278 8. Golab, J. Kordylewski and M. Kuczma

Thus we have proved that D is infinitely small of the fifth order. More-
over, we are able to formulate the following

TuEoREM 2. If the curve & is analytic and possesses at the point p
a positive first curvature x and a second curvature v different from zero,
and if the plane curve K has the same first curvature as k has, and if we de-
note by f and F the areas of the rectilinear pieces of surfaces, spread respeotz-
'uely on the chord ¢ and arc pg or on the the chord C and arc PQ (¢ = pg,

= pQ), and if we denote by D the difference I'—f, then we have
: 540D

(16) lim = [7].
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Differential equations for the extremal starlike functions

by J. ZAMORSKI (Wroclaw)

In his paper [1] J. A. Hummel has proved that the function f(2) =
= z+..., starlike for |2| < 1,for which the functional re{E(as,..., a,)}
(# is a regular function) has its extremal value, satisfies the equation

21’ (2)
1(2)

E(2) = Q(=)

where
—1

o= S 522 5nr]

p==2

n y—1 v—1 P 6a,, ’

Qz) = Z [l z’"’:‘ +(r—1) A0 —{—in ,uﬁuz”"’“].
pw=1

v=2 #=1
Tt is easily seen that this equation concerns also the starlike functions
in the ring 0 < |2| < 1, because, if f(2) = 2+ a,2*+... is a starlike fune-
tion, then F(2) = 1/f(z) is also a starlike one in 0 < |2| <1 and vice
versa. The coefficients of the function F(2) are expressed with the coeffi-
cients of the functions f(z) in the form of polynomials and vice versa.
Now let us study the class § of the starlike functions

1

(1) F(z) =—-z—-i—b0~|—b1z+..., 0 <o} < 1.
Using the results of another paper of mine [3] we can strengthen the
above result, at the same time simplifying the proof. Thus we have the
following

THEOREM. Let B (F(2)) = E(byy byy ..y bn) = B (15 ey T Y11+ Yu)y
by = -+ 1Yy, be a real function, differentiable with respect to each variable
such as at every of the space of variability of the coefficients of the class G

n

the function 3 [(0B [0z +(0E(0yy)®] # 0. Then the function F(2) for
k=1
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which the functional E(F) has an extremal value satisfies the following
differential equations (I) and (II):

2B’

(I) 7 R, (2) = Q.(2)

where
'n+1 n—p n+1 n—p
Z 2 Ia?’p+k—2 2 kapHc’
=1 p=1 k=-—1
n4-1 n—p n+1 41 n—n
e = D% 2 . Z i abya Z L
p=1 =1 fo=—1
0F s or
e 0y, ayk
2B’
II =
where
n+1 n—p B N—p
Ry(2) = Z bk?’p+k" ry Z [ 2 bkﬂ/p+k+ —— Z bk}’p+k]
k=—1 k=—1 P =
n4-1 1 n—p B
+ Z zp__ bk7p+k7
p=1 p k=-1
' n+l n+1-—p n—p~k
Qi(z) = — » — % Z biYirpir
2 1Viep+k ™
=& Ptk
n+1 n—p
& 2 ( 2 bk?’p—i-lc"‘ — Z bk}’p-f-k)
F=—1 K=—1
n+4+1 n+1—p n—p—k
+ Z 2 biPipins
=1 Ig p+k 1=—1
by 1
2b, by 1
(2) o= (=135, b, b,
kbr_y br—z by_s bo
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Note 1. If we assume additionally 'that E(F) equates the real
part of an analytical function of » variables and replace the function

F by the functions 1/f, then equation (I) acquires the form of Hummel’s
equation.

Note 2. In order to obtain an equation satisfied with a function
for which the n-th coefficient has the extremal value, we have to put
B =reb,, i. e. y, =1, y, =0 (k #£ n).

Proof of the theorem. In paper [3] I have proved that the
function for which the functional E(F) has its extremum has to be
of the form

F(2) = »—n (L—oge)e, m <ntl,

k=1

m
lowl =1, o # oy, Zﬁk=2s B =0

k=1

(see too [2]). Let us notice that from formula (3) it follows that the func-
tion

(4) p(2) = ~ Zakz" =1, = pod
k=0 =1

is a rational function with simple poles at the points 7, only. Now let
P(z) = Ay +...+4,, p=m

be a polynomial having zeros at the points 3, and quite free outside
them. We infer from formula (4) that

(5) ?—f;—P(z) = 8(2) = By +...+ B,.

The polynomial S(z) has m simple zeros at the points at which the function
¢(?) is equal to zero.

These points are situated on the circle |¢|] =1 and correspond to
the end points of the beams of the star on whose exterior domain the
function F(z) maps the ring 0 < |¢| < 1.

The remaining p — m zeros are common for the polynomials S(z) and
P(z).
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In the paper cited above I have proved that the figures o, and g,
defining the extremal function for the functional F(F) satisfy the follow-
ing system of algebraic equations:

n+1 nel
23:4 it M, =0,
p=1 p p=1 P ]
i i E=1,...,m,
(6) D Rdy— Yk, =0,
p=1 p=
) 0 0B
Ap = z=2_1 biypiy  ve = 0—%' —1 ayk’ b = o+ .

Now let us define the polynomial

n+1 n+1
R (2) = Z Lo _ 2 P,

f&ppa.rently R,(6%) = 0, whence from (5) and considering that (6) gives

nt1 N+1—p

2 Akap+k_ ZAkap B Z akzp-(—k =0, p<ntl,
k=0
we have
, i n+1 ntl—p n+1 N1 N4-1—
oF 1 F +1-p
D VI VR D
P=1 k=0 k=1 =1 k=0
= —:(2).

Taking into consideration the definition of the figure A, and using
the evident association (see (31

ak,—p+1+boak..p+---+albk—p—1 = *(70“1"{“1)1)15—175
we have
n+1 n+4-1 n+1—p 4
kZ: gl = — 2 ka—lbk 1y 2 g Apyy = — 2 kb ypins
=1 k=0 k=~1

which gives equation (I).
Now we define the polynomial

icm
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Of course R,(a;) = 0. Analogically to the preceding case and considering
that (6) gives

n+1 n41 —
A
Z—Eak—i—i%l-% Z“ak =0,
=1 k=1
n+41 n— p+k -

Apik
y“““p+k+1ap+ 2 ,, ar =0, p<nil,
k=l 0 p+k

we have
zF'R (@) S 1 "G’ Apik 4+ 1 nZH Ay apdy
P — 2) = JRS— o i S -_—
rC o 2P o kp—i—k 2 k k

_Zzpz ay ;f:;; = —@y(2).

Using the definition of the figure 4, and taking into account the evi-
dent equality (2) we get equation (II).
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