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On a problem of P. Erdos concerning the distribution
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Let € be a compact set in the z-plane. We assume that C is a sum of
continua none of which reduces to a one-point set. Let {a,} be an in-
creasing sequence of indices. Let {pfr} and {gi»} (i=1, ..., a,) be two
sequences of points of the set ¢. We consider two sequences of polyno-
mials,

Fal2) = (2—p™) .. (6—p3),  Gu(?) = (2—g)) ... (2—q2)

and two sequences of measures {u,} and {»,} defined by the formulae:

an an
[piun = X o) fan, [ od = D p(gi)[an

=1 i
for every continuous funection @(2). We know that {u,} contains a weakly
convergent subsequence. For the sake of simplicity we asswme that {u,}
converges. We shall denote its limit by u. We restrict our considerations
to the set ¢ and all the topological notions will relate to the topology
on ¢ which is induced by the common topology of the plane. We shall

prove
THEOREM. If for every closed neighbourhood V of every point zeC we
have
A [ (2)] 110,
1 lim =—’L—] =
W [
26V

and the set of discontinuity points of the potential(*)
[logle— g1 du(L)
consists of isolated points then v, also converges as u, does o the measure pu.

(*) The points ab vwhich the potential is (of course positively) infinite we treat
as the ocontinuity points.
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To begin with we shall prove some lemmas.

LemMA 1. For every point z,eC and every neighbourhood V of it there
ewists a positive measure o such that the carrier of o contains 2, and is con-
tained in V and the potential

Jlogle— 217 ao(2)
18 CONLINUOUS.

Proof. We consider two cases:

I. 2, is an interior point of ¢ with respect to the usual topology of
the plane. Then there exists a circle which contains z, and we take
a8 ¢ the plane Lebesgue measure of that circle. The continuity of
[log|z—¢|™*do () is here obvious.

II. 2, is a boundary point of €. Then there exists a continuum
VoC V C O which contains #, and is not degenerated to a one-point set.
Then we take as ¢ the equilibrium measure of V. The continuity of the
potential [logle—¢| ™ do (L) follows by a theorem of F. Leja which states
that every compact continuum is a boundary of a domain with a conti-
nuous Green function (ef. [1]).

LEmMA 2. Let p, be a sequence of measures on C which converges to
a measure p. Let V be a closed subset of C and x, be a sequence of points
such that
(2) J 1og 1 — 217 dpun(¢) = min [ logle— |7 dun(2).

6

If {=,} converges to some point m, and f[logle— | du(l) s comtinuous at
@y, then we have

lim [log |z, — £ dun(8) = [ loglay— | du(2).
Proof. First we shall show that

lim [ log |z, — £| ™ dun(¢)

M being a positive number, we put

Ly(z, ()
Suppose- that [log |m,—

> [ loglay— & “ap(?).

= min {log [z —¢|™*, M}.
| du(t) < oo. Let & be any positive number.
Then we choose such a large M that
J B, £ au () > [loglay— 17 au(s)—e.
Then we have
lim [ log |wn — &1 dun (¢) > lim [ Lag (@, — &) dpen (2)

= [ Lau(@, ) au () > [ loglay— ¢l du()—
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In view of e being arbitrarily small we obtain inequality (2). The case
floglmy— ¢ dp(Z) = oo we treat similarly.

Suppose now that the assumptions of our lemma hold and that we
have

tim [ log e — £ du(£) > [ log oo~ &| 7 du(¢).

Then there exist a subsequence {@y,} e{z,} and a number > 0 such
that we have
log |, — |~ A, (¢) > [ log |ao— £ du(Z) + 21

By the continuity at z, there exists a neighbourhood V of z, in which
we have

flOg]mo—Cl 1fl/t( floglz—ﬂ“d,u( ).

Then we take the measure ¢ which has been described in lemma 1. In
view of the fact that the points mz, realize mmflog]z——t}d,uk (&) we
have

f(la ]10g1~— o e (L

>f(la

(&) = [do(e) [loglm, — &I dux, (0)
[ [1oglz— 21 Qu(l)+ 2] > [ do(z) [logle— |~ du(z)+1].
Hence we obtain in the limit

lim [ do(2) log |2 — ¢ dun, (£) = [do(2) [logle— 7 du(e)+ o (V)

Using the theorem of Fubini we have
lim [ do(z) [ logle— C|™ A, (£) = lim [ du,,(0) [ log|e—¢| 7 do(2)

= [au(2) [ loglz— ¢\ do(2) = [ da(z) [ logle—¢I™ du(0),
which contradicts (3).

Proof of the theorem. We choose from {»,} a convergent subse-
quence and we denote its limit by ». By assumption (1) and lemma 2 we
conclude that every closed subset ¥ of C which does not contain the discon-
tinuity points of f loglz—¢17 du(C) contains two points, s’ and »/, such
that

[logla' — £~ au(r) = [ logla" — | an(2).

#' (resp. ') is of course an accumulation point of the pointé realizing
min [ logle— |7 dpn (L) (resp. min [ logle—&| ™ dn, (). From this fact
v v
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follows the equality of [logle—¢|™"du(¢) and [logle—¢|~*d(¢) outside
at most a set of isolated points which is of capacity 0. Hence

[togls— ™ au() = [logle—¢i7dv(2)

and in consequence y = » (ef. [2]). Since the above treatment may be
applied to the arbitrary convergent subsequence of the original sequence
{#a}, then {»,} converges to ».

The theorem gives a positive angwer to the hypothesis which P.
Erdos has put in a slightly less general form.
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Sur les solutions périodiques et presque-périodiques de
I'équation différentielle 4+ %f(z)a'+g(z) = kp 1)

par Z OPIAL (Krakéw)

1. Considérons 1’équation différentielle non lindaire du second ordre
@ - - @+ Ef(@)a +g(x) = kp(2),

ol k est un paramétre. Admettons que les fonctions f(z), g(z) et p(8)
solent continues (—oo < # << 400, —c0 < t < +oc) et posons
x

F(2) = [f(u)du,

z 14
G(a) = [gwyan et P(t) = [p(u)du.

L’équation (1) est équivalente au systéme d’équations du premier
ordre

(@) o =y—kF(@), ¥ = —gla)+kp().

Pour toute solution #(f) de I’équation (1) nous désignerons par
{#(?), (1)) 1a solution correspondante du systéme (2), de sorte que Ion
aura

y(t) = o' (O)+%F (w(1).

Supposons que les fonctions f(z), g(x) et p(t) satisfassent aux con-
ditions

(3) flw) >0 pour tout », lim F(x)sgne = 4 oo,
|2}—>00

(4) zg(w) >0 pour z =0, lim G(z) = +oo,
@00

(5) @Ol <P, POI<P

P étant une constante positive.

G. E. H. Reuter [5] a démontré que, dans ces hypothéses, pour
tout & > 0 il existe dans le plan (x, ) un ensemble K limité par une courbe
réguliere (de classe C* sauf en un nombre fini de points), simple et jouissant
des propriétés suivantes:

(—o0 <t < +o00),
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