icm®

ANNALES
POLONICT MATHEMATICT
VII (1960)

On quasianalytic classes of functions, expansible in series
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1. Denote by CF the class of real functions f(«), infinitely derivable in
an interval I (closed or open, finite or infinite) and let {m,} be an arbi-
trary sequence of positive numbers. We say that feC{m,} C CF, if there
exists a constant A = A4, such that

squ[]‘(")(m)] < A™m, for n=0,1,2,...
Te.
The class CO{m,} will be said to be quasianalytic (g-analytic) if the
conditions feC{m,} and 7™(x,) = 0, where zyel, n =0,1,2,..., imply
f(z) = 0. In the sequel we shall need two conditions of g-analicity:
1.1. Write
n

ok — 7
ﬁ,,=k1n_f]/mk, T(r) =su%)7n—, where 1 >=1;
=0 nx n

the class C{m,} s g-amalytic if and only if

Sl FinT
2——:00 or f - 2(T)d'r=oo.
: Ba 3 7

ne=1

The first of these conditions is due to Carleman [1] and the second
to Ostrowski [5]. If the series or the integral in 1.1 are convergent, then there
emists in {(a,d> a mon-negative function f(x)=z=0 (non-identically equal
10 zero) satisfying the following conditions:

f™(a) = fO) =0, [[P@)|<m, and flata)=7Fb—a)

for n =10,1,2,... and vela, b).

Now let us assume f(z) to be expanded in a series Y a,pn(2). Clearly,
if p,e0F for n = 0,1, 2,... and the coefficients a, satisfy suitable con-
ditions, then 7(z) will belong to some g-analytic class. Such conditions
given by suitable inequalities for the coefficients a, were introduced by
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de la Vallée Poussin [6] and Mandelbrojt [4], ¢,(2) being the trigono-
metrical system. The following definition will be applied in formulating
the theorem of Mandelbrojt:

(M) 4 function a(w), defined for m > 0 satisfies condition (M) if it
is differentiable and if the function q(x) = wa'(x) inereases to infinity as
xz ~> oco(1).

Mandelbrojt proved the following theorem:

1.2. Let a(w) satisfy condition (M).

L If la,] < €™ |b,) < ¢7*®™ and the integral

o«
a(w)
() [
@

1

i8 divergent, then the function
a oo
0 .l .
flz) = Y —)—7% (@, cos nw+ b, sinnz),

where  f™0) =0 for n=0,1,2...

identically equals zero.

II. If the integral (=) is convergent, then there ewists & non-negative
periodic function f(z) 55 0 with period 2w, even and satisfying the equalities

@, bad "
f(z) = Eo -}—ﬂ;:ancosmf, 1™(0) =0

for every @ and n =0,1,2,..., with |a,] < e™*®,

The theorem of Mandelbrojt I is a generalization of the theorem
of de la Vallée Poussin. The latter author assumes that wa' () > Ca(r)
with a positive constant € and that

fle) = % + Za,,cosma.

In his proof de la Vallée Poussin applies, besides the condition of Carleman,
only elementary methods. Mandelbrojt uses in his proof the condition
of Ostrowski, but applies moreover a special lemma on entire functions.
This lemma makes possible a further weakening of the agsumptions on

the coefficients a,, but.the modified assumptions are much more compli-
cated.

(*) This implies continuity of g(z), since ¢(z) = (za(z)— fa(z)de)".
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2. We shall now show that the theorem of Mandelbrojt can be gen-
eralized by a,pplymg the following elementary lemma:

2.1. Let us assume a(x) to satisfy condition (M). Then the functions
@y (z) = a"¢7°® have one and only one maximum n (0, co), oblained for
2z = @y satisfying the equality

(R) q(m) =k,

where k =1,2,...
the inequalities

Moreover, the sequence My = @n.1(®,,1) (%) satisfies

1 1
e LT < ﬁe“(')

for sufficiently large v and for arbitrary fized non-negative integer 1,. T (r)
being defined in 1.1.

Proof. The properties of the funetion ¢(2) imply that the equation
¢(#) = k has for k > n, a unique solution # = =;,, and Ethe funection Dy (x)
increases for # < x, and decreases for # > w, k > 7,. The definition
of T'(r) vields

7 (r) = max{nlnr— (R-+1)Inx, 3+ a(@,0)} -
n=ng

Applying the equation (R) and the definition of ¢(#) we obtain

T(r)=1;§»n§{q(wn+z) fdm fm o +a ()—llnr}

T+l
= max {P (@, 7)+ a(r) —nr},
n>ng
wherein
fd gl
Planan =@ [ = - [ L2
Tn+1 Tn+L

and In7T(r) < a(r)—1lnr for every r >1. Evidently,

P(@py1y7) 2 —{g(r)— g(@ny)} (Inr —

for #,,; < r. Moreover, for sufficiently large r there exists an index n
such that ¢(,,1) = [¢(r)]. Then, for sufficiently large » and a certain =,
P(@y,1,7) = —Inr. Hence, InT(r) > a(r)—(I+1)lnr. Thus we have
obtained )

In L, +1)

a(?)—(1+1)nr < InT(r) < a(r)—Inr.
(*) Since this equality does not define my; for n < q(1)—1, for such n we i)ut

Mpy = Mpgl, Where ny = [g(1)—1].


GUEST


288 J. Kopeé and J. Musielak

From lemma 2.1 and the condition of Ostrowski 1.1 we obtain the
following corollary:

2.2. Under the indications and assumptions of lemma 2.1, all classes
Olmyi) are g-analytic (simultaneously for each 1) if and only if the integral
(%) is divergent.

Now we shall prove the following general theorem. Here I will de-
note an arbitrary interval, closed or open, finite or infinite.

2.3. Let the sequence ¢f(x) of k-th derivatives of the function o ()
satisfy the inequalities

max 198 ()] < o
Za.

for n=1,2,..., k=0,1,2,... Moreover, let us assume the following
conditions to be satisfied:

(a) there exist a sequence {y,}, infy, > 0, a non-negative integer 1 and

n
a constant A such that o < A¥yE+Y,
oo
(b) f(a) = D angale) in I;
n=0

(e) there ewist positive functions v»(®) and w(w) such that |a,] < 1/v(yn),
21jo(yn) < oo and such that the function a(z) =In{v(z)/w (@)} sa-
tisfies the condition (M) and the integral (») is divergent.

Then the function f(x) belongs to a g-amalytic class; thus, if 1% (z,) = 0 for

n=20,1,2,... and & point vyel, then f(x) =0 in I.

Proof. The assumptions of 2.3 imply

So' ) Y i oo 1
|a’n¢n (-’L‘)] < k+1 '
= &  v(Vn)vn @ (¥n)

-
1
< D 4*04 ()

< BA"m 1
& ©(ya) "

B being a constant and () and my, being defined in 2.1 Thus, f €O {myy}.
It follows from (c) and 2.2 that the class C{my} is g-analytic.

It easily follows from the method of this proof that:

2.4. If we replace in 2.3 the assumption (a) by

w

(a") ___(y':lf * < 4% for
. s
then a(z) in (c) may be replaced by a(v) = lny ().

n=1,2,..., k=0,1,2,..., 1>0, 4 >0
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3. The following theorem is a consequence of 2.4:

3.1. Let ¢(xz) belong to the class C{1} in (—oo, o) and let 1, be a se-
quence of numbers such that infl, > 0. Put g@,(x) = p(A,2) and assume
n

f(@) = Da,p,(2) in an interval I. Moreover, let the function a(z) satisfy

condition (M) and let the integral (x) be divergent. If ome of the following

two conditions holds:

10 {4, ) e? for a certain p and [a,] < e~

2° there exist positive functions »(x) and o(z) such that |a,| < 1/v(4y),
21ljw(d,) < oo and a(z) = In{v(z)jo(z)},

then f(z) belongs to the g-analytic class C{m,;}, the sequence {my} being

defined in 2.1. Thus, if f™ () =0 for n = 0,1,2,... and & point myel,

then f(z) = 0 in I. ’

Proof. It follows from ¢eC{1} that we may take ¢, = A¥2F.
Assuming 1° theorem 3.1 follows from 2.4 if we put y, = 1,, I = p and
o () = a*, since

Tl AFAEAL . 1
nk;’:-(l'}’n) _ nin gk and Z < co.

Yn Z:ﬁ ! o (4y)

n=1

The proof under assumption 2° is similar.

It is clear that theorem 3.1 remains true if f(2) = }{a, @, (@) + b,y (2))
and if the assumptions of 3.1 are satisfied for ¢(z) and a, as well as for
y(®) and b,. Since the expansions of the form 2.3(b) are often applied
we shall wow consider some special cases. First let us note that if we
put ¢(x) = cosw, y(x) = sinw and A, = n, then 3.1 yields theorem 1.2,
I, of Mandelbrojt. The next application with ¢(#) = cosz and y() = sinz
follows for almost periodic functions:

3.2. Let

00

flz) = an -+ Z(ancoslnm+ by, 8in A, 2)

n=1

be an almost periodic function, infd, > 0. Moreover, let a(z) satisfy condi-
n

tton (M) and let the integral (x) be divergent. Then, if one of the assumptions
1° and 2° of 3.1 holds, then f(z) belongs to a g-analytic class.

Let us assume the sequence A, to be increasing. Then according to
3.2 it can be supposed that the slower A, increases, the weaker are the
assumptions to be made about the coefficients a,. Indeed, let us consi-
der the following examples. If we take A, = %¢, where ¢ > 0, we obtain
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Jan] < €™, b} < €79, On the other hand, for A, = Inn, it suffices to
take |a,] << 1% [by < n® with b > 1; to prove this we may choose
v(@) = &%, w(zx) =™ and a(#) = (b—a)x, where b >a > 1.

Theorem 3.2 may be applied to generalize a lemma which is of impor-
tance in some considerations of the theory of vector-valued a,nalytlc
functions and is proved in [3], p. 34.

3.3. Suppose that the function a(x) satisfies condition (M), the integral
(%) is divergent and |, < e °®). Then the system of equations

Za rk+l _0’

where 1 and v > 0 are fized numbers has only the trivial solution a, = 0
for n=1,2,...
To prove 3.3, we put @, = a,n', a(») = a(z)+Ilnw. Evidently,
oo

E=1,2,...,

a(») satisfies condition (M) and [a(z)dw/z? = co. Then the almost perio-
1

dic function f(z) = Zc‘z,,cosn'w satisfies the assumptions of 3.2. Thus,

it belongs to a g¢- analytm clags and since the given system of equations
ylelds f®(0) = 0 for £ =0,1,2,..., we obtain f(») = 0. This implies
=0forn=1,2,.
We now give an a.pp]iea,tion to Bessel geries.
3.4. Denote by J,(x) the v-th Bessel function for a fized positive integer
v and by {j,} the increasing sequence of all positive zeros of J,(x). Put f{x)
oo

= D and,(jux). Let a(w) satisfy condition (M) and let the integral () be
n=1

divergent. If we assume |a,] < ¢°%, then f(@) belongs to a g-analytic class.
This theorem follows from the fact that {j;'}el%

4. Theorem 2.3 may also be applied to polynomial orthonormal
systems in a finite interval. The result is the same as for trigonometri-
cal Fourier series. The following theorem holds:

4.1. Let g, (2) be a system of polynomials (p,(x) being a polynomml
of degree n) orthonormal with weight-function w(z) in {a, by, where w(w) =
=m > 0 in every subinterval {a', > C (a,b), m depending on o' and b'
Moreover, assume f(z) = Za,,%(w) in (a,b), where |a,| < ¢ ™, a(a)
satisfies condition (M) and the integral (x) is divergent. Then, if j(")(wo) =0
for k =0,1,2,... and for a point mye(a, b), we have f(®) =0 in (a,b).

Proof. By a suitable linear transformation, the general case may
be reduced to the case a = —1, b = 1. Let us fix an interval {a’, " C
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C(—1,1). We apply the following inequality proved by G. Freud ([2],
lemma 1, p. 222):

2{ O@)? < Adgpn®™ for n=1,2,..., k=0,1,2,...
v=0 .
We obtain [¢<’°>(m)| < Byyn*t forn =1,2,...,k=0,1,2,... Hence,

we may pub in 2.4 y, = 0, op = Bapt™ Y, w(z) =27, 1 =3, I = <a’, b'>.
We then obtain f(») = 0 in {a’, b’). The interval {(a’, b’y being an arbi-
trary subinterval of (—1,1), we have f(#) =0 in (—1,1).

5. We now proceed to theorem 1.2, TI. If ¢,(#) is a trigonometri-
cal system, the proof of 1.2, IT, by means of lemma 2.1 should not essen-
tially differ from that given by Mandelbrojt. In the ease of almost perio-
dic functions some complications occur, the system of functions cosi,w
and sinl,x generally being non-complete. However, the following theo-
rem holds:

5.1. Let us suppose that the function o(x) satisfies condition (M) and
that the integral (x) is convergent. Further, given o sequence {1} of positive
numbers, let {B,} (n = 1, 2, ...) denote the double sequence mi, (m =1,2, ...,
n=1,2,..), the arrangement of {B,} being arbitrary. Then there ewists
a non-negative, even, uniformly almost periodic function f(x)==0, expan-
ding in the Fourier series 3 A,cosf,x(3) and such that f*(0) = 0 for
k=10,1,2,... and |4, < ¢~

Indeed, let us put I, = n/d,, I, = <0, 21,> and a(®) = a(z)+1na.
If we denote by {m,} and {m,} the sequences corresponding; by 2.1,
to a(z) and a(x) with I = 0, respectively, 2.2 implies that the classes
O{m,} and C{m,} are non-g-analytic. Thus, the theorem of Carleman-
Mandelbrojt (see the remarks below 1.1) implies for each n the existence
of a non-negative, even funetion g, () == 0 in I, such that ¢ (0) = ¢® (21,)
=0 and |¢® (2)| < m, for £ =0,1,2,... and xel,. The function g, (x)
may be defined periodically on the Whole straight line by the equality
gn(0k2k1,) = g,(%) for k= 1,2,... Let us expand g,(x) in a Fourier
series

a(n)
-+ (aﬁ;’,”cosmz,,x—i— b gin ma, )

Me=]

and let a,, be an arbitrary sequence of positive numbers satlsfylng the
za,.gn ). Then |{*(a)] < Za,.\g""

(?) As we know, the coefficients 4, are defined by the formulas

inequality Za,, <o <1.Weputf(z

1 T
A = M{f(x) cos frx} =1]'im E’_I flx)oosBpudns for m=1,2,...
oo £
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< o7y, In (—oo, o) and f(x) is a uniformly almost periodic funetion.
Obviously, f®(0) =0 for k =0,1,2,... and f(x)==0, and {B,} is the
sequence of all Fourier exponents of f(x). Moreover, partial integration
yields the inequality

Ty

li8

1
[4a] < Zrmax|f”(@)] < for p=0,1,2,..
n X

Hence
o a

max (B2/m,) T (fa)

[4a] <

. 1 .
However, 2.1 with [ = 0 yields T(r) > 7em = ¢*"). Then |4,| < oe™"w

< ¢t
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Sur les solutions de classe (Z?) de I’équation
différentielle u’+g(t)u =0

par Z. OrIAL (Krakéw)

1. Envisageons ’équation différentielle
(1) w'4qtyu =0,

Nous dirons que la solution u(f) de cette équation est de classe (L2) si
Ton a

(@) f w(t)dt < +oo.
0

Désignons par Q(t) la fonetion
Q(t) = max(|g(s)], 1).
oge<t

La fonction Q(f) est done non décroissante dans Pintervalle {0, +o0)

et, par suite, & variation bornée dans tout intervalle fini. De plus @(¢) > 1
et

(3) la®l < Q)
dans tout lintervalle <0, 4oo).

THEOREME I. Pour toute solution u(t) de Véquation (1) de classe (L*)
on a

Q(

Démonstration. En multipliant 'équation (1) par =(t) on obtient

(4) f »u'z(;;) dt < oo,

d’ofi, en vertu de (3):

(8) —u"(u()/Q(t) < u(t).
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