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Analysis of a frictionless contact problem

for elastic bodies

by S. Drabla (Sétif), M. Sofonea (Perpignan) and
B. Teniou (Constantine)

Abstract. This paper deals with a nonlinear problem modelling the contact between
an elastic body and a rigid foundation. The elastic constitutive law is assumed to be non-
linear and the contact is modelled by the well-known Signorini conditions. Two weak for-
mulations of the model are presented and existence and uniqueness results are established
using classical arguments of elliptic variational inequalities. Some equivalence results are
presented and a strong convergence result involving a penalized problem is also proved.

1. Introduction. In this paper we consider the following physical set-
ting. An elastic body is being acted upon by given forces and surface trac-
tions and it is in contact with a rigid foundation. The contact is frictionless
and we assume that a loss of contact may occur. By assumption the forces
change slowly in time so that the accelerations in the system are negligible.
Thus, we neglect the inertial terms in the equations of motion and we obtain
a static approximation for the process.

The elastic body occupies the domain Ω ⊂ R
N (N = 1, 2, 3) and we

denote its surface by Γ . We assume that Γ is partitioned into three disjoint
measurable parts Γ1, Γ2 and Γ3 such that measΓ1 > 0. We assume that the
body is clamped on Γ1 and thus the displacement field vanishes there and
that surface tractions ϕ2 act on Γ2. The solid is in unilateral frictionless
contact with a rigid foundation on Γ3, which means that the body and the
foundation have a compliant shape on Γ3. Assuming that a volume force
of density ϕ1 is applied on Ω, the mechanical problem may be formulated
classically as follows:

Problem P . Find a displacement field u = (ui) : Ω → R
N and a stress

field σ = (σij) : Ω → SN such that
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σ = F (ε(u)) in Ω,(1.1)

Div σ + ϕ1 = 0 in Ω,(1.2)

u = 0 on Γ1,(1.3)

σν = ϕ2 on Γ2,(1.4)

uν ≤ 0, σν ≤ 0, στi = 0, σνuν = 0 on Γ3.(1.5)

Here and below i, j = 1, . . . , N and summation over repeated indices
is implied. Moreover, SN denotes the set of second order symmetric ten-
sors on R

N . The equation (1.1) is the elastic constitutitve law in which
ε(u) is the small strain tensor and F is a given nonlinear function while
(1.2) is the equilibrium equation, since the inertial term has been omit-
ted. The boundary conditions (1.3) and (1.4) are the displacement-tractions
boundary conditions in which ν = (νi) represents the outward unit nor-
mal vector on Γ while (1.5) are the classical Signorini contact conditions
where

uν = uiνi, σν = σijνjνi, στi = σijνj − σννi.

Similar frictionless contact problems were already studied for elastic
or viscoelastic bodies (see for instance [2], [5]–[9], [12] and the references
therein), as well as for elasto-visco-plastic bodies (see for instance [3], [14]
and [15]).

The aim of this paper is to extend some known existence and uniqueness
results to the case of the nonlinear constitutive law (1.1) and to point out
some new results concerning the mechanical problem (1.1)–(1.5). The paper
is organized as follows. In Section 2 some notation and functional prelimi-
naries are presented while in Section 3 two variational formulations P1 and
P2 are established. Problem P1 is obtained from (1.1)–(1.5) using a Green
type formula and the constitutive law. Since in this way the stress field is
eliminated, the unknown of this problem is the displacement field u. Prob-
lem P2 is also obtained from (1.1)–(1.5) using a similar method. Since in this
case the displacement field is eliminated, problem P2 involves as unknown
only the stress field σ.

In Section 4 we give existence and uniqueness results for problems P1

and P2, using classical arguments of elliptic variational inequalities. We also
study the link between the solutions of the variational problems P1 and P2

and we show that if u denotes the solution of P1 and σ is the solution of
P2 then σ and u are related by the elastic constitutive law (1.1). The last
section deals with a penalized problem governed by a parameter h > 0.
For this problem we prove existence and uniqueness results and we give a
convergence result as h→ 0, in order to make the link with the mechanical
problem (1.1)–(1.5).
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2. Notation and preliminaries. We start this section by presenting
the notation we shall use and some preliminary material. For further details
we refer the reader to [4], [10] or [13]. We denote by “ · ” the inner product
in the spaces R

N and SN and by | · | the Euclidean norm on these spaces.
We also use the following notation:

H = {u = (ui) | ui ∈ L2(Ω)},

H = {σ = (σij) | σij = σji ∈ L2(Ω)},

H1 = {u = (ui) | ui ∈ H1(Ω)},

H1 = {σ ∈ H | σij,j ∈ H}.

H, H, H1 and H1 are real Hilbert spaces endowed with the inner products
given by

〈u, v〉H =
\
Ω

uivi dx, 〈σ, τ〉H =
\
Ω

σijτij dx,

〈u, v〉H1
= 〈u, v〉H + 〈ε(u), ε(v)〉H ,

〈σ, τ〉H1
= 〈σ, τ〉H + 〈Div σ,Div τ〉H ,

where ε : H1 → H and Div : H1 → H are the deformation and divergence

operators, respectively, defined by

ε(v) = (εij(v)), εij(v) = 1
2
(vi,j + vj,i), Div σ = (σij,j).

The associated norms on H, H, H1 and H1 are denoted by | · |H , | · |H, | · |H1

and | · |H1
, respectively.

Let HΓ = H1/2(Γ )N and let γ : H1 → HΓ be the trace map. For every
v ∈ H1 we use, when no confusion is likely, the notation v for the trace γv of
v on Γ and we denote by vν and vτ the normal and tangential components
of v on Γ given by

(2.1) vν = v · ν, vτ = v − vνν.

Let V denote the closed subspace of H1 defined by

(2.2) V = {v ∈ H1 | v = 0 on Γ1}.

Since measΓ1 > 0, Korn’s inequality holds:

(2.3) |ε(v)|H ≥ C|v|H1
∀v ∈ V ;

see, e.g., [8], p. 79. Here and below, C denotes a strictly positive generic
constant which may depend on Ω, Γ1, Γ2, Γ3, and F , but does not depend
on the input data ϕ1, ϕ2 and whose value may vary from place to place.

On V we consider the inner product given by

(2.4) 〈u, v〉V = 〈ε(u), ε(v)〉H .
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Using (2.3) we see that | · |H1
and | · |V are equivalent norms on V . Therefore

(V, | · |V ) is a real Hilbert space.

Let H ′
Γ be the dual ofHΓ and let 〈·, ·〉 denote the duality pairing between

H ′
Γ and HΓ . For every σ ∈ H1 let σν be the element of H ′

Γ given by

(2.5) 〈σν, γv〉 = 〈σ, ε(v)〉H + 〈Div σ, v〉H ∀v ∈ H1.

We recall that if σ is a regular function (say C1), then

(2.6) 〈σν, γv〉 =
\
Γ

σν · v da ∀v ∈ H1

where da is the surface measure element.

In the study of the mechanical problem (1.1)–(1.5) we consider the fol-
lowing assumptions:

(2.7)





F : Ω × SN → SN and

(a) there exists M > 0 such that

|F (x, ε1) − F (x, ε2)| ≤M |ε1 − ε2|

for all ε1, ε2 ∈ SN , a.e. in Ω;
(b) there exists m > 0 such that

(F (x, ε1)) − F (x, ε2)) · (ε1 − ε2) ≥ m|ε1 − ε2|
2

for all ε1, ε2 ∈ SN , a.e. in Ω;
(c) x 7→ F (x, ε) is Lebesgue measurable on Ω for all ε ∈ SN ;
(d) x 7→ F (x, 0) ∈ H,

(2.8) ϕ1 ∈ H,

(2.9) ϕ2 ∈ L2(Γ2)
N .

Remark 2.1. Using (2.7) we find that for all τ ∈ H the function x 7→
F (x, τ(x)) belongs to H and hence we may consider F as an operator defined
on H with range in H. Moreover, F : H → H is a strongly monotone
Lipschitz continuous operator and therefore F is invertible and its inverse
F−1 : H → H is also a strongly monotone Lipschitz continuous operator.

Using (2.8), (2.9) and the Riesz representation theorem we can consider
the element f ∈ V given by

(2.10) 〈f, v〉V = 〈ϕ1, v〉H + 〈ϕ2, γv〉L2(Γ2)N ∀v ∈ V.

Finally, we denote in the sequel by U the set of geometrically admissible

displacement fields defined by

(2.11) U = {v ∈ V | vν ≤ 0 on Γ3}

and by Σ the set of statically admissible stress fields given by

(2.12) Σ = {τ ∈ H | 〈τ, ε(v)〉H ≥ 〈f, v〉V ∀v ∈ U}.
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3.Variational formulations. In this section we deduce two variational
formulations for the mechanical problem (1.1)–(1.5). We suppose in the
sequel that (2.7)–(2.9) hold. We have the following result:

Lemma 3.1. If {u, σ} are sufficiently regular functions satisfying

(1.1)–(1.5), then

(3.1) u ∈ U, σ ∈ Σ,

(3.2) 〈σ, ε(v) − ε(u)〉H ≥ 〈f, v − u〉V ∀v ∈ U,

(3.3) 〈τ − σ, ε(u)〉H ≥ 0 ∀τ ∈ Σ.

P r o o f. The regularity u ∈ U follows from (1.3), (1.5), (2.2) and (2.11).
Let v ∈ U . Using (2.5), (2.6), (1.2)–(1.4) we have

(3.4) 〈σ, ε(v)〉H = 〈ϕ1, v〉H + 〈ϕ2, γv〉L2(Γ2)N +
\

Γ3

σν · v da

and using (1.5), (2.11) gives

(3.5)
\

Γ3

σν · v da ≥ 0.

So, by (3.4), (3.5) and (2.10) we deduce 〈σ, ε(v)〉H ≥ 〈f, v〉V , i.e. σ ∈ Σ.

Let us now remark that from (1.5) we have\
Γ3

σν · u da = 0

and taking v = u in (3.4) and using again (2.10) we deduce

(3.6) 〈σ, ε(u)〉H = 〈f, u〉V .

The inequalities (3.2) and (3.3) are now a consequence of (2.12) and (3.6).

Lemma 3.1, (1.1) and Remark 2.1 allow us to consider the following two
variational problems:

Problem P1. Find a displacement field u : Ω → R
N such that

(3.7) u ∈ U, 〈F (ε(u)), ε(v) − ε(u)〉H ≥ 〈f, v − u〉V ∀v ∈ U.

Problem P2. Find a stress field σ : Ω → SN such that

(3.8) σ ∈ Σ, 〈F−1(σ), τ − σ〉H ≥ 0 ∀τ ∈ Σ.

Remark 3.2. Problems P1 and P2 are formally equivalent to problem P .
Indeed, if u represents a regular solution of the variational problem P1 and
σ is defined by σ = F (ε(u)), then using the arguments of [4] it follows that
{u, σ} is a solution of the mechanical problem P . Similarly, if σ represents
a regular solution of P2 and u ∈ V is given by σ = F (ε(u)) then, using the
same arguments, it follows that {u, σ} is a solution of P . For this reason
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we may consider problems P1 and P2 as variational formulations of the
mechanical problem P .

4. Existence and uniqueness results. In this section we present ex-
istence and uniqueness results for the variational problems P1 and P2 and
we study the link between the solutions of these problems.

Theorem 4.1. Let (2.7)–(2.9) hold. Then there exists a unique solution

u of problem P1 having the regularity u ∈ V .

P r o o f. Using Riesz’s representation theorem we may define the opera-
tor A : V → V by

(4.1) 〈Aw, v〉V = 〈F (ε(w)), ε(v)〉H ∀w, v ∈ V.

From (2.7)(a) it results that A is a Lipschitz continuous operator and using
(2.7)(b) and Korn’s inequality (2.3) we find that A is a strongly monotone
operator. Moreover, by (2.11), U is a closed convex nonempty subset of
V . Theorem 4.1 now results from (4.1) and standard arguments of elliptic
variational inequalities (see e.g. [1] or [11]).

Theorem 4.2. Let (2.7)–(2.9) hold. Then there exists a unique solution

σ of problem P2 having the regularity σ ∈ H1.

P r o o f. By (2.12), Σ is a closed convex subset of H and from (2.4)
it follows that ε(f) ∈ Σ, i.e. Σ is nonempty. Moreover, by Remark 2.1,
F−1 : H → H is a strongly monotone Lipschitz continuous operator. Using
again classical arguments of elliptic variational inequalities we obtain the
existence and uniqueness of a solution σ ∈ Σ of (3.8). Moreover, upon
taking v = ±ϕ with ϕ ∈ D(Ω)N , from (2.12) it follows that

〈σ, ε(ϕ)〉D′(Ω)N×D(Ω)N = 〈f, ϕ〉H

and using (2.10) we obtain

Div σ + ϕ1 = 0 a.e. in Ω.

Using now (2.8), we deduce σ ∈ H1, which proves Theorem 4.2.

In the sequel we study the link between the solutions u and σ of the
variational problems P1 and P2. We have the following result:

Theorem 4.3. Let (2.7)–(2.9) hold and let u ∈ V , σ ∈ H1. Consider

the following properties:

(i) u is the solution of problem P1 given in Theorem 4.1;
(ii) σ is the solution of problem P2 given in Theorem 4.2;
(iii) σ and u are connected by the elastic constitutive law (1.1).

Then, if two of the above properties hold , so does the remaining one.
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P r o o f. (i) + (iii) ⇒ (ii). Suppose that (i) and (iii) hold. Using Re-
mark 2.1, (1.1) and (3.7) we have σ ∈ H and

(4.2) 〈σ, ε(v) − ε(u)〉H ≥ 〈f, v − u〉V ∀v ∈ U.

Taking now v = 2u and v = 0 in (4.2) gives

(4.3) 〈σ, ε(u)〉H = 〈f, u〉V .

So, from (4.2), (4.3) we obtain 〈σ, ε(v)〉H ≥ 〈f, v〉V for all v ∈ U , which
shows that

(4.4) σ ∈ Σ.

Using the same arguments as in the proof of Theorem 4.2, from (4.4) we
deduce σ ∈ H1. Moreover, for all τ ∈ Σ, using (1.1), (2.12) and (4.3) we
have

(4.5) 〈F−1(σ), τ − σ〉H = 〈τ − σ, ε(u)〉H ≥ 0.

Finally, from (4.4) and (4.5) we conclude that σ is a solution of problem P2.

(i) + (ii) ⇒ (iii). Suppose that (i) and (ii) hold and define

(4.6) σ̃ = F (ε(u)) ∈ H.

By the previous step, σ̃ is a solution of problem P2. The uniqueness part of
Theorem 4.2 shows that

(4.7) σ = σ̃.

So, from (4.7) and (4.6) we obtain (iii).

(ii) + (iii) ⇒ (i). Suppose that (ii) and (iii) hold and set

(4.8) Σ0 = {τ ∈ H | 〈τ, ε(v)〉H ≥ 0 ∀v ∈ U},

(4.9) σ̃ = ε(f),

(4.10) σ0 = σ − σ̃.

Using (4.8)–(4.10), (2.12) and (2.4) it is easy to see that

(4.11) σ ∈ Σ ⇔ σ0 ∈ Σ0.

So, using (3.8), (4.11) and (1.1) we have

(4.12) 〈τ − σ0, ε(u)〉H ≥ 0 ∀τ ∈ Σ0.

We now prove that u ∈ U . Suppose that u 6∈ U and let Pu denote the
projection of u on the closed convex set U ⊂ V . We have

〈Pu− u, v〉V ≥ 〈Pu− u, Pu〉V > 〈Pu− u, u〉V ∀v ∈ U.

So, there exists α ∈ R such that

(4.13) 〈Pu− u, v〉V > α > 〈Pu− u, u〉V ∀v ∈ U.
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Let

(4.14) τ̃ = ε(Pu− u) ∈ H.

Using (2.4), (4.13) and (4.14) we have

(4.15) 〈τ̃ , ε(v)〉H > α > 〈τ̃ , ε(u)〉H ∀v ∈ U.

Taking v = 0 in (4.15) we obtain

(4.16) α < 0.

Now suppose that there exists ṽ ∈ U such that

(4.17) 〈τ̃ , ε(ṽ)〉H < 0.

Using (4.15) for λṽ ∈ U with λ ≥ 0 we have

(4.18) λ〈τ̃ , ε(ṽ)〉H > α ∀λ ≥ 0.

So, passing to the limit as λ → +∞, in (4.18) and using (4.17) we deduce
α ≤ −∞, which contradicts α ∈ R. So, we proved that

〈τ̃ , ε(v)〉H ≥ 0 ∀v ∈ U

and using (4.8) we have τ̃ ∈ Σ0. Using now (4.12) we deduce

(4.19) 〈τ̃ , ε(u)〉H ≥ 〈σ0, ε(u)〉H.

So, by (4.19), (4.15) and (4.16) we obtain

(4.20) 〈σ0, ε(u)〉H < 0.

Moreover, taking τ = 2σ0 ∈ Σ0 in (4.12) gives

(4.21) 〈σ0, ε(u)〉H ≥ 0.

As (4.20) and (4.21) contradict each other, it results that u ∈ U .
Using now (4.9) and (2.4) we have σ̃ ∈ Σ. So, taking τ = σ̃ in (3.8) and

using again (2.4) we obtain

(4.22) 〈f, u〉V ≥ 〈σ, ε(u)〉H.

Moreover, since σ ∈ Σ and u ∈ U , by (2.12) we have

(4.23) 〈σ, ε(u)〉H ≥ 〈f, u〉V .

So, by (4.22) and (4.23) we deduce

(4.24) 〈σ, ε(u)〉H = 〈f, u〉V .

From (2.12) and (4.24) it now follows that

(4.25) 〈σ, ε(v) − ε(u)〉H ≥ 〈f, v − u〉V ∀v ∈ V.

Finally, using (1.1) and (4.25) we conclude that u is a solution of problem P1.

Remark 4.4. The mechanical interpretation of the result obtained in
Theorem 4.3 is the following:
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1) if the displacement field u is the solution of the variational problem P1

then the stress field σ associated with u by the elastic constitutive law
σ = F (ε(u)) is the solution of the variational problem P2;

2) if the stress field σ is the solution of the variational problem P2 then
the displacement field u ∈ V associated with σ by the elastic constitutive
law σ = F (ε(u)) is the solution of the variational problem P1;

3) if the displacement field u is the solution of the problem P1 and the
stress field σ is the solution of the problem P2 then u and σ are connected
by the elastic constitutive law σ = F (ε(u)).

For this reason we shall consider in the sequel the couple {u, σ} given
by Theorems 4.1 and 4.2 as a weak solution for the mechanical problem
(1.1)–(1.5).

5.A strong convergence result. In this section we introduce a penal-
ized problem for the contact problem (1.1)–(1.5) for which we give again two
variational formulations and two existence and uniqueness results.Moreover,
denoting by {uh, σh} the weak solution of this penalized problem depending
on the parameter h > 0, we obtain the strong convergence of {uh, σh} to
the weak solution {u, σ} of the original problem P as h→ 0.

More precisely, let h > 0. We consider the following boundary value
problem:

Problem Ph. Find a displacement field uh : Ω → R
N and a stress field

σh : Ω → SN such that

σh = F (ε(uh)) in Ω,(5.1)

Div σh + ϕ1 = 0 in Ω,(5.2)

uh = 0 on Γ1,(5.3)

σhν = ϕ2 on Γ2,(5.4)
{ uhν ≤ 0 ⇒ σhν = 0,
uhν = 0 ⇒ −1/h < σhν < 0, σhτi = 0 on Γ3.
uhν > 0 ⇒ σhν = −1/h,

(5.5)

Let us remark that problem Ph is similar to problem P except that the
Signorini frictionless contact conditions (1.5) are replaced by the contact
conditions (5.5) which represent a penalization of (1.5). Indeed, formally,
(5.5) becomes (1.5) as h → 0, which is the main ingredient of the penal-
ization. From the mechanical point of view, (5.5) represents a unilateral
frictionless contact condition with a deformable foundation. The penetra-
tion of the elastic body and the foundation is possible and it occurs when
the normal stress reaches the yield 1/h where h may be interpreted as the
deformability coefficient of the foundation.
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In the study of the penalized problem (5.1)–(5.5) we suppose that
(2.7)–(2.9) hold and consider the functions ψ : R → R and j : V → R

given by

(5.6) ψ(x) =

{
0 if x ≤ 0,
x if x > 0,

(5.7) j(v) =
\

Γ3

ψ(vν) da ∀v ∈ V.

Let h > 0 and let

(5.8) Σh =

{
τ ∈ H

∣∣∣∣ 〈τ, ε(v)〉H +
1

h
j(v) ≥ 〈f, v〉V ∀v ∈ V

}

where f is defined by (2.10).

Using the same arguments as in the proof of Lemma 3.1 we can give the
following two variational formulations for the mechanical problem Ph:

Problem Ph
1 . Find a displacement field uh : Ω → R

N such that

(5.9)





uh ∈ V,

〈F (ε(uh)), ε(v) − ε(uh)〉H

+
1

h
j(v) −

1

h
j(uh) ≥ 〈f, v − uh〉V ∀v ∈ V.

Problem Ph
2 . Find a stress field σh : Ω → SN such that

(5.10) σh ∈ Σh, 〈F−1(σh), τ − σh〉H ≥ 0 ∀τ ∈ Σh.

Moreover, using arguments similar to those of Section 4 we have the
following existence and uniqueness results:

Theorem 5.1. Let (2.7)–(2.9) hold. Then there exists a unique solution

uh of problem Ph
1 having the regularity uh ∈ V .

Theorem 5.2. Let (2.7)–(2.9) hold. Then there exists a unique solution

σh of problem Ph
2 having the regularity σh ∈ H1.

Remark 5.3. Using the subdifferentiability of the functional j on V , an
equivalence result similar to Theorem 4.3 may be proved in order to point
out the link between the solutions uh and σh obtained in Theorems 5.1
and 5.2. For this reason we shall consider in the sequel the couple {uh, σh}
as a weak solution for the mechanical problem (5.1)–(5.5).

The weak solution of (5.1)–(5.5) depends on the parameter h > 0. The
behaviour of this solution as h→ 0 is given by the following theorem.

Theorem 5.4. Let (2.7)–(2.9) hold. For all h > 0 let uh denote the

solution of the variational problem Ph
1 and let σh be the solution of the
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variational problem Ph
2 . Then

uh → u in V,(5.11)

σh → σ in H1,(5.12)

as h → 0, where u is the solution of problem P1 and σ is the solution of

problem P2.

P r o o f. Taking v = 0 in (5.9) we obtain

(5.13) 〈F (ε(uh)), ε(uh)〉H +
1

h
j(uh) ≤ 〈f, uh〉V ∀h > 0

and using (2.7) and (2.3), after some algebra we deduce that

(5.14) (uh) is a bounded sequence in V .

Therefore, there exists ũ ∈ V such that, passing to a subsequence again
denoted by (uh), we have

(5.15) uh → ũ weakly in V.

Using now (5.13), (5.14) and (2.7) we obtain

(5.16) j(uh) ≤ Ch ∀h > 0

where C > 0 does not depend on h. So, by (5.15) and (5.16) it follows that

j(ũ) ≤ lim inf
h

j(uh) = 0.

Having in mind (5.7), (5.6) we obtain ũν ≤ 0 a.e. on Γ3 and by (2.11) it
follows that

(5.17) ũ ∈ U.

Moreover, taking v = ũ in (5.9) and using (5.17) we obtain

〈F (ε(uh)), ε(uh) − ε(ũ)〉H ≤ 〈f, uh − ũ〉V ∀h > 0

and (5.15) gives

(5.18) lim sup
h

〈F (ε(uh)), ε(uh) − ε(ũ)〉H ≤ 0.

Using now (2.7)(b) we deduce

〈F (ε(uh)), ε(uh) − ε(ũ)〉H ≥ 〈F (ε(ũ)), ε(uh) − ε(ũ)〉H ∀h > 0

and by (5.15),

(5.19) lim inf
h

〈F (ε(uh)), ε(uh) − ε(ũ)〉H ≥ 0.

Therefore, from (5.18) and (5.19) we obtain

(5.20) lim
h
〈F (ε(uh)), ε(uh) − ε(ũ)〉H = 0.
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Let now v∈V and let θ ∈ (0, 1). We denote by w the element of V given
by

(5.21) w = (1 − θ)ũ+ θv.

Using (2.7.)(b) and (5.21) shows that

〈F (ε(uh)) − F (ε(w)), ε(uh) − ε(ũ) + θ(ε(ũ) − ε(v))〉H ≥ 0,

which implies

(5.22) 〈F (ε(uh)), ε(uh) − ε(ũ)〉H + θ〈F (ε(uh)), ε(ũ) − ε(v)〉H

≥ 〈F (ε(w)), ε(uh) − ε(ũ)〉H + θ〈F (ε(w)), ε(ũ) − ε(v)〉H.

Using now (5.20), (5.15) and (5.22) we obtain

(5.23) lim inf
h

〈F (ε(uh)), ε(ũ) − ε(v)〉H ≥ 〈F (ε(w)), ε(ũ) − ε(v)〉H.

Moreover, since

〈F (ε(uh)), ε(uh) − ε(v)〉H = 〈F (ε(uh)), ε(uh) − ε(ũ)〉H

+ 〈F (ε(uh)), ε(ũ) − ε(v)〉H,

from (5.20) and (5.23) we deduce

(5.24) lim inf
h

〈F (ε(uh)), ε(uh) − ε(v)〉H ≥ 〈F (ε(w)), ε(ũ) − ε(v)〉H.

Using now (5.21), (2.7) and taking the limit in (5.24) as θ → 0 leads to

(5.25) lim inf
h

〈F (ε(uh)), ε(uh) − ε(v)〉H

≥ 〈F (ε(ũ)), ε(ũ) − ε(v)〉H ∀v ∈ V.

Again by (5.9),

1

h
j(v)−

1

h
j(uh) ≥ 〈f, v−uh〉V + 〈F (ε(uh)), ε(uh)−ε(v)〉H ∀h > 0, v ∈ V

and having in mind (2.11) and (5.7) we obtain

(5.26) 〈F (ε(uh)), ε(uh) − ε(v)〉H + 〈f, v − uh〉V ≤ 0 ∀v ∈ U, h > 0.

Therefore, from (5.25), (5.26) and (5.15) it results that

(5.27) 〈F (ε(ũ)), ε(v) − ε(ũ)〉H ≥ 〈f, v − ũ〉V ∀v ∈ U.

From (5.17) and (5.27) we find that ũ is a solution of the variational
inequality (3.7) and from the uniqueness part of Theorem 4.1 we obtain
ũ = u. Since u is the unique weak limit of any subsequence of (uh), we
deduce that the whole sequence (uh) is weakly convergent in V to u:

(5.28) uh → u weakly in V as h→ 0.
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In order to obtain the strong convergence, note that from (2.7) and (2.3)
it follows that

C|uh − u|2V ≤ 〈F (ε(uh)), ε(uh) − ε(u)〉H(5.29)

− 〈F (ε(u)), ε(uh) − ε(u)〉H ∀h > 0

where C > 0 does not depend on h. Putting now v = u in (5.9) we obtain

(5.30) 〈F (ε(uh)), ε(uh) − ε(u)〉H ≤ 〈f, uh − u〉V ∀h > 0.

The strong convergence result (5.11) follows now from (5.28)–(5.30).
Let us now prove (5.12). For this we remark that from Theorem 4.3 we

obtain

(5.31) σ = F (ε(u)) a.e. in Ω

and from (3.7) it follows that

(5.32) Div σ + ϕ1 = 0 a.e. in Ω.

In a similar way (see Remark 5.3) we have

(5.33) σh = F (ε(uh)) a.e. in Ω

and from (5.9) it results that

(5.34) Div σh + ϕ1 = 0 a.e. in Ω.

Therefore, by (5.31)–(5.34) we deduce

(5.35) |σh − σ|H1
= |σh − σ|H = |F (ε(uh)) − F (ε(u))|H.

The strong convergence result (5.12) follows now from (5.35), (2.7), (5.11).

Remark 5.5. The mechanical interpretation of the above strong con-
vergence result is the following: the weak solution {u, σ} of the problem
(1.1)–(1.5) modelling the frictionless contact between the elastic body and
a rigid foundation may be obtained as the strong limit of the weak solutions
{uh, σh} of the problem (5.1)–(5.5) which model the contact between the
elastic body and a deformable foundation, when the deformability coeffi-
cient of the foundation tends to zero.
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