces. We refer to Section 1.1 for basic
constructions and definitions.

The classification is carried out in §1 for generic germs and Inoue germs.
With each germ F there is associated an invariant formal curve which is
divergent if and only if F is not an Inoue germ; a step of the proof consists in
the convergent classification of these divergent objects. As a consequence, we
prove the existence of a unique foliation which is, on that complement of the
rational curves, the affine bundle structure of [E1]; in particular the leaves in
that complement are isomorphic to C. A noticeable fact is that the attraction
basins of generic germs are Fatou–Bieberbach domains (Remark 1.25).

In §2 explicit semi-universal deformations are given. It appears that the
good parameters are the blown-up points and another one, the trace of the
tangent mapping at the fixed point DF (0). As a consequence, we recover
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the Enoki theorem [E2] for a surface S with tr(S) 6= 0. This section is
somewhat technical, and yields the stability of the unique foliation on S in
its versal deformation. In §3, we describe the group of automorphisms which
leave the irreducible curves globally invariant. We define a marked surface
to be a surface with a rational curve chosen. The aim of this notion is
to restrict the automorphism group. We obtain moduli of marked surfaces
and a universal logarithmic deformation for generic marked surfaces. We
postpone to another article the study of quotients of surfaces with non-trivial
automorphism group.

It has to be pointed out that our methods are based on normal forms of
germs of singular mappings F , therefore we have to suppose the existence
of a GSS; this is less general than the approach of I. Enoki [E1], [E2], or
I. Nakamura [N1], [N2], but is more precise. Moreover, it appeared recently
that there are relations between VII0-class surfaces and dynamical systems
in dimension two through contracting germs: for example the first author
noticed that compact complex surfaces obtained in [H] by adding rational
curves to the quotient surface U+/Z, where U+ is the open set of points
z of C

2 such that the iterated images Hp(z) of z by an Hénon mapping
H(x, y) = (p(x)−ay, x) tend to ∞, contain GSS. In fact it is a surface with

tr(S) = 0 endowed with a global foliation and in our notations U+ = S̃\D̃ is
the complement of the rational curves in the universal covering space of S.

We end by giving three conjectures in the general case.

Conjecture 1. Any germ F = Πσ is conjugate to a polynomial map-
ping.

Conjecture 2. Let S → B be a family of compact holomorphic surfaces
with B a connected manifold. If there is u ∈ B such that Su contains a GSS,
then all the surfaces contain a GSS.

Conjecture 3. If S contains a GSS then S admits a holomorphic sin-
gular foliation with leaves isomorphic to C or C

⋆.

1. Normal forms of germs of mappings with non-vanishing trace

1.1. Basic constructions. In this subsection, notations and results come
from [D1], and we refer to that paper for proofs and details. Let F = Πσ =
Π0 . . . Πn−1σ : (C2, 0) → (C2, 0) be a germ of mapping where Πi is the
blowing-up of the point Oi−1 and Oi ∈ Ci = Π−1

i (Oi−1) for 0 ≤ i ≤ n − 1,
O−1 = 0 ∈ C

2, and σ is a germ of isomorphism with σ(0) = On−1.

With such a germ one associates a compact complex surface in the fol-
lowing way: σ is defined on a neighbourhood of 0, say a neighbourhood of
the closed unit ball B ⊂ C

2, so we have a sequence of blowing-ups over the
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ball B:

Bn−1 . . . Bi Bi−1 . . . B0 B.
Πn−1 // // Πi // // // Π0 //

It will always be supposed that σ(B) is relatively compact in Bn−1. If B′ is
a ball slightly smaller than B, and if we remove the closed ball σ(B′), then
it is possible to identify isomorphic neighbourhoods of Σ = Π−1(∂B) and
σ(∂B) by σΠ in order to obtain a minimal compact complex surface with
a GSS, denoted by S = S(Π,σ), with Betti numbers satisfying b1(S) = 1
and b2(S)=n. In S(Π,σ), the exceptional curve of the first kind has been
changed into a rational curve with self-intersection ≤ −2 or a singular ra-
tional curve because the inverse image by σ of the removed part of Cn−1

contains 0, therefore is blown up at least once again. If the points Oi are
moved outside the rational curves Ci, then S is no more minimal. If F and F ′

are conjugate, that is to say, F ′ = Π ′σ′ = ϕ−1Fϕ where ϕ is a germ of iso-
morphism, then ϕ induces an isomorphism between S(Π,σ) and S(Π ′, σ′).
Conversely, given a surface S containing a GSS, M. Kato [KA] proved that
S may be obtained in this way. In fact if b2(S) = n, there are n classes of
germs and n homotopy classes of GSS.

The trace of a germ F = Πσ (resp. of a surface S(Π,σ)) is by definition
the trace tr(DF (O)) of the tangent mapping DF at the fixed point of F .
The trace is independent of the choice of GSS and depends only on the
isomorphism class of S, so it is denoted by tr(S). We have 0 ≤ |tr(S)| < 1
and tr(S) 6= 0 if and only if one of the following equivalent conditions is
satisfied:

(i) for every 0 ≤ i ≤ n − 1, Oi is not in the intersection of Ci with a
strict transform of Ck, k < i, or of σ−1(Cn−1);

(ii) S contains a cycle Γ of rational curves such that Γ 2 = 0.

Let F = Πσ be a germ such that tr(S) 6= 0 and S = S(F ) be the
associated minimal surface with b2(S) = n ≥ 1. The germ F = Πσ (resp.
the minimal surface S) is called an Inoue germ (resp. an Inoue surface) if
one of the following equivalent conditions holds (see [D1] for the proof):

(a) there exists a germ of a curve (γ, 0) such that F|γ : (γ, 0) → (γ, 0) is
an isomorphism;

(b) F is conjugate to N(z) = (tnz1z
n
2 , tz2);

(c) S admits a global vector field;

(d) S contains an elliptic curve.

A germ of mapping will be called generic if its trace is not vanishing
and it is not an Inoue germ (this definition is slightly different from that of
[KH1], [KH2] where generic means “with non-vanishing trace”).
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The universal covering space (S̃, ω̃) of S is obtained by glueing a se-
quence (Ai)i∈Z of copies of the blown-up ball with a hole, the pseudocon-
cave boundary of Ai being identified with the pseudoconvex boundary of
Ai+1. The automorphism g̃ : S̃ → S̃ sends Ai onto Ai+1. Now, in S̃ there
is countable family of rational curves with a canonical order induced by the
blowing-ups, “the order of creation”. If tr(S) = 0 this order is not obviously
understandable from the graph of curves. Sometimes we shall denote by
C + 1 the curve obtained after C.

Now if we choose any curve C in S̃ we construct a new surface ŜC with
a canonical morphism pC : S̃ → ŜC in the following way: If C ⊂

⋃
i≤p Ai we

fill in the hole of Ap with a ball, thus obtaining a surface with an exceptional

curve of the first kind. If it is C we have obtained ŜC ; if not, we blow down
this exceptional curve, obtaining a new exceptional curve of the first kind,
and so on till C becomes such a curve. Finally, ŜC is obtained by blowing
down a “half-infinite” number of curves onto a point ÔC ∈ C.

The following construction relates compact surfaces with contracting
germs: We notice that g̃ induces an isomorphism σC+n

C : ŜC → ŜC+n and

that there is a canonical mapping ΠC
C+n : ŜC+n → ŜC which blows down n

curves, such that pC = ΠC
C+npC+n. Then FC := ΠC

C+nσC+n
C is a contracting

mapping with fixed point ÔC . The following diagram is commutative:

S̃ S̃

ŜC ŜC

g̃ //

pC

��
pC

��
FC //

1.2. Normal germs. A generic germ or an Inoue germ can always be
written in the form

F (z) = Π ◦ σ(z) =
(
σ1(z)σ2(z)n +

n−1∑

i=0

αiσ2(z)i+1, σ2(z)
)
,

where

Π = Π0 . . . Πn−1, Πi(ui, vi) = (uivi + αi−1, vi)

and

σ(z) = (σ1(z) + αn−1, σ2(z)).

The point Oi = (αi, 0) cannot be the infinite point of Ci because of the non-
zero trace hypothesis. It will be proved that by a well chosen conjugation
the germ of isomorphism σ satisfies σ(z1, z2) = (σ1(z), σ2(z)) = (z1, tz2)
where t is the trace, 0 < |t| < 1. But, to start with, it will be shown that in
a given equivalence class this latter form is not unique.
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Definition 1.1. A germ of the form

F (z) =
(
z1z

n
2 tn +

n−1∑

i=0

αit
i+1zi+1

2 , tz2

)

is called a normal germ with non-vanishing trace. It will be called generic if
not all αi vanish.

Such germs are global automorphisms of C × C
⋆ and map affinely hori-

zontal lines to horizontal lines; therefore the associated surface S(F ) has a
foliation.

Remark. The family of surfaces Sn
t,α = S(F ) coincides with the family

of surfaces Sn,t′,α′ of [E1], where n is the number of rational curves for both
notations, t = α′ and (α0, . . . , αn−2, αn−1) = (t′1, . . . , t

′
n−1, t

′
0).

Lemma 1.2. If F = Πσ is a normal generic germ with trace t 6= 0, then

there exists an isomorphism

f : ŜC \
⋃

C′ 6=C

C ′ → C
2

such that the following diagram is commutative:

ŜC \
⋃

C′ 6=C C ′ ŜC \
⋃

C′ 6=C C ′

C
2

C
2

FC //

f ∼=

��
f ∼=

��
F //

P r o o f. By construction of ŜC from F , there exists an isomorphism
f : UC → U from a neighbourhood of ÔC onto a neighbourhood of 0 such
that the following diagram is commutative:

UC UC

U U

FC //

f ∼=

��
f ∼=

��
F //

We have to extend f : Let z be in the complement of all the compact
curves of ŜC ; there exists an integer p ≥ 0 for which F p

C(z) ∈ UC ; since
f(z) does not belong to the singular set of F and F is an automorphism of
C × C

⋆, we define f(z) := F−p ◦ f ◦ F p
C(z). Since f = F−1 ◦ f ◦ FC , the

image of z does not depend on the choice of p. By the Riemann extension
theorem we obtain the desired extension

f : ŜC \
⋃

C′ 6=C

C ′ → C
2.
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Since f is an isomorphism between ŜC\
⋃

C ′ and C×C
⋆, detDf(z) could

vanish only on C; but in a neighbourhood of ÔC , f is an isomorphism, thus
detDf(z) never vanishes. Moreover, the image of f contains C×C

⋆ because
the attraction basin of 0, i.e. the points z such that the sequence (Fn(z))
tends to 0, is C × C

⋆. We conclude that f is an isomorphism.

Lemma 1.3. If F,F ′ : (C2, 0) → (C2, 0) are two normal germs with non-

vanishing trace, then any isomorphism germ ϕ : (C2, 0) → (C2, 0) which

satisfies ϕ ◦ F = F ′ ◦ ϕ is convergent in C
2.

P r o o f. The germ allows us to recover a surface S, its universal cov-
ering space S̃ and the space obtained by the blowing-down of all curves
greater than C, denoted by ŜC . The lemma is an immediate consequence of
Lemma 1.2 and the following commutative diagram:

C
2

C
2

ŜC \
⋃

C′′ 6=C C ′′ ŜC \
⋃

C′′ 6=C C ′′

Ŝ′
C′ \

⋃
C′′ 6=C′ C ′′ Ŝ′

C′ \
⋃

C′′ 6=C′ C ′′

C
2

C
2

F //

f−1

_
��

f−1

_
��

FC //

ϕC
C′

��
ϕC

C′

��
F ′

C′ //

f ′ ∼=

��
f ′ ∼=

��
F ′

//

since ϕ = f ′ ◦ ϕC
C′ ◦ f−1.

Theorem 1.4. Let

F (z) =
(
z1z

n
2 tn +

n−1∑

i=0

αit
i+1zi+1

2 , tz2

)
and

F ′(z) =
(
z1z

n
2 t′

n
+

n−1∑

i=0

α′
it

′i+1
zi+1
2 , t′z2

)

be normal germs.

(1) The germs F and F ′ are conjugate, i.e. there exists ϕ such that

ϕF = F ′ϕ, if and only if t = t′ and there exists κ ∈ C
⋆ and nth root of

unity λ such that

(α′
0, . . . , α

′
i, . . . , α

′
n−1) = κ(α0, λα1, . . . , λ

iαi, . . . , λ
n−1αn−1).
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In this case ϕ is necessarily linear and ϕ(z1, z2) = (az1, λ
−1z2) with

a = kλ−1 6= 0 and λn = 1. In particular , if F (z) = N(z) = (z1z
n
2 tn, tz2),

then F ′ = F ; if n = 1, then there are only two classes.

(2) A germ of isomorphism ϕ commutes with F if and only if it satisfies

the following conditions:

(a) If (α0, . . . , αi, . . . , αn−1) = (0, . . . , 0), i.e. F = N , then ϕ(z1, z2) =
(az1, λ

−1z2) where a 6= 0 and λn = 1.

(b) If there exists exactly one index j such that αj 6= 0, then ϕ(z1, z2) =
(λ−(j+1)z1, λ

−1z2) where λn = 1.

(c) If there are at least two indices j and k such that αj 6= 0 and αk 6= 0,
let 1 ≤ m ≤ n − 1 be the least integer such that m = k − j mod n. Then

ϕ(z) = (λ−mz1, λ
−1z2) with λgcd{m,n} = 1. In particular , generically ϕ =

Id.

P r o o f. (1) Let ϕ(z) = (
∑

aijz
i
1z

j
2,

∑
bijz

i
1z

j
2) be a germ of isomorphism

which satisfies the equation ϕF = F ′ϕ. It yields

(1.5)
∑

bij

(
z1z

n
2 tn +

n−1∑

k=0

αktk+1zk+1
2

)i

tjzj
2 = t′

(∑
bijz

i
1z

j
2

)
.

The identification of the linear parts of (1.5) and induction on the degree of
the homogeneous parts of ϕ2 show that t = t′ and ϕ2(z) = λz2.

Now, we consider the equation analogous to (1.5) given by the first mem-
bers of the conjugation relation:

(1.6)
∑

aij

(
z1z

n
2 tn +

n−1∑

k=0

αktk+1zk+1
2

)i

tjzj
2

=
( ∑

aijz
i
1z

j
2

)
λnzn

2 tn +

n−1∑

i=0

α′
it

i+1λi+1zi+1
2 .

Then:

a) The comparison of coefficients of terms which contain z1z
n
2 yields

λn = 1.

b) The comparison of the terms of total degree n+p mod zn+p
2 , for p ≥ 2,

allows one to prove by induction on p that

aij = 0 for i + j = p ≥ 2, i ≥ 1.

Therefore

ϕ1(z1, z2) = a10z1 +
∞∑

j=1

a0jz
j
2.
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By substitution we have from (1.6)

a10

(
z1z

n
2 tn +

n−1∑

k=0

αktk+1zk+1
2

)
+

∞∑

j=1

a0jt
jzj

2

=
(
a10z1 +

∞∑

j=1

a0jt
jzj

2

)
zn
2 tn +

n−1∑

k=0

α′
ktk+1λk+1zk+1

2

and by cancellation

a10

( n−1∑

k=0

αktk+1zk+1
2

)
+

∞∑

j=1

a0jt
jzj

2 =
∞∑

j=1

a0jt
j+nzj+n

2 +
n−1∑

k=0

α′
ktk+1λk+1zk+1

2 .

An easy computation shows that

(1.7) a0i =

{
−a10αi−1 + α′

i−1λ
i for i = 1, . . . , n,

a0,i−n for i > n.

We deduce from (1.7) that if one of the a0i, 1 ≤ i ≤ n, is not zero then
the radius of convergence of the series

∑
j>0 a0jz

j
2 is 1. But by Lemma 1.3,

ϕ should converge on C
2, therefore a0j = 0 for all j ≥ 1. Since a10 6= 0, we

obtain the first assertion (1) with κ = a10λ
−1 and λ replaced by λ−1. So

ϕ(z) = (az1, λ
−1z2) with a = kλ−1 6= 0 and λn = 1.

(2) is a straightforward consequence of the first assertion.

We are now going to show that every germ with non-vanishing trace is
equivalent to a normal germ.

Proposition 1.8. Let S be a surface with tr(S) 6= 0. Denote by C̃ the

union of all rational curves of the universal covering space S̃ of S. Then:

(i) there exist a holomorphic function w̃ on S̃ and t ∈ C
⋆ with |t| < 1

such that divisor(w̃) = C̃ and w̃ ◦ g̃ = tw̃;

(ii) t = tr(S);

(iii) for any rational curve C in S̃, the germ FC is equivalent to a germ

F = (F1, F2) with F2(z) = tz2.

P r o o f. The universal covering space S̃ is the union of annuli and a gen-
erator of the fundamental group is given by a path joining the two connected
components of the boundary of an annulus. Therefore the same arguments
as in Lemma 4.7 of [E2] give (i); however, to make the paper self-contained
we give a simplified proof:

By Theorem 3 of [KO], part I, b1(S) = h10 +h01, thus we have the exact
sequence

0 → H0(S, dO) → H1(S, C) → H1(S,O) → 0.
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The maximal divisor D of S satisfies c1([D])2 = D2 = 0. Since b− = b2(S),
the complex Chern class c1([D])C vanishes. Using the commutative diagram

H1(S, C) H1(S, C⋆) H2(S, Z) H2(S, C)

H1(S,O) H1(S,O⋆) H2(S, Z)

0

//

��

//

��

//

��
//

��

//

we conclude that [D] is in the image of H1(S, C⋆) in H1(S,O⋆). This means
that we may choose a covering U = (Ui) of S, defining functions fi ∈ O(Ui)
of D and complex numbers λij ∈ C

⋆ such that fi = λijfj for all i, j. Let

F = (λij) be the corresponding flat line bundle. Since F induces on S̃ a

holomorphically trivial bundle F̃ = ω̃⋆F , the section (fi) of F induces a

global holomorphic function w on S̃ which satisfies the desired conditions
with t ∈ C

⋆. If |t| = 1, then w induces on S a psh function and this is
impossible. By the maximum principle |t| < 1.

The assertion (ii) is an immediate consequence of (iii).

(iii) The function w̃ on S̃ induces a holomorphic function on ŜC denoted

by w where C = {z2 = 0} in a neighbourhood of ÔC . By the commutativity
of the diagram

S̃ S̃

ŜC ŜC

g̃ //

pC

��
pC

��
FC //

we have w◦FC = tw. We define ϕ(z) = (z1, w(z)). Since w vanishes of order
one on C, and does not vanish in the complement of C, ϕ is an isomorphism
and satisfies

ϕFCϕ−1(z) = (⋆,w ◦ FC(ϕ−1(z))) = (⋆, tw(ϕ−1(z))) = (⋆, tz2).

Theorem 1.9. Let S be a minimal compact surface containing a GSS

with b2(S) > 0. If tr(S) 6= 0, then:

(i) S admits a unique singular holomorphic foliation such that the sin-

gular points of the foliation are exactly the intersection points of the rational

curves;
(ii) the complement of the singular points in a rational curve is a leaf

with hyperbolic holonomy ;
(iii) all the other leaves are isomorphic to C and accumulate to the cycle

of rational curves of S; in particular , the closure of a leaf always contains

a singular point ;
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(vi) the foliation is defined by a global meromorphic 1-form with a loga-

rithmic pole.

P r o o f. (i) By Proposition 1.8, F maps {z2 = λ} onto {z2 = tλ}, there-
fore S is endowed with a foliation which is unique by Theorem 2.4.1 of
[KH3] and the fact that in any neighbourhood of an Inoue surface in its
versal deformation there are all generic surfaces.

(ii) is evident.

(iii) Choose a leaf L in S. It induces a leaf L̃ in the universal covering

space S̃ =
⋃

Ai. The image of L̃ ∩Ai in the ball is contained in the piece of
line Li = {z2 = λ}. There are two possibilities:

• Li does not meet F (B), i.e. it is a disc and L̃ ∩ Aj is empty for j > i
since {z2 = λ} in Ai is glued to {z2 = t−1λ} in Ai+1. For the same reason Lj

for j < i are all dimension one annuli rj < |z1| < 1 where the sequence (rj)

is bounded from above, therefore L and L̃ are Riemann surfaces isomorphic
to C.

• Li meets F (B), but there exists j > i such that Lj does not meet
F (B), and therefore we obtain the same conclusion.

(iv) ω = dz2/z2 has the expected property.

In the following lemma we still denote by C the image of C ⊂ S̃ under
the canonical mapping pC : S̃ → ŜC . The function ŵ is induced by w̃ of
Proposition 1.8.

Lemma 1.10. Given a curve C in S̃, set {∞} = C ∩
⋃

C′<C C ′. Then

there exists ε > 0 and an isomorphism

f : UC(ε) := {|ŵ(z)| < ε} \
⋃

C′<C

C ′ → C × ∆(ε)

from a neighbourhood of C \{∞} in ŜC onto C×∆(ε), which maps {ŵ = δ}
to C × {δ}.

P r o o f. We choose a spherical shell of S such that S is obtained from
a blown-up neighbourhood of ÔC isomorphic to the unit ball B, in which
C = {z2 = 0}, and ŜC = (

⋃
i<0 Ai) ∪ B, where Ai are copies of the blown-

up ball B with image σ(B) removed. If U0 = B, Up :=
⋃

−p≤i<0 Ai ∪ B,
U ′

p = Up \
⋃

C′≤C C ′ then (Up)p≥0 and (U ′
p)p≥0 are increasing sequences of

open subsets of ŜC . Thanks to Proposition 1.8(iii), we may suppose that
ŵ(z) = z2 and

FC|B(z) = F (z) = Πσ(z) =
(
σ1(z)zn

2 tn +

n−1∑

i=0

αit
i+1zi+1

2 , tz2

)
.
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Choose ε such that for λ 6=0 with |λ| < ε, {z2 = λ}∩B\F (B) is a topological
annulus of dimension 1. The annulus {z2 = λ} in Ai is glued to {z2 = t−1λ}
in Ai+1 which is an annulus or a disc. For every p ≥ 0, U ′

p is isomorphic to
B\{w = 0}; here U ′

0 = B\{w = 0} is identified with F p(B)\{0}. Replacing,
if necessary, F by a conjugate of F by a linear map ϕ(z) = (z1 + Az2, z2)
we may suppose that α1 6= 0, therefore in a neighbourhood of z = (0, 0),

σ1(z1, z2)z
n
2 tn +

n−1∑

i=0

αit
i+1zi+1

2 ∼ α0tz2.

Therefore if the pth iteration of F is F p = (F p
1 , F p

2 ), then

(1.11) F p
1 (z1, z2) ∼ α0t

pz2.

We define

fp = (gp, w) : U ′
p ∩ {|w| < 1} → C × ∆⋆, (z1, z2) 7→

(
z1

α0tp
, w(z)

)
.

The sequence (fp) is uniformly bounded on U ′
m identified with F p−m(B)\{0}

in Up. In fact, for z ∈ B, A > 1 and p → ∞ we have

|gp(z)| =
|F p−m

1 (z)|

|α0| · |t|p
≤ A|t|−m.

By Montel’s theorem and a diagonal argument, there exists a convergent
subsequence. Let f be the limit. On U ′

m, f = (g(z1), w(z2)) is bounded,
thus by Riemann’s extension theorem, f extends across C. The leaves of the
foliation are sent by f to lines {z2 = λ} in C × ∆. Because of (1.11), g is a
non-zero linear map. Therefore f is an isomorphism.

We are now in a position to find a simpler element in the conjugacy class
of F :

Lemma 1.12. Let

FC(z) = F (z) = Πσ(z) =
(
σ1(z)zn

2 tn +

n−1∑

i=0

αit
i+1zi+1

2 , tz2

)

be a germ of mapping with non-zero trace. Then there exists a germ of

isomorphism f such that

(1.13) F ′(z) = fFf−1(z) =
(
(z1a(z2) + b(z2))z

n
2 tn +

n−1∑

i=0

α′
it

i+1zi+1
2 , tz2

)
.

with a ∈ O⋆(∆).
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P r o o f. By Lemma 1.10, we have the following commutative diagram:

C × ∆ C × ∆

UC(ε) UC(ε)

ŜC ŜC

F ′

//

f ∼=

��
f ∼=

��
FC //

i

_
��

i

_
��

FC //

in which

F ′(z) = Π ′σ′(z) =
(
σ′

1(z)zn
2 tn +

n−1∑

i=0

α′
it

i+1zi+1
2 , tz2

)

and σ′
1 is convergent in C × ∆. Since F ′

1(·, z2) is an automorphism of C,
σ′

1(z) = z1a(z2) + b(z2) with a non-vanishing coefficient a.

This lemma establishes that in fact the foliation is the extension of a
structure of affine bundle on the complement of the rational curves. Since
tr(S) 6= 0 if and only if there is a divisor D on S such that D2 = 0 we obtain
the main theorem of [E2] for surfaces containing a GSS:

Proposition 1.14. Let S be a surface with t = tr(S) 6= 0 and D be

the union of the rational curves of S. Let E := C
⋆/{tp | p ∈ Z} be the

elliptic curve induced by the contraction z2 7→ tz2 and ω : S \ D → E the

map induced by w. Then (S \ D,ω,E) is an affine bundle which is a linear

bundle if and only if S is an Inoue surface.

Lemma 1.15. Any germ F with trace t 6= 0 is conjugate to a germ of the

form

F ′(z) =
(
(z1 + b′(z2))z

n
2 tn +

n−1∑

i=0

α′
it

i+1zi+1
2 , tz2

)

with b′(0) = 0.

P r o o f. By Lemma 1.12, we may suppose that

F (z) =
(
(z1a(z2) + b(z2))z

n
2 tn +

n−1∑

i=0

αit
i+1zi+1

2 , tz2

)
.

By changing αn−1 if necessary, we may suppose that b(0) = 0. Moreover,
conjugation by an isomorphism ϕ(z1, z2) = (z1, βz2) yields a(0) = 1. We
look for a germ of an isomorphism ϕ(z1, z2) = (c(z2)z1, βz2) which leaves
invariant the fibres of the affine bundle. We have c(0) 6= 0. The equation
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F ′ϕ = ϕF gives, by (1.13),

(1.16) c(tz2)a(z2) = c(z2)β
n,

(1.17) c(tz2)
(
b(z2)t

nzn
2 +

n−1∑

i=0

αit
i+1zi+1

2

)

= b′(βz2)t
nzn

2 βn +

n−1∑

i=0

α′
it

i+1βi+1zi+1
2 .

Write a(z2) = 1+a′(z2). Then (1.16) is solved by βn = 1 and the convergent
infinite product

c(z2) =

∞∏

i=0

(1 + a′(tiz2)).

The condition (1.17) is then easy to satisfy.

We want to show that the αi are the good parameters and that we can
choose the blown-up points, determined by the coefficients αi, 0 ≤ i ≤ n−1,
in such a way that b′ can be cancelled by a conjugation. For that purpose we
describe the sequence (Oi), i ≥ 0, of infinitely near points or equivalently the
invariant formal curve of F which exists by [D1], II.1.14. It is easy to check
that formal curves are all formally isomorphic, but the isomorphism is in
general not convergent.Moreover, if F and F ′ are conjugate, then necessarily
the formal curves are isomorphic. The idea of the following lemma is to
classify these formal objects in a convergent way.

Lemma 1.18. Let F be the germ

F (z) =
(
(z1 + b(z2))z

n
2 tn +

n−1∑

i=0

αit
i+1zi+1

2 , tz2

)

with b(0) = 0. Then there exist α′
i, 0 ≤ i ≤ n − 1, such that F is conjugate

to

F ′(z) =
(
z1z

n
2 tn +

n−1∑

i=0

α′
it

i+1zi+1
2 , tz2

)
.

P r o o f. Let Γ be the formal curve defined by the ideal (z1−
∑∞

i=1 Aiz
i
2).

Put b(z2) =
∑∞

i=1 biz
i
2. Then Γ is an invariant curve if and only if

( ∞∑

i=1

Aiz
i
2 + b(z2)

)
zn
2 tn +

n−1∑

i=0

αit
i+1zi+1

2 =
∞∑

i=1

Ait
izi

2.

This is equivalent to

Ai = αi−1 for i = 1, . . . , n,
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and for i = 1, . . . , n and k ≥ 0,

Ai+(k+1)n =
1

t(k+1)i+n(1+...+k)

{
αi−1 +

k∑

j=0

bi+jntji+n(1+...+(j−1))
}

.

Then Γ is always divergent if not all the coefficients of the formal series
vanish. Put

α′
i−1 := αi−1 +

∞∑

j=0

bi+jntji+n(1+...+(j−1)) for i = 1, . . . , n

where the series is convergent, and

α′
i−1+(k+1)n =

α′
i−1

t(k+1)i+n(1+...+k)
for 1 ≤ i ≤ n and k ≥ 0.

Therefore the sequence (α′
j) is exactly such that the sequence of points

(O′
j)j≥0 =((α′

j , 0))j≥0 is the sequence of infinitely near points of the blowing-
ups for F ′. If

βi = α′
i−1 − αi−1, i = 1, . . . , n,

βi+(k+1)n := α′
i−1+(k+1)n − Ai+(k+1)n, i = 1, . . . , n, k ≥ 0,

and

ϕ(z) =
(
z1 +

∞∑

j=1

βjz
j
2, z2

)
,

then ϕ is an isomorphism of C
2 which sends the sequence (Oj) = ((Aj , 0))

to (O′
j). Since F sends (Oj) to itself, F ′ = ϕFϕ−1 has the expected property

and this completes the proof.

Proposition 1.8(iii) and Lemmas 1.12, 1.15 and 1.18 give readily

Theorem 1.19. Any germ

F (z) = Π ◦ σ(z) =
(
σ1(z)σ2(z)n +

n−1∑

i=0

αiσ2(z)i+1, σ2(z)
)

with t = tr(DF (0)) 6= 0 is conjugate to a normal germ

F ′(z) =
(
z1z

n
2 tn +

n−1∑

i=0

α′
it

i+1zi+1
2 , tz2

)
.

The complement of the rational curves in S̃ is a Stein manifold, more
precisely:
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Corollary 1.20. If tr(S) 6= 0, and C is any rational curve of the

universal covering space S̃ of S then there exists an isomorphism

f : ŜC \
⋃

C′ 6=C

C ′ → C
2

such that the diagram

ŜC \
⋃

C′ 6=C C ′ ŜC \
⋃

C′ 6=C C ′

C
2

C
2

FC //

f ∼=

��
f ∼=

��
F //

is commutative. In particular S̃ \ C̃ is isomorphic to C × C
⋆.

Both Theorems 1.4 and 1.19 justify the following definition of the in-
variant v(F ) of germs of mappings F . Moreover, it is easy to notice that if
we consider the sequence (Oi)i≥0 of infinitely near points with Oi = (αi, 0)
then αi+n = 0 if and only if αi = 0. Therefore, given a surface S, if we
consider other germs F ′ associated with S (for example FC and FC+1 in the
notations of [D1]), then v(F ′) is obtained from v(F ) by a cyclic permutation.

Definition 1.21. Let F ′ = Π ′σ′ be a non-zero trace germ and F a
normal germ conjugate to F ′. The vanishing invariant v(F ′) = v(F ) =
(ε0, . . . , εn−1) is defined by εi = 0 if αi = 0 and εi = 1 otherwise. The
vanishing invariant of a surface S with tr(S) 6= 0 is v(S) = (ε0, . . . , εn−1)
modulo a cyclic permutation of {0, 1, . . . , n − 1}.

Till now we have only considered the conjugacy relation of germs F :
If F ′ = ϕ−1Fϕ then S(F ) and S(F ′) are isomorphic. In this relation the
spherical shell remains fixed. But we may choose another spherical shell and
obtain another germ F ′ not conjugate to the previous one but such that
S(F ′) is nevertheless isomorphic to S(F ). We now investigate this situation
in order to construct moduli spaces.

Lemma 1.22. Let n ≥ 1, Un be the group of nth roots of unity , t be such

that 0 < |t| < 1, λ and µ be such that λ and µ/|µ| are primitive roots in Un,
and µn = t. Let G be the group of automorphisms of P

n−1 generated by

Λ : P
n−1→P

n−1, [α0 : . . . : αn−1] 7→ [α0 : . . . : λiαi : . . . : λn−1αn−1],

M : P
n−1→P

n−1, [α0 : . . . : αn−1] 7→ [µα1 : . . . : µiαi : . . . : µn−1αn−1 : α0].

If L (resp. T ) is the group of order n generated by Λ (resp. M), then G is

a finite commutative group isomorphic to L × T .

P r o o f. Left to the reader.
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Theorem 1.23. Let

F (z) =
(
z1z

n
2 tn +

n−1∑

i=0

αit
i+1zi+1

2 , tz2

)
and

F ′(z) =
(
z1z

n
2 t′

n
+

n−1∑

i=0

α′
it

′i+1
zi+1
2 , t′z2

)

be normal germs. Then the associated surfaces S = S(F ) and S′ = S(F ′)
are isomorphic if and only if t = t′ and α′ = (α′

0, . . . , α
′
n−1) ∈ C

n may

be obtained from α = (α0, . . . , αn−1) ∈ C
n by a sequence of the following

operations:

(i) α 7→ κα where κ ∈ C
⋆;

(ii) (α0, . . . , αn−1) 7→ (α0, λα1, . . . , λ
n−1αn−1) where λn = 1;

(iii) (α0, . . . , αn−1) 7→ (µα1, . . . , µ
n−1αn−1, α0) where µn = t.

P r o o f. By [D1], p. 44, tr(S) = tr(DFC(ÔC)) for every curve C, i.e. the
trace does not depend on the choice of a conjugacy class associated with S.
Let C be a curve in the universal covering space S̃ of S such that F = FC .
Then the surfaces S and S′ are isomorphic if and only if there is an integer
p , 0 ≤ p ≤ n − 1, such that F ′ and FC+p are conjugate (see [D1], §I.3.11).
Therefore by Theorem 1.4, it remains to express FC+1 from FC and see how
the coefficients are altered.

For this purpose let F0 = FC0
and O0 = (α0, 0). Then we have the

following commutative diagram, where Πi is the blowing-up of the curve
Ci−1 at the point Oi−1 = (αi−1, 0):

Bn Bn

Bn−1 Bn−1

...
...

B0 B0

B B

Fn //

Πn
��

Πn
��

Πn−1
��

Fn−1 //

Πn−1
��

Π1

��
Π1

��
F0 //

σ0

FFÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ
Π0

��
Π0

��

σ

FFÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆÆ
F

//

From the relation Π0F0 = FΠ0, we deduce

F (u0, v0) =
(
u0v

n
0 tn−1 +

n−1∑

i=0

αit
ivi

0, tv0

)
.
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By a change of coordinates U0 = u0 − α0, V0 = v0 and by conjugation with
ϕ(u0, v0) = (u0, µv0) where µn = t, it is easy to check that (α0, . . . , αn−1)
is transformed into (µα1, . . . , µ

n−1αn−1, α0).

Corollary 1.24. For every n ≥ 1, there exists an analytic space MI

(resp. MG) of all Inoue surfaces (resp. generic surfaces) S for which

b2(S) = n. More precisely , MI (resp. MG) is isomorphic to ∆⋆ (resp.
P

n−1/G × ∆⋆).

P r o o f. Straightforward by Lemma 1.22 and Theorem 1.23.

The obstruction to constructing a universal family of generic surfaces
comes from the existence of non-trivial automorphism groups, therefore we
postpone this problem to §3.

Remark 1.25. If F is a generic or an Inoue germ which can be defined
on C

2, then the attraction basin of 0 is an open set U+ = {z ∈ C
2 | ∃n such

that Fn(z) ∈ B} isomorphic to C
2 by Corollary 1.20 and “generically” a

Fatou–Bieberbach domain, i.e. a domain of C
2 isomorphic to C

2 but with
complement having non-empty interior.

2. Deformations of surfaces containing a GSS. As shown in Sec-
tion 1 a normal germ of non-zero trace is defined by at most n+1 parameters,
namely n parameters for the choice of the blown-up points Oi, 1 ≤ i ≤ n, on
the rational curves, and one parameter for the trace. Moreover if we allow
the points Oi to move outside the rational curves by n other parameters, we
obtain blown-up Hopf surfaces or blown-up surfaces with non-zero trace. In
[KH1], F. Kohler proved that these 2n+1 parameters give the semi-universal
deformation of Inoue surfaces. With similar arguments we shall describe the
semi-universal deformation of any surface with non-zero trace.

2.1. Cocycle generators. Let S =S(Π,σ) be a surface containing a GSS,

Π = Π0 . . . Πn−1 : Bn−1 → Bn−2 → . . . → B1 → B0 → B

where Πi is the blowing-up of Bi−1 at Oi−1 ∈ Ci−1 and Ci = Π−1
i (Oi−1),

with B−1 = B, O−1 = 0, and suppose σ : B → Bn−1 is an isomorphism
onto its image which extends onto a neighbourhood of the closure B of B.
For i = 0, . . . , n − 1, denote by Ai the open set

Ai = Π−1
i (∆i−1) \ ∆′

i ⊂ Bi

where ∆′
i ⊂⊂ ∆i are balls in Bi centred at Oi, i = 0, . . . , n−1, and ∆−1 = B.

The last annulus An−1 is glued to the first one A0 thanks to σΠ0. If we still
denote by Ai the canonical image of Ai ⊂ Bi in S, the surface S is covered
by the family UE = {Ai}i=0,...,n−1.

Definition 2.1. The covering UE is called the Enoki covering of S.
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The annulus Ai is covered by the two domains Ui and U ′
i with coordinate

systems respectively (ui, vi) and (u′
i, v

′
i) where Ci = {vi = 0} = {v′i = 0},

and Ai+1 and Ai are glued along ∆i \ ∆′
i by

Πi+1(ui+1, vi+1) = (ui+1vi+1 + αi, vi+1 + βi),

Πi+1(u
′
i+1, v

′
i+1) = (v′i+1 + αi, u

′
i+1v

′
i+1 + βi),

with Oi = (αi, βi), Oi ∈ Ui or Oi ∈ U ′
i . The last gluing between A0 and

An−1 is given by the mapping

σΠ0(u0, v0) = (σ1(u0v0, v0) + αn−1, σ2(u0v0, v0) + βn−1)

or

σΠ0(u
′
0, v

′
0) = (σ1(v

′
0, u

′
0v

′
0) + αn−1, σ2(v

′
1, u

′
1v

′
1) + βn−1).

We are now going to define elements of H1(U , Θ) where Θ is the sheaf
of holomorphic tangent fields on S. It is well known (see for example [D1])
that if S is not an Inoue surface, then h1(S,Θ) = dimC H1(S,Θ) = 2b2(S),
and h1(S,Θ) = 2b2(S) + 1 otherwise. We define cocycles θi and ηi which
express respectively the movement of the point Oi along the curve Ci and
outside Ci in the following way:

For i = 0, . . . , n − 1, let Zi be a vector field on the ball B such that:

• Zi vanishes identically on σ−1(Cn−1) to order i + 1,

• for every 0 ≤ j ≤ i, (Π0 . . . Πj)
⋆Zi vanishes identically to order i − j

on Cj and (1/vi−j
j )(Π0 . . . Πj)

⋆Zi does not vanish at Oj ∈ Cj ,

• (Π0 . . . Πi)
⋆Zi is tangent to Ci.

For example, Zi = zi+1
2 ∂/∂z1 if σ−1(Cn) = {z2 = 0}. Since Ai ∩ Aj 6= ∅ if

and only if i − j = ±1 mod n, and Ai ∩ Ai+1 = ∆i \ ∆′
i, we define

θi
|Aj∩Ak

=

{
θi

i,i+1 = (Π0 . . . Πi)
⋆Zi

|Ai,i+1
for (j, k) = (i, i + 1),

θi
j,k = 0 for (j, k) 6= (i, i + 1).

By construction, θi
i,i+1 extends to Ai and to the previous annuli A0 ∪

. . . ∪ Ai and it vanishes at infinity (i.e. at Ci ∩ Ci−1). For example, if F is
a normal germ, then σ−1(Cn−1) = {z2 = 0} and

θi
i,i+1 =

∂

∂ui
if Oi ∈ Ui,

θi
|Aj∩Ak

= θi
jk = 0 if {j, k} 6= {i, i + 1},

satisfies the conditions by Lemma 2.4 (see below).

For ηi, no global conditions are supposed:

ηi
|Aj∩Ak

= ηi
i,i+1 for (j, k) = (i, i + 1)
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is any vector field transverse to Ci such that ηi
jk(Oi) 6= 0. For example

ηi
i,i+1 =

∂

∂vi
if Oi ∈ Ui,

ηi
i,i+1 =

∂

∂v′i
if Oi ∈ U ′

i ,

ηi
|Aj∩Ak

= ηi
jk = 0 if {j, k} 6= {i, i + 1}.

Finally, let T be a vector field on B such that:

• T is tangent to σ−1(Cn−1) with an isolated zero at 0, and

• for every 0 ≤ i ≤ n − 1, (Π0 . . . Πi)
⋆(T ) is tangent to Ci with isolated

zeros at Oi and Ci ∩ Ci−1.

Then

τjk =

{
(Π0 . . . Πn−1)

⋆(T ) if (j, k) = (0, n − 1),
0 if {j, k} 6= {0, n − 1}.

For example, if F is a normal germ, we notice that the following “trace”
cocycle describes the variation of the trace of the surface:

τjk =

{
vn−1∂/∂vn−1 on Un−1 ∩ σΠ0(A0),
v′n−1∂/∂v′n−1 on U ′

n−1 ∩ σΠ0(A0),
if (j, k) = (0, n − 1),

τjk = 0 if {j, k} 6= {0, n − 1}.

It can be easily checked that on Un−1∩U ′
n−1, vn−1∂/∂vn−1 = v′n−1∂/∂v′n−1

and that this vector field extends to the previous annuli (see Lemma 2.4).
All these conditions are invariant under conjugation.

Lemma 2.2. Let S be a minimal surface with a GSS and n = b2(S). If

n−1∑

i=0

λi[θ
i] + µi[η

i] + ε[τ ] = 0

is a linear relation in H1(U , Θ), then µi = 0 for all i = 0, . . . , n − 1; in

particular [ηi] 6= 0.

P r o o f. Suppose that there exists such a linear relation in H1(U , Θ). It
means that there exists X = (Xi) ∈ C0(U , Θ) which satisfies

∂X =

n−1∑

i=0

λiθ
i + µiη

i + ετ

in Z1(U , Θ). This equation is equivalent to the system
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(2.3)

(σΠ0)⋆X0 − Xn−1 = λn−1θ
n−1 + µn−1η

n−1

+ εvn−1
∂

∂vn−1
on A0 ∩ An−1,

Πn−1⋆Xn−1 − Xn−2 = λn−2θ
n−2 + µn−2η

n−2 on An−1 ∩ An−2,

...

Π1⋆X1 − X0 = λ0θ
0 + µ0η

0 on A1 ∩ A0.

The vector field Xi extends to the whole blowing-up of the ball ∆i−1 and
thus is tangent to the curve Ci. In particular Πi⋆Xi(Oi−1) = 0 for i =
1, . . . , n−1 and (σΠ0)⋆X0(On−1) = 0, which gives the result immediately.

The following elementary lemma shows that for generic blowing-ups, it
is possible to extend the cocycles to the previous annuli (which is not the
case in general).

Lemma 2.4. For generic blowing-ups, the following holds:

Πi⋆v
j
i

∂

∂ui
= vj+1

i−1

∂

∂ui−1
,

Πi⋆ui
∂

∂ui
= (ui−1 − αi−1)

∂

∂ui−1
,

Πi⋆v
k
i

∂

∂vi
= (ui−1 − αi−1)v

k−1
i−1

∂

∂ui−1
+ vk

i−1

∂

∂vi−1
.

For every 0 ≤ i ≤ n − 1,

(Π0 . . . Πi)⋆

(
∂

∂ui

)
= zi+1

2

∂

∂z1
,

(Π0 . . . Πn−1)⋆

(
vn−1

∂

∂vn−1

)
= nz1

∂

∂z1
−

n−1∑

j=1

(n − j)αj−1z
j
2

∂

∂z1
+ z2

∂

∂z2
.

P r o o f. Left to the reader.

Lemma 2.5. Let Π : X → B be the blowing-up of the ball at the origin

and Z be a vector field vanishing on the curve C = {z2 = 0} to order

k > 0. Suppose that the induced foliation F admits C as invariant curve

and the origin is not a singular point of F . Then the induced vector field

Π⋆Z vanishes to order k − 1 on C + 1 = Π−1(0).

P r o o f. By assumption

Z(z) = zk
2

(
A(z)

∂

∂z1
+ z2B(z)

∂

∂z2

)
, A(0) 6= 0.

If (u0, v0) is a coordinate system in which (z1, z2) = Π(u0, v0) = (u0v0, v0),
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it can be easily checked that

Π⋆Z(u0, v0)

= vk−1
0

(
(A(u0v0, v0) − u0v0B(u0v0, v0))

∂

∂u0
+ v2

0B(u0v0, v0)
∂

∂v0

)
.

Lemma 2.6. Let S be a minimal surface with a GSS , n = b2(S) ≥ 1 and

tr(S) 6= 0. If

n−1∑

i=0

λi[θ
i] + ε[τ ] = 0

is a linear relation in H1(U , Θ), then ε = 0. In particular [τ ] 6= 0.

P r o o f. We have the following system of equations:

(2.7)

(σΠ0)⋆X0 − Xn−1 = λn−1θ
n−1 + ετ on A0 ∩ An−1,

Πn−1⋆Xn−1 − Xn−2 = λn−2θ
n−2 on An−1 ∩ An−2,

...

Π1⋆X1 − X0 = λ0θ
0 on A1 ∩ A0.

By Theorem 1.19, there exists a conjugation of F = Π0 . . . Πn−1σ thanks to
which we may suppose that

F (z1, z2) =
(
z1t

nzn
2 +

n−1∑

i=0

αit
i+1zi+1

2 , tz2

)
and

F0(u0, v0) := FC0
(u0, v0) =

(
u0t

n−1vn
0 +

n−1∑

i=0

αit
ivi

0, tv0

)
.

Under this conjugation θi and τ0,n−1 are changed into cocycles of the same
type. If we write all the equations of (2.7) on A0, we obtain

(2.8) F0⋆X0(F0(u0, v0)) − X0(F0(u0, v0))

= λ0θ
0(F0(u0, v0)) + . . . + λi(Π1 . . . Πi)⋆θ

i(F0(u0, v0)) + . . .

+ λn−1(Π1 . . . Πn−1)⋆θ
n−1(F0(u0, v0))

+ ε(Π1 . . . Πn−1)⋆τ(F0(u0, v0)).

This means that F0⋆X0 extends to A0 and thus is tangent to C0.Moreover by
the first equation of (2.7), σ⋆Π0⋆X0 is tangent to Cn−1, thus X0 is tangent
to Π−1

0 (σ−1(Cn−1)), in particular it vanishes at infinity. We set Y = Π0⋆X0;
on the ball we have

(2.9) (F⋆Y −Y ) =

n−1∑

i=0

λi(Π0 . . . Πi)⋆θ
i+ε(Π0 . . . Πn−1)⋆τ =

n−1∑

i=0

λiZi+εT.
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If Y (z) = A(z)∂/∂z1 + z2B(z)∂/∂z2, we have

F⋆Y (F (z)) − Y (F (z)) =

(
⋆ ⋆
0 t

)(
A(z)

z2B(z)

)
−

(
A(F (z))

tz2B(F (z))

)

= tz2(B(z) − B(F (z)))
∂

∂z2

= 0 mod

(
∂

∂z1
, (z1, z2)

2 ∂

∂z2

)
.

By assumption Z0 = z2(X(z)∂/∂z1 +z2Y (z)∂/∂z2); putting this in (2.9) we
obtain

εT = εT +
n−1∑

i=0

λiZi = 0 mod

(
∂

∂z1
, (z1, z2)

2 ∂

∂z2

)

and ε = 0.

2.2. Main example. It is well known that Hopf surfaces S with H1(S, Z)=
Z are obtained by invertible contractions of the type

γ(z1, z2) = (az1 + λzm
2 , bz2)

where m ∈ N and a, b, λ ∈ C satisfy the conditions

0 < |a| ≤ |b| < 1 and (bm − a)λ = 0.

When λ = 0, S is called a diagonal Hopf surface. The following easy de-
scription of global vector fields or elliptic curves of S can be found in [NA]
and [DA].

Lemma 2.10. Let S be a Hopf surface with H1(S, Z) = Z.

(a) If a 6= bm, m ≥ 1, then there are exactly two elliptic curves E1 =
{z1 = 0} and E2 = {z2 = 0}, h0(S,Θ) = 2 and global vector fields are given

by θ(z) = αz1∂/∂z1 + βz2∂/∂z2.

(b) If a = bm, m ≥ 2 and λ = 0, then S is an elliptic surface,
h0(S,Θ) = 3 and global vector fields are given by θ(z) = (αz1+γzm

2 )∂/∂z1 +
βz2∂/∂z2.

(c) If a = b and λ = 0, then h0(S,Θ) = 4, S is an elliptic surface and

θ(z) = (αz1 + βz2)∂/∂z1 + (γz1 + δz2)∂/∂z2.

(d) If λ 6= 0, then there is only one elliptic curve E = {z2 = 0},
h0(S,Θ) = 2 and θ(z) = (αz1 + γzm

2 )∂/∂z1 + βz2∂/∂z2 with α = mβ.

P r o o f. Left to the reader.

Lemma 2.11. Let S = S(F ) be a surface containing a GSS , and Fu :
B → B, z 7→ Fu(z), be a deformation of F (z) = F0(z) over U such that

Fu(0) = 0 for every u ∈ U . Denote by Π : S → U the deformation of

S = S0 defined by (Fu)u∈U . Then for every u ∈ U , the conjugacy class of
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the germ of Fu at 0 ∈ C
2 defines the minimal surface S′

u obtained by the

blowing-down of the exceptional divisor of Su = Π−1(u).

P r o o f. Without restricting the generality it may be supposed that the
mappings Fu are “centred” [D1, p. 7] and the proof follows the same lines
as the proof of [D1], Lemma 2.7, p. 19.

In the following example which generalizes the explicit versal deformation
of Inoue surfaces from [KH1], we compute an explicit versal deformation of
all surfaces with non-zero trace, given by the particular cocycles ηi = ∂/∂vi,
θi = ∂/∂ui and τ = vn−1∂/∂vn−1. The example corresponds exactly to the
movement along or outside the curves Ci given by

(∗) Πi = (ui, vi) = (uivi + αi−1, vi + βi−1) for i = 1, . . . , n − 1

and

σΠ0 = (σ1(u0v0, v0) + αn−1, σ2(u0v0, v0) + βn−1)(∗∗)

= (u0v0 + αn−1, tv0 + βn−1),

α’s, β’s and t being parameters of the semi-universal deformation S → U .
In these explicit examples, u = (α, β, t) and Fu is obtained by composition
of (∗) and (∗∗). More precisely:

Theorem 2.12. Let S = S(F ) be a surface with non-zero trace associated

with a normal non-zero trace germ

F (z) =
(
z1z

n
2 tn +

n−1∑

i=0

αit
i+1zi+1

2 , tz2

)
.

Then:

(1) If S is an Inoue surface, i.e. if αi = 0 for every i, then the cocycles

ηi, θi for 0 ≤ i ≤ n− 1 and τ define the semi-universal deformation S → U
of S. In this deformation the submanifold

M = {(α0, β0, . . . , αn−1, βn−1, t) | β0 = . . . = βn−2 = βn−1 = 0}

of codimension n corresponds to minimal surfaces and

I = {α0 = . . . = αn−1 = 0} = {z ∈ U | h1(Sz, Θz) = 2n + 1}

corresponds to blown-up Hopf surfaces or Inoue surfaces at a point on the

elliptic curve given by the equation {z1 = 0}. More precisely , there is a flat

divisor E ⊂ S over I such that Eu is an elliptic curve of self-intersection

−n for every u. Blown-up Hopf surfaces are all diagonal or elliptic (of type

(a) or (b) of Lemma 2.10) and h0(Su, Θu) = 1 for every u ∈ I.

(2) If S is a generic surface, the cocycles ηi, 0 ≤ i ≤ n − 1, τ and n − 1
among the cocycles θi define the semi-universal deformation S → U of S,
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if the missing index j is chosen among those for which αj 6= 0. In this

deformation the submanifold

M = {(α0, β0, . . . , α̂j , βj , . . . , αn−1, βn−1) | β0 = . . . = βn−1 = 0}

of codimension n corresponds to minimal surfaces and if u 6∈ M , then Su is

a blown-up generic surface or a blown-up Hopf surface.

(3) In both cases there exists a flat divisor C over U such that Cu is

an elliptic curve if Su is a blown-up Hopf surface, and a cycle of rational

curves in all other cases. In all cases C2
u = 0.

P r o o f. (a) We recall that h1(S,Θ)=2b2(S)+h0(S,Θ). By the Kodaira–
Spencer theorem, it is sufficient to show that these cocycles are linearly
independent. According to the above Lemma 2.2, we only have to prove the
linear independence of the cocycles θi and τ in the first case, and of n − 1
among the θ’s and τ in the second. Suppose there exists a linear relation;
hence there exists X = (Xi) ∈ C0(U , Θ) such that

∂X =

n−1∑

i=0

λiθ(αi) + ετ.

By Lemma 2.6, ε = 0 and we have the system

(σΠ0)⋆X0 − Xn−1 = λn−1
∂

∂un−1
on A0 ∩ An−1,

Πn−1⋆Xn−1 − Xn−2 = λn−2
∂

∂un−2
on An−1 ∩ An−2,

...

Π1⋆X1 − X0 = λ0
∂

∂u0
on A1 ∩ A0.

These equations are in fact valid on the whole annulus since ∂/∂ui, ui∂/∂ui

and vn−1∂/∂vn−1 extend to the annulus Ai−1:

(2.13)

(σΠ0)⋆X0 − Xn−1 = λn−1
∂

∂un−1
on An−1,

Πn−1⋆Xn−1 − Xn−2 = λn−2
∂

∂un−2
on An−2,

...

Π1⋆X1 − X0 = λ0
∂

∂u0
on A0.

By induction and according to Lemma 2.4 we send all the equations of (2.13)
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down to A0. We prove by induction on k ≥ 0 that for some constants λ′
i,

(Πn−k . . . Πn−1σΠ0)⋆X0 = Xn−k−1+(λ′
n−1v

k
n−k−1+. . .+λ′

n−k−1)
∂

∂un−k−1
.

For k = n − 1 this yields

(2.14) F⋆X0(F (u0, v0)) − X0(F (u0, v0)) =
( n−1∑

i=0

λ′
iv

i
0

) ∂

∂u0

∣∣∣∣
F (u0,v0)

where

F (u0, v0) := Π1 . . . Πn−1σΠ0(u0, v0) =
(
u0v

n
0 tn−1 +

n−1∑

i=0

αit
ivi

0, tv0

)
.

The associated jacobian matrix is

DF (u0, v0) =

(
vn
0 tn−1 nu0v

n−1
0 tn−1 +

∑n−1
i=1 αiit

ivi−1
0

0 t

)
.

Since X0 is tangent to C0 we write

X0(u0, v0) = A(u0, v0)
∂

∂u0
+ v0B(u0, v0)

∂

∂v0
.

Putting this in (2.14) we obtain immediately

B(u0, v0) − B(F (u0, v0)) = 0.

The latter equation means that B defines a global holomorphic function on
S which is compact. Thus B is a constant and (2.14) is equivalent to

vn
0 tn−1A(u0, v0)+

(
nu0v

n
0 tn−1 +

n−1∑

i=1

αiit
ivi

0

)
B −A(F (u0, v0)) =

n−1∑

i=0

λit
ivi

0.

Comparing the terms containing uvn, we obtain B = 0 and (2.14) becomes

(2.15) vn
0 tn−1A(u0, v0) − A(F (u0, v0)) =

n−1∑

i=0

λit
ivi

0.

Differentiation of (2.15) with respect to u yields

∂A

∂u
(u0, v0) =

∂A

∂u
(F (u0, v0)).

As before, this shows that (∂A/∂u)(u0, v0) is constant, i.e. A(u0, v0)=au0+
V (v0) where V satisfies the condition

(2.16) vn
0 tn−1V (v0) − V (tv0) =

n−1∑

i=0

(aαi + λi)t
ivi

0.

We claim that

(2.17) aαi + λi = 0, i = 0, . . . , n − 1,
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and V = 0. To see this, set V (v0) =
∑∞

i=0 biv
i
0. By (2.16),

bi = −(aαi + λi) for i = 0, . . . , n − 1,

bn+j = bj/t
j+1.

For j ∈ N, euclidean division gives j = kn + i with i ∈ {0, . . . , n − 1}. By
induction on k ≥ 0,

bj =
bi

tn(k−1)k/2+k(i+1)
.

Suppose that there exists an index i such that aαi +λi 6= 0. The correspond-
ing subseries

∑
bqn+it

qn+i is divergent. In fact

bqn+n+it
qn+n+i

bqn+itqn+i
=

tn

tnq+i+1
=

1

tn(q−1)+i+1
.

Hence V is divergent outside the ball of radius |t|. Nevertheless X0 is defined
on A0, in particular it is convergent on {(u0, v0) | |u0v0|

2 + |v0|
2 < 1}. On

{u0 = 0}, the vector field X0(0, v0) = V (v0)∂/∂u0 should converge on the
unit ball, which is impossible as has just been seen.

Finally, X0 = au0∂/∂u0. By induction we obtain Xi = aui∂/∂ui and
there is a linear relation

(λ0, . . . , λn−1) = −a(α0, . . . , αn−1) for a ∈ C.

This is the trivial linear relation if and only if αi = 0 for all i and in this
case the equations show that there is a global vector field, i.e. S is an Inoue
surface.

Moreover, if αj = 0, then λj = 0 necessarily.
If αj 6= 0 and λj = 0, then a = 0 and all λi vanish. Therefore the missing

index has to be chosen among those for which αj 6= 0, because in this case
λj 6= 0 and θj can be expressed through the other θi.

(b) The fact that M corresponds to minimal surfaces is clear. The van-
ishing of αi gives rise to the mapping

F (z1, z2) =
(
z1

n−1∏

i=0

(tz2 + βn−1 + . . . + βi), tz2 + βn−1 + . . . + β0

)

or

(2.18) F (z1, z2) =
(
z1

n−1∏

i=0

(tz2+βn−1+. . .+βi), tz2+βn−1+. . .+β0+β−1

)

with
∑n−1

i=−1 βi = 0 if we want the condition F (0) = 0. The blown-up points
are on the strict transform of the line E = {z1 = 0} which gives an elliptic
curve C0βt in the surface S0βt. Moreover S0βt is a blown-up Hopf surface if
all βn−1 + . . . + βi 6= 0, and a blown-up Inoue surface if there is at least one
index i for which βn−1+. . .+βi = 0. Clearly z1∂/∂z1 induces a global vector
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field on S0βt. The equation {z2 = 0} is defined for the family of germs Fu

for every u ∈ U ; if Su is a blown-up Hopf surface, the contraction z1 7→ az1

with small a 6= 0, computed from αi and βi, gives an elliptic curve; if Su is
obtained by a blowing-up of a non-zero trace surface with b2 > 0 it gives
exactly the cycle of b2 rational curves by Lemma 2.11. This completes the
proof.

2.3. General case

Theorem 2.19. Let S = S(F ) = S(Π,σ) be a minimal surface contain-

ing a GSS such that n = b2(S) ≥ 1 and tr(S) 6= 0. Then the cocycles ηi, θi

for i = 0, . . . , n − 1 and τ are generators of H1(S,Θ). More precisely , let

v(F ) = (ε0, . . . , εn−1) be the vanishing invariant of F .

(i) If h1(S,Θ) = 2n + 1 then the cocycles ηi, θi for i = 0, . . . , n− 1 and

τ are a base of H1(S,Θ).
(ii) If h1(S,Θ) = 2n and j is an index such that εj = 1 then the cocycles

ηi for i = 0, . . . , n − 1, θi for i 6= j, and τ are a base of H1(S,Θ).

P r o o f. By Theorem 1.19 it may be supposed that F is a normal germ.
By Lemmas 2.2 and 2.6 it is sufficient to prove that [θi] are linearly inde-
pendent in case (i), and in case (ii) that [θi] are linearly independent for
i 6= j such that εj = 1. Let S → B be the versal deformation given in
Theorem 2.12.

(i) By Theorem 1.4, if
∑

λiθ
i 6= 0, then the associated deformation

T → U , which exists since H2(S,Θ) = 0, is not locally trivial, moreover
the coordinates of the blown-up points are obtained by integration of the
cocycles, therefore the base change mapping H : (U, 0) → (B, 0) is invertible
and

∑
λi[θ

i] 6= 0.
(ii) By Theorem 1.4, if

∑
λiθ

i 6= 0, there is a relation
∑

λi[θ
i] = 0 only

if integration of the vector fields θi moves the points Oi = (αi, 0) in such
a way that αi(u) = κ(u)αi for every i. But this is impossible if we have
removed θj such that αj 6= 0.

Corollary 2.20. Let S = S(F ) be a surface with tr(S) 6= 0. Then every

deformation S → Y of S where S ≃ S0 is locally given by a deformation of

any F ′ such that F ∼ F ′. More precisely , for any choice of a representative

F ′ in the conjugacy class of F and any choice of charts, there exists a

neighbourhood Y ′ ⊂ Y of 0 and holomorphic functions α0(y), . . . , αn−1(y),
β0(y), . . . , βn−1(y) and t(y) on Y ′ such that if

F ′(z, y) = Π ′
0 . . . Π ′

n−1σ
′(z, y)

with

Π ′
i(ui, vi, y) = (uivi + αi−1(y), vi + βi−1(y))

or
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Π ′
i(u

′
i, v

′
i, y) = (v′i + αi−1(y), u′

iv
′
i + βi−1(y))

for i = 1, . . . , n − 1,

Π ′
0(u0, v0) = (u0v0, v0) or Π ′

0(u
′
0, v

′
0) = (v′0, u

′
0v

′
0)

and

σ(z, y) = (z1 + αn−1(y), t(y)z2 + βn−1),

then Sy ≃ S(F ′(·, y)) provided the point Oi belongs to the two domains of

charts.

P r o o f. Comes from the definition of a versal deformation.

Corollary 2.21. Let S have tr(S) 6= 0. Then the unique holomorphic

foliation extends to any deformation of S.

P r o o f. Any deformation is given by a deformation Fu = (⋆, t(u)z2 +
β0(u) + . . . + βn−1(u)).

3. Automorphisms. Let Aut(S) be the group of automorphisms of S;
Aut(S) is a complex Lie group by the theorem of Bochner–Montgomery. Let
Di, 0 ≤ i ≤ n−1, be the n rational curves of S. Following [D3] we denote by
Aut0(S) the normal closed subgroup of automorphisms g with g(Di) = Di

for every 0≤ i≤n−1. By Lemma 3.4 of [D3], this group is isomorphic to the
group Isom(FC) of invertible germs ϕ such that ϕFC = FCϕ. In the same
way, if p is a divisor of n, then Autp(S) is the set of automorphisms g : S → S
which have no fixed points and satisfy g(Di) = Di+p. By Theorems 1.4
and 1.19 we have immediately

Theorem 3.1. Let S be a minimal surface with n = b2(S) and tr(S) 6= 0.

(1) If S is an Inoue surface, i.e. v(F ) = (0, . . . , 0), then Aut0(S) ≃
C

⋆ × Z/nZ and C
⋆ corresponds to the one-parameter group generated by a

non-zero global vector field.

(2) If v(S) contains exactly one non-zero coefficient , then Aut0(S) ≃
Z/nZ.

(3) If v(S) has at least two non-zero coefficients then Aut0(S) ≃
Z/ gcd{m,n}Z, where 1 ≤ m ≤ n − 1 is the least integer such that m =
k − j mod n, with εj = 1 and εk = 1. In particular , generically Aut0(S)
= {Id}.

It is easy to see that any Inoue surface with b2(S) = n is an n-fold cov-
ering of an Inoue surface with b2(S) = 1; nevertheless generically a surface
with a GSS and b2(S) > 1 is not a covering of another surface, as we are
going to see in the sequel.
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Proposition 3.2. Let S be a generic surface with n = b2(S) ≥ 1.

(1) Let S → U be the versal logarithmic deformation of S ≃ S0, where

dim U = n. Let p, q ∈ N
⋆ be such that n = pq, and Xq ⊂ U be the subset of

points u such that Su is a q-fold covering of another generic surface. Then

Xq is a submanifold of U of dimension p.

(2) If Autp(S) 6= ∅, then there exists α ∈ Autp(S) such that αq = Id.

In this case and for p > 0 minimal with this property , denote by G ≃ Z/qZ

the cyclic group generated by α. Then Aut(S) is a finite commutative group

isomorphic to the product Aut0(S) × G of cyclic groups.

P r o o f. (1) Let FC be the germ associated with the curve C at the point

ÔC = (α0, 0). We have FC(u, v) = (uvntn−1 +
∑n−1

i=0 αiv
iti, tv) and with

the notations of [D1], FC+p satisfies the commutative diagram

ŜC+p ŜC+p

ŜC ŜC

FC+p //

ΠC
C+p

��
ΠC

C+p

��
FC //

where ΠC
C+p(u, v) = (uvp +

∑p−1
i=0 αiv

i, v). A straightforward computation

gives FC+p(u, v) = (uvntn−p−1 +
∑n−1

i=0 α′
it

ivi, tv) with

(3.3) (α′
0, . . . , α

′
n−p−1, α

′
n−p, . . . , α

′
n−1)

= (αp, . . . , αn−1, α0/t, α1/t
2, . . . , αp−1/t

p).

Now any α ∈ Autp(S) induces, for every curve C, an isomorphism α̂C such
that

ŜC ŜC+p

ŜC ŜC+p

α̂C //

FC

��
FC+p

��
α̂C //

is commutative. By Theorem 1.4(1), there exist κ and µ such that

(3.4) α̂C(u, v) = (κ(u − α0) + αp, µv),

therefore tp = µn and

µq = e2iπm/pt for 0 ≤ m ≤ p − 1,(3.5)

α′
jµ

j = καj for 0 ≤ j ≤ n − 1.(3.6)

Conversely, for any m, such an α̂C defines an automorphism of Autp(S).
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The linear system given by (3.3) and (3.6) splits into p linear systems

(3.7j)

αp+jµ
j = καj ,

α2p+jµ
p+j = καp+j ,

...

α(q−1)p+jµ
(q−2)p+j = κα(q−2)p+j ,

αj

tj+1
µ(q−1)p+j = κα(q−1)p+j ,

for j = 0, . . . , p− 1. (3.7j) shows that for every 0 ≤ j ≤ p− 1, all αkp+j = 0
or e2iπmj/pµpq(q−1)/2 = tκq. Finally, we have p parameters α0, . . . , αp−1

which determine linearly the other αj , and define a (disconnected) manifold
X ′

q of dimension p. Since these conditions are necessary we have Xq ⊂
X ′

q ⊂ U . The next step is to show that if Autp(S) 6= ∅ then there exists an
automorphism α ∈ Autp(S) such that αq = Id. To see this, suppose that
m = 0. Then by (3.5) and (3.7j),

(3.8) µq = t and µpq(q−1)/2 = tκq.

From (3.7j) we deduce

αlp+j =
κlαj

µlj+pl(l−1)/2
for 0 ≤ j ≤ p − 1 and 0 ≤ l ≤ q − 1.

Define GC by

GC(u, v) = ΠC
C+pα̂C(u, v) =

(
κuµpvp +

p−1∑

i=0

αiµ
ivi, µv

)
.

By [D3], Lemma 3.6, it is sufficient to prove that Gq
C = FC . By induction

on k > 0 it is easy to check that

Gk
C(u, v) =

(
κkuvkpµp(1+...+k) + κk−1

p−1∑

i=0

αiµ
i+(2+...+k)pvi+(k−1)p + . . .

+ κl

p−1∑

i=0

αiµ
(k−l)i+((k−l+1)+...+k)pvi+lp + . . . +

p−1∑

i=0

αiµ
kivi, µkv

)
.

For k = q we have the result and Xq = X ′
q by [D3], 3.8, p. 681.

(2) As has already been seen, if p is the least integer such that Autp(S)
6= ∅ then there exists α such that αq = Id. Moreover if β ∈ Autp′(S)

then there exist q′ and ϕ ∈ Aut0(S) which satisfy p′ = q′p and β = αq′

ϕ.
Therefore in order to prove the commutativity of Aut(S) it is sufficient to
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check that for a given curve C the diagram

ŜC ŜC+p

ŜC ŜC+p

α̂C //

ϕC

��
ϕC+p

��
α̂C //

commutes. If all αi = 0, the result is clear, thus we may suppose that
α0 6= 0; but then αp 6= 0, thus by Theorem 1.4(2) we have λgcd(p,n) = 1 and
ϕC(u, v) = (u, λv). Moreover, by (3.4) and (3.70), α̂C(u, v) = (κu, µv). To
complete the proof we have to compute ϕ̂C+p from the commutativity of

ŜC+p ŜC+p

ŜC ŜC

ϕ̂C+p //

ΠC
C+p

��
ΠC

C+p

��
ϕ̂C //

with ΠC
C+p(u, v)=(uvp+

∑p−1
i=0 αiv

i, v). Note that by Theorem 1.4, λgcd{m,n}

= 1, thus
∑

αiv
i =

∑
αiλ

ivi, so ϕ̂C+p(u, v) = (u/λp, λv) = (u, λv) and the
result is obvious.

Lemma 3.9. Let S → U be a family of generic surfaces with n = b2(Su)
> 0, where U is connected and n = pq. If there is an open subset V ⊂ U
such that for every u ∈ V , Su is a q-fold covering of a surface S′

u, then every

surface is a q-fold covering surface. Moreover if U is simply connected , then

there exists a family S ′ → U of generic surfaces with p = b2(S
′
u) and a

commutative diagram

S S ′

U

Φ //???
�� ~~}}}}

such that for every u ∈ U , (Su, Φu, S′
u) is a q-fold covering.

P r o o f. By Proposition 3.2(1), the set of points u such that Su is a
q-fold covering is an analytic subset; since it contains V , it contains U . By
Corollary 2.21 the trace depends holomorphically on u and conditions (3.8)
become

µ(u)q = t(u) and µ(u)pq(q−1)/2 = κ(u)q .

By choosing a determination of z1/q , κ(u) and µ(u) may be defined on U ,
therefore an automorphism g is globally defined on S. For every u ∈ U ,
gu ∈ Autp(Su) satisfies gq

u = IdSu
. If G denotes the group generated by g,

then S ′ = S/G and Φ is the canonical mapping Φ : S → S ′.
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Definition 3.10. Let D be a rational curve of a surface S with a GSS.
Then (S,D) will be called a marked surface. A deformation of a marked
surface (S,D) is a 6-uple (S, θ, U,D, f, u0) which satisfies the following con-
ditions:

(i) f : S → Su0
is an isomorphism;

(ii) θ : S → U is a deformation of Su0
;

(iii) D is a divisor of S flat over U such that f⋆(D) = Du0
.

Similarly, the 4-uple (S, θ, U,D) will be called a family of marked surfaces.

We recall that if D is an effective divisor on S, then the locally free sheaf
Ω1

S(log D) defined by

Ω1
S(log D)(U) := {ω ∈ Ω1

S(Dred)(U) | dω ∈ Ω2
S(Dred)(U)}

is called the sheaf of meromorphic forms with logarithmic poles in D. If z∈D
is a regular point and D={z1 =0}, then Ω1

S(log D) is generated by dz1/z1

and dz2; if z ∈ D is a singular point and D = {z1z2 = 0} then Ω1
S(log D) is

generated by dz1/z1 and dz2/z2. A logarithmic deformation [KW] is defined
by cocycles in the dual sheaf ΘS(− log D) := HOS

(Ω1
S(log D),OS), there-

fore configuration of curves is maintained. Given a structure on manifolds
we shall say that there is a logarithmic fine moduli space if the set X of
isomorphism classes can be endowed with a structure of analytic space and
there is a family θ : U → X which is the universal logarithmic deformation
at every point. With the notations of Lemma 1.22, we have

Theorem 3.11. There is a logarithmic fine moduli space of all marked

generic surfaces S with b2(S) = n ≥ 1 and it is isomorphic to P
n−1/L×∆⋆.

P r o o f. The group L acts on P
n−1 and has n fixed points [0 : . . . : 0 : αi :

0 : . . . : 0] which give in the quotient n normal isolated singularities. Let U be
the complement of these singular points. The set U ′ of points u∈U such that
Aut(Su) = {Id} is Zariski dense by Theorem 3.1 and Proposition 3.2(1). For
every u ∈ U we choose a representative of the versal logarithmic deformation
Su → Vu over a small neighbourhood Vu of u such that over Vu any two
surfaces are not isomorphic; that is possible because L is finite and we have
removed the fixed points. Over Vu ∩ Vu′ the deformations are isomorphic
and the isomorphism is unique since the automorphism groups are trivial
on a dense open set. Therefore the glueing is unique and the compatibility
relation is trivially satisfied. By [W], this family is universal at every point
because H0(Su, Θu) = 0 for every u.

Now let (0, . . . , 0, αi, 0, . . . , 0) be a fixed point. We may suppose that
αi = 1 and we choose a versal deformation over a polydisc ∆n. The group
L is generated by Λ : P

n−1 → P
n−1 defined by
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Λ(α0, . . . , αi−1, 1, αi+1, . . . , αn−1)

= (λ−iα0, . . . , λ
−1αi−1, 1, λαi+1, . . . , λ

n−1−iαn−1).

By the universality the glueing is unique and completes the family over the
singularities.
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