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Adapted complex structures and Riemannian
homogeneous spaces

by Róbert Szőke (Budapest)

Abstract. We prove that every compact, normal Riemannian homogeneous manifold
admits an adapted complex structure on its entire tangent bundle.

1. Introduction. Adapted complex structures are canonical complex
structures on the tangent bundle of Riemannian manifolds. These structures
were discovered by investigating certain global solutions of the complex,
homogeneous Monge–Ampère equation on Stein manifolds. One can define
them in the following way.

We identify the tangent bundle TR with the complex numbers:

(1.1) TσR 3 τ ∂
∂σ

ι→ σ + iτ ∈ C.

Let now (M, g) be a complete Riemannian manifold and 0 < r ≤ ∞.
Denote by T rM the domain in TM that consists of vectors having length
smaller than r. A complex structure on T rM is called adapted if for any
geodesic γ : R→M , the induced map

γ∗ : (γ∗)−1(T rM)→ T rM

is holomorphic, where (γ∗)−1(T rM) ⊂ TR is endowed with the complex
structure from (1.1).

The adapted complex structure (if it exists) is unique and when (M, g)
is compact and real-analytic and r is small enough, it exists (see [G-S, L-Sz,
Sz]). The maximal possible radius cannot always be chosen to be infinite.
This follows from the fact that the existence of the adapted complex struc-
ture on the entire tangent bundle implies that all sectional curvatures are
nonnegative.
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So far the only known manifolds with global adapted complex structures
were: compact symmetric spaces, a family of surfaces of revolution [Sz] and
a nonstandard metric on R2 [Sz3].

The main purpose of this note is to present a simple proof that every
compact, normal Riemannian homogeneous manifold admits an adapted
complex structure on its entire tangent bundle (Theorem 2.2).

It is very tempting to treat in a similar way all compact Riemannian
homogeneous manifolds without the normality condition. But in general
such manifolds can have some negative sectional curvatures. We do not
know what is the largest possible class of homogeneous manifolds, or say left
invariant metrics on a given compact Lie group, that admit global adapted
complex structures.

2. Riemannian homogeneous spaces. Throughout this section K
will denote a compact Lie group and L a closed subgroup of K. Choosing a
two sided invariant metric g on K gives rise to the so-called normal metric
gn on the homogeneous space K/L.

It is well known that K can be imbedded into a unitary group U(N) (for
some large N) and from now on we always tacitly assume this. Denote by
e the identity matrix. Following [B-D], the complexified group KC can be
described as follows. The underlying differentiable manifold for KC is just
K × κ, where κ = TeK is the Lie algebra of K. The group structure and
the complex structure can be defined by pulling back along the imbedding

(2.1) Λ : K × κ→ GL(N,C), (a,X) 7→ a exp(iX).

For an element a ∈ K denote by La the left translation La : b 7→ ab. With
the help of these diffeomorphisms, we can identify TK and KC:

(2.2) ∆ : TaK 3 Y 7→ (a, (La)−1
∗ Y ) ∈ K × κ = KC.

Denote by l the Lie algebra of L and m the orthogonal complement, i.e.
κ = l + m. Via the left K-action on itself, the subspace m determines a
subbundle M of TK. Define the right L-action on K × κ by

(2.3) (k,X)l := (kl,Ad(l−1)X).

Since the metric g is two-sided invariant, the subspace m is AdL invariant
and the quotient space of K × m w.r.t. the L-action of (2.3) is the vector
bundle K ×L m.

Let p : K → K/L be the projection and p∗ the induced map p∗ : TK →
T (K/L). The derivative of the right L-action on K gives a right L-action on
M and the restriction of ∆ to M gives an L-equivariant identification ∆M

between the bundles M and K × m. The quotient space M/L is precisely
T (K/L) and the quotient map is just p∗. The map ∆M descends to a map
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∆K/L : T (K/L)→ K ×L m and the following diagram commutes:

TK ⊃M K ×m

T (K/L) K ×L m

∆M //

p∗

�� ��∆K/L //

The quotient map p : (K, g) → (K/L, gn) is a Riemannian submersion and
at any point k ∈ K the horizontal subspace is precisely Mk.

After all these preliminaries we only need to recall a result of Mostow
(see [M]).

Theorem 2.1. The map

Φ : K ×L m→ KC/LC, (k, v) 7→ k exp(iv)LC,

is a K-equivariant diffeomorphism.

Now we are ready to prove:

Theorem 2.2. Let K be a compact Lie group and L a closed subgroup of
K. Let g be a two-sided invariant Riemannian metric on K. Then Φ◦∆K/L

is a biholomorphism between T (K/L) (with the complex structure adapted
to gn) and KC/LC.

P r o o f. Step 1. Suppose L = {e}. We need to show that pulling back
the complex structure of GL(N,C) by Λ ◦ ∆ : TK → K × κ → GL(N,C)
is adapted to g. Let γ be an arbitrary geodesic through b ∈ K. Since g is
two-sided invariant, γ can be written as γ(σ) = b exp(σX) for some X ∈ κ.
Since for any σ + iτ ∈ C,

(Lγ(σ))−1
∗ (τ γ̇(σ)) = τ

d

dt

∣∣∣∣
t=σ

[γ(σ)−1γ(t)]

= τ
d

dt

∣∣∣∣
t=σ

{exp[(t− σ)X]} = τX,

the composition map Λ ◦∆ ◦ γ∗ : C→ GL(N,C) is

ζ := σ + iτ 7→ b exp(σX) exp(iτX) = b exp(ζX),

that is holomorphic in ζ. Hence the complex structure is indeed adapted.
Step 2. Let now γ : R → K/L be a gn geodesic. Since the projection

map p : (K, g) → (K/L, gn) is a Riemannian submersion, γ can be lifted
to a horizontal geodesic γ̃ : R → K (see for example [Be, p. 245, 9.42]).
Horizontal means that in fact γ̃∗ : TR → M, i.e. γ̃(σ) = b expσX, where
X ∈ m.

To show that the complex structure on T (K/L) given by the pull-back
w.r.t. Φ ◦∆K/L is adapted to gn, it is necessary and sufficient to check that
the composition Φ ◦∆K/L ◦ γ∗ : TR→ KC/LC is holomorphic. This follows
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from Step 1, the discussion before Theorem 2.1, the holomorphicity of π and
the commutativity of the diagram below. (We think of the group KC as a
complex subgroup of GL(N,C), KC = Λ(K ×m).)

C M K ×m KC

C T (K/L) K ×L m KC/LC

γ̃∗ //

id

��

//

p∗

��

Λ //

��
π

��
γ∗ // ∆K/L // Φ //

Remarks. Theorem 2.2 was proved, using different methods, by M. Sten-
zel in an unpublished preprint in the special case when K is semisimple.

The norm-square function is a strictly plurisubharmonic exhaustion (see
[L-Sz]) function on the complex manifold (T (K/L), JA) = X. Consequently,
X is Stein. This gives another proof of an old result of Matsushima [Ma],
that the complex homogeneous manifold KC/LC is Stein.

The uniqueness of the adapted complex structure together with its very
definition imply that any isometry ϕ : (M, g)→ (M, g) induces a biholomor-
phism ϕ∗ of the tube T rM (where the adapted complex structure is defined).
Assume now that r is finite. It is a natural question to ask whether these are
the only biholomorphisms or not. In this generality practically nothing is
known, not even in the particular case when M is the real hyperbolic space.

If we assume that M is compact, the answer is almost complete. Namely
it is known that Aut(T rM) is a compact Lie group [Sz2] and the identity
component Aut0(T rM) coincides with the identity component of the isom-
etry group [Bu].

An interesting particular case is when (M, g) is a compact hyperbolic
manifold of constant sectional curvature = −1. Then the maximal tube
where an adapted complex structure exists has radius π/2. It was shown
by Kan [Ka2] that there is precisely one radius, namely r = π/4, such
that the hypersurface Sr = {‖ ‖g = r} ⊂ Tπ/2M is spherical. She also
proved that there exists an ε > 0 such that for any s ∈ (π/4 − ε, π/4 + ε),
Aut(T sM) = Isom(M, g).

A closely related question was considered by Burns [Bu]. He showed that
the complex manifold structure of the tube T rM completely determines the
manifoldM and the metric. More precisely, he proved the following. Suppose
(M, g) and (N,h) are compact Riemannian manifolds with adapted complex
structures on T rM and T rN (0 < r <∞). Assume that T rM and T rN are
biholomorphic. Then (M, g) and (N,h) are isometric.

Our observation is based on this theorem.

Proposition 2.3. Let (Mn, g) be a compact Riemannian manifold ,
n > 1 and 0 < R ≤ ∞. Suppose TRM admits an adapted complex struc-
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ture. Then for any 0 < r < s < R, the hypersurfaces Sr := {‖ ‖g = r} and
Ss := {‖ ‖g = s} are not CR-equivalent.

P r o o f. Suppose there exists a CR-diffeomorphism Φ : Sr → Ss. Then Φ
extends to a biholomorphism Φ̃ : T rM → T sM . Let λ = r2/s2 and h := λg.
Then the adapted complex structure w.r.t. h is the same as for g, and the
tube T sM w.r.t. g is the same as the tube with radius r w.r.t. h.

Thus the above mentioned result of Burns implies the existence of an
isometry ϕ : (M, g)→ (M,λg). This yields λ = 1, a contradiction.

If the compactness condition is dropped, nothing is known. In particular
it is not known whether in the case of the real hyperbolic space tubes (with
the adapted complex structure) with different radii can be biholomorphic or
not.

Now we discuss the symmetries (i.e. biholomorphisms) of the complex
manifold (T (K/L), JA). For further information concerning symmetries of
tubes T rM in general, see [Bu, Ka, Sz2].

Proposition 2.4. Let f : KC/LC → LC be holomorphic, and π : KC →
KC/LC be the projection map. Then the map Φf : KC → KC defined by

a 7→ af(πa)
is a biholomorphism of KC.

P r o o f. It is clear that Φf is holomorphic. Suppose
(2.4) af(πa) = bf(πb).
Then π(af(πa)) = π(bf(πb)), hence π(a) = π(b). This together with (2.4)
implies a = b, i.e. Φf is injective.

Let now b ∈ KC. Define a ∈ KC by
a := b[f(π(b))]−1.

It is easy to see that Φf (a) = b, thus Φf is onto.

Remark. It is also obvious that Φf ≡ Φg iff f ≡ g.

Corollary 2.5. Aut(KC) is at least as large as the set of holomorphic
maps

Hol(KC/LC → LC).

Corollary 2.6. If K 6= S1, then Aut(KC) is infinite-dimensional.

P r o o f. If K is not a torus, take for instance L to be a maximal torus in
K. Since both KC/LC and LC are Stein, the statement follows from Corollary
2.5. If K is a torus, but not the circle, KC can be identified with (C∗)n, n>1.
Now if h is any holomorphic function on C, the map Φh : (C∗)n → (C∗)n,

Φh(z1, . . . , zn) = (eh(z1z2)z1, e−h(z1z2)z2, z3, . . . , zn),
is an element of Aut(C∗)n.
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