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On some new geometrical interpretations of the torsion
of a skew curve

by 8. GorAB, J. KorRDYLEWSKI and M. Kuozma (Krakéw)

Introduction. While the first curvature of a curve has a great num-
ber of geometrical meanings, for the second curvature (or torsion) we do
not have many geometrical interpretations. The aim of this note is to
give two new geometrical interpretations of torsion, or rather of its
modulus. These meanings are contained in two theorems below. Both
concern the case when the first as well as the second curvature at the
point considered are distinet from zero. Although for defining the tor-
sion analytically it is sufficient to suppose that the curve is of the class
Oy* (i. e., that the radius-vector s of the curve is thrice differentiable
and moreover that vectors #' and #'* are linearly independent), both theo-
rems below require assumptions of stronger regularity, namely in theo-
rem 1 we shall suppose that the curve is of the class C; and in theorem 2
we ghall even need the analyticity of the curve k. The idea of the geometri-
cal meaning contained in theorem 2 has arisen from a tendency to gen-
eralize the geometrical meaning of the first curvature, which consists
of a comparison of the length of an are with that of a chord -and
which we find in the thesis of P. Finsler (and perhaps it occurs even
earlier), and which has been used so beautifully by J. Haantjes for
curves in general metric spaces.

A detailed proof of theorem 2 requires long and cumbersome calcu-
lations. We restrict ourselves merely to sketching particular steps in the
proof, quoting no detailed calculations and giving only results.

§ 1. Suppose that we are given a curve % of the class Of**. This
means that the radius-vector » of this curve, is five times differentiable
with respect to the parameter and, moreover, the vectors »', " and '
are linearly independent. Let us fix a point p on the curve and introduce
the arc s, measured from the point p. Taking the origin of the eoordinate

system at the point p, we can write the expangion
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where ¢(s) is an infinitely small vector. Denoting by (¢, n, b) Frenet’s
trihedron at the point p and making use of Frenet’s formulae, we can

write
dar dazr asr _ .
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In the above relations », v denote the first and second curvature of
the curve % at the point p. According to our suppositions x > 0, v 7 0.
Now let us denote by K the plane curve whose natural equabion is » = #(s)
where #(s) is the first eurvature of the curve k. The position of the curve
K will be uniquely determined in space if at the point corresponding
to the point p we suppose that the Frenet’s trihedrons for both % and K
coincide, and this we accordingly do. If we denote by B the radius-vector
of the curve K, we can write
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where #(s) is again a vector-function infinitely small, but for (d*R/ds",
we obtain the simpler formulae
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Let us examine the order of smallness of
w(8) = |r}—|B|

where |r| is the length of the chord E)?z for the curve & and |R| that of;@
for the curve K such that
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‘We have

o) =Ver —VER=_"T"BE

: Vrr +VR-R
where a dot denotes a scalar product. We caleulate the sealar product
r-r making use of the relations (1) and developing it with respect

to powers of the variable s. We obtain (taking into account that ¢-f =
=nn=>0b=1and t-n=1b=mnb=0)
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+ (3—1')—5- (42" w2 7%) + e"‘(s)}

where &* is a scalar function infinitely small. After reduction we obtain

" t 4

PR L +86{‘i—f~2 A, *}
T 12 40 75 ' 360 ' 360

Similarly

M2 %%r mc" ”12 %4
RR=gt—s"— g5 sﬁ{— —— -*},
12 T 20 75 360 T°

Hence we have

w(8) =

8 (212/360 4" —5") {x%ﬂ }
e Tme T

720
where #(s) is infinitely small.
It follows that w(s) is infinitely small of the fifth order with respect
to 8. Thus we have the following
THEOREM 1. If the curve k is of the class O3 and K is the plane
curve with curvature coinciding with that of k, and if p and P are correspon-
ding (fiwed) points on both curves, and q and Q are variable poinis such that

pg = PQ = 8, and if ¢ and O denote respectively the chords ¢ = pg, 0 = PQ,
and @ the difference d = ¢— 0O, then

20
(3) Tim = 785 — il > 0.

850 %

§ 2. In order to obtain a second gemetrical meaning of the torsion
7, we again consider the curves % and K; on the basis of the hypothesis
of the analycity of the curves and of the preceding notation, we form
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two pieces of surfaces. Namely, denoting by ? thLeg current point of the
arc pg, we denote by ' its projection on t'h(l c,ho?d pg. The set 'O'f gegm@tg
#’, with ¢ running through the whole arc pq ,will form. a rectilinear piece
of surface whose area will be denoted by f. In a similar manner we form
the surface for the curve K and we denote its area by F; the surface I
will evidently be a part of the plane. Since the chords ¢ and ( are infinitely
small of the first order with respect to s, and since the ouryatm:e * i.s
supposed to be positive, one can foresee that the areas f and ¥ aro 1¥1f1-
nitely small of the third order with respect to s. It will be shown as before
that the difference D = F—f will be infinitely small of the fifth order
and with the aid of this we shall obtain in ‘r.T‘m limit just the modulus of
the torsion.z.

The current parameter (are) will now be denoted by o. Let number s
denote for a time a fixed positive value corresponding to the points ¢
and @ on the curves k and K respectively. Affer calculating f and F we
ghall lot s tend to zero. Vectors »(s) and R(s) will be denoted shortly
by @ and A respectively.

The equations of the surfaces f and F, as is shown by easy calewla-
tion, are

@ o0 =12 0ol 0 <o a0 <o)
and ® .
(5) Blo, o) = RXLAA%—Q{R(G)— Bod dososs0esy

respectively. The arvea f is expressed — as we know — by the formula

8 1
f:fdafl/gdg
0 0
where
. or\? or or ar\*
g =fgufe—0 IJu= Mk iz = .(—7;.6—9—’ Gaz = 5’5 .

The differentiation with respect to parameter o will be denoted in the
sequel by r'. We ghall write shortly » instead of r(c). Direct calculations

give , ,
(a-r")? , (ar')?
= +e*ql - e £
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Hence we obtain
g= A(U, S)Qz'}‘B(Uy -S‘)

where we put

A = @ (@ =P (a2 (@) (ar) ()
(6)

1 ’
B = ?(a-r)a{azrh%a-r)?}.
In the integral

8 1
] 1] '

the integration with respect to g may be Trealised and we obtain after
simple transformations

1f ~
f=-fVB VITT +— log(1+T)+ —— log [1-+
24 T T

2V Vi I)}dg

14T
where we put

4 (s,
T =1T(s,s) =?§%Z)l.

To obtain an analogous (much simpler) formula for F it is sufficient to
put in the above formula A = 0 and we obtain

F=_fl/§o_da
0

(8)

where
1 ,
B, =3 (4B 4B~ (4B} (4 = R(»).
In what follows we denote for short

w i i{V1+T + X e+ L 10 (1+I/_T___)}
2 zVTg()kTg'l—i—T.

T
‘We agsert that with fixed s > 0 we have
(9) HmT = 0.
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Tn fact, let us denote by oy, a(0), f(0), y(0) respectively the angley
a = (@, 7" (0)), Aa,r), = a1, y=Xlr)

We can write

o ==

A = r2(1—cos?a— cO8%f— cos?y - 2008 acos fCO8Y),
B = r2gin®acos?f.

Under our assumption concerning the curve k, we have 0 <y < m/2
(at least for sufficiently small s); moreover
lima = ay,
Gl

Hence we have

Hmp = g, limy = 0.
a—>0 a~»0

.4 1— cos2ay— cos2ay—1-+2c08%ay
him — = - 2 3 =
sin® oy co8™ ap

and the relation (9) is proved.
Since 7' is infinitely small with respect to o, the function ¥ expanded
in a series gives

¥ = 1+17 4 terms of higher order.

Let us now write

(10) D=F—j.
We have
g "l/— \ B,—BY
11 D=|VBydo— | VB¥do = | ————
o f ’ f a{ VB, +VBY
_f B,—~B—{BT+... .
J VB +VB,+WBT+...

The next question is to expand the functions 4, B, B, in series. For this
purpose we assume that the coordinate system coincides with Fronet’s
trihedron common for both curves % and K at the point p, and making
use of Frenet’s formulae (and of their derivatives obtained by further
differentiation) we write the expansion of the vector o with respeet to
s, and the expansions of the vectors r(o) and »' (o) with respect to o, and
after very cumbersome calculations of the scalar products a-a, r-r, a7
a-r', v-7' we obtain the expansion of the quantity A. Wo finally got

ad = 3'Wy(o,s)

D10

icm®

On some mew geometrical interpretations of the torsion of a skew curve 275

where W, are homogeneous polynomials of degree ¢ with respect to the
variables o, s.
Similarly we obtain the relation

o0

@B = Y Vi(o,s)

i=8

(12)

where V; are likewise homogeneous polynomials of degree ¢ with respect
to o and s.
Finally we obtain
4
(13) A'B, = D' Ui(o, 5)
1=8
where U; are likewise homogeneous polynomials of the variables o, s.
In order to obtain the expansion of the function under the sign of
integration in formula (11) we multiply the numerator and the denomi-
nator by a*4* (because in the expressions for B and B,, a* and A* respec-
tively appear in the denominator). Then we obtain

8

a4 _fa‘A‘Bo—a“A4B—‘§a‘A4BT+... i
a*A*(VB +VB, +VBT+...)
Since
a* = Y w8t (uy =1, u; =0),
i=4
44 = Yos (v, =1,0 =0)
=4

we have according to (12), (13)

a*A*B,—a*A'B = 2 u; 8* Z Uy(o, 8)— Zvisiz V;(a, )
=8 i=s

i=4 J=8
== 34(U5“Vn)‘!‘34( U9'V9)+86(M6U8—'UGV8)+8%( Up—Vi)+---

But, as can be proved on account of the fact that the curves k and K
have an identical first curvature,

U,=V, and Uy=7V,, u;="1,

- so that finally

@ A*B,— a* A*B = M (U — Vi) +...
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Next we have
1o, 1 4a22p4 1ois .
—_— = —— B— = ——A*'d*a’ A
3 a*A*BT 3 A'a*a B 3

——%(s“—l—...)(s”—l—..

1
D(Wyt.) = — T{sﬁwlo(“; 8)+...
It follows that the numerator L of the function in the integral in formula
(14) has the lowest term of the fourteenth degree
o0
D Li(a, 8)

G l4

= Uy —TVio)+... =

it Up—TVyo 0.

Now let us consider the denominator M of the function under the
sign of integral in (14). Expanding the function T in the infinite series
(of homogeneous polynomials) we get

T = 2 Ty(o, $).
fua0
Then from the identity
atatd = Ta'B
we can write
o0 00 0
(82+4...) W¢=2Tiz Vi,
=10 i=0 j=8

whence by comparing the two sides we obtain

2
Ty =Ty =Ty =Ty =0, T, =02
14
Further, expanding Va*B in the series
- o
Va*B = Y Ki(o, )
Lom0
and comparing
el
Vi
&7 = \%m)
we get
K=K =K, =K =0, K,=VV,.
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In an analogous way we have

VPBT,:S:IZ(U, 3)
i=i
where 1‘){4 = K,. Thus we have
M= (') () (B )+ (5 ) (2 ) ()
() ) (Kt Ty ) e = 288 K+ = S:Mi(o'y 8).

) i=10
At lagt we expand the whole expression under the sign of integral in (14)

_L o0
ST R = i;;Ri(Ua 5).
From the comparison of the series
Sr= Y, ZRa
i=14 =10
we obtain
Ry=R, =R, =R; =0,

Let us remember that we have

R4 = L14/M10~

M= 2K, = 25°V7V,,

Now an easy calculation gives
2

Vs =-Z— st (s —a)t.

Ly = (U~ Vy).

A slightly longer calculation (which we omit) gives

o*s* (s — o) (8*— 208+ 20%s — &°).
Hence we finally obtain

o(8*—208*4-20%s — %),

whence
8 . 8
D =f (Ry-...)do :i"—f [08%— 20282+ 2098 — oA +-...] do
(15) 2y

= S+,

»T? 5(1 2 2 1)+ _owt?

I AV =540
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Thus we have proved that D is infinitely small of the fifth order. More-
over, we are able to formulate the following
TuEorEM 2. If the curve &k is analytic and possesses at the point p
a positive first cmwtwre % and a second curvature v different from zero,
and if the plane curve K has the same first curvature as k has, and if we de-
note by | and F the areas of the rectilinear pieces of surfaces, spread respecti-
'uely on the chord ¢ and arc pq or on the the chord C and arc 20 (¢ = pq,
= pQ), and if we denote by D the difference F— f, then we have
.- /340D
(16) lim v

850 #

= |7].

Regu par la Rédacvion le 29. 11. 1957
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Differential equations for the extremal starlike functions

by J. ZAMmorskr (Wroctaw)

In his paper [1] J. A. Hummel has proved that the funetion f(z) =

= z-+..., starlike for |z| < 1,for which the functional re{E(a,,...,a,)}
(B is a regular function) has its extremal value, satisfies the equation
zf'(s)
——B(e) =Q(»)
f(2)

where

Q) = Z[A Z L o)

»=2

Tt is easily seen that this equation concerns also the starlike functions
in the Ting 0 < |2| < 1, because, if f(z) = 2+ a,2*+... is a starlike func-
tion, then F(z) = 1/f(2) is also a sbarlike one in 0 < |2| < 1 and vice
versa. The coefficients of the function F(z) are expressed with the coeffi-
cients of the functions f(2) in the form of polynomials and vice versa.

Now let us study the class § of the starlike functions

1

(1) F(z):—z—+bo+b1z+..., 0 < 2] < 1.
Using the results of another paper of mine [3] we can strengthen the
above result, at the same time simplifying the proof. Thus we have the
following

TueoreM. Let B (F(2)) = BE(by,y byy ...y ba) = B(@1y -y 3 Y15+ ) Yu)s
by, = @+ Yy, be a real function, differentiable with respect to each variable
such as at every of the space of variability of the coefficients of the class §

n

the function 3 [(0B[05)*+-(0B[0y;)*] # 0. Then the fumction F(2) for
o]
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