Conformal mapping of the domain bounded by a circular polygon with zero angles onto the unit disc

by VLADIMIR MITYUSHEV (Słupsk)

Abstract. The conformal mapping $\omega(z)$ of a domain D onto the unit disc must satisfy the condition $|\omega(t)| = 1$ on ∂D , the boundary of D. The last condition can be considered as a Dirichlet problem for the domain D. In the present paper this problem is reduced to a system of functional equations when ∂D is a circular polygon with zero angles. The mapping is given in terms of a Poincaré series.

1. Introduction. This paper is devoted to constructing conformal maps from circular polygons to the unit disc. The general theory [7] is based on differential equations. It allows us to construct conformal mappings in closed form for special polygons [4, 12–16] having five or less vertices.

In the present paper we use a boundary value problem [6, 9] to construct the conformal mapping for polygons with zero angles. The number of vertices can be arbitrary. As is well known [9], if for a certain simply connected domain D we know a solution of the Dirichlet problem for the Laplace equation, then it is possible to derive the function conformally transforming this domain onto the unit disc.

Let $\omega(z)$ be the unknown conformal mapping and $\omega(0) = 0$, where the point z = 0 belongs to D. The function $\omega(z)$ has to satisfy the boundary condition $|\omega(t)| = 1$, $t \in \partial D$, where ∂D is the boundary of D. Let us introduce the auxiliary function $\varphi(z) = \ln z^{-1}\omega(z)$ which is analytic and univalent in D, and continuous in \overline{D} . The branch of the logarithm is fixed in an arbitrary way. The function $\varphi(z)$ satisfies the boundary condition $\operatorname{Re} \varphi(t) = -\ln |t|$, $t \in \partial D$. The last problem has a unique solution up to an arbitrary additive purely imaginary constant $i\gamma$ (see [9]). Then the conformal mapping $\omega(z)$ is determined up to the factor $\exp i\gamma$, which

¹⁹⁹¹ Mathematics Subject Classification: 30C20, 30E25.

Key words and phrases: conformal mapping, boundary value problem, functional equation.

^[227]

corresponds to a rotation of the unit disc. This also applies to a circular polygon.

Let us consider mutually disjoint discs $D_k := \{z \in \mathbb{C} : |z - a_k| < r_k\}$ with boundaries $\partial D_k := \{t \in \mathbb{C} : |t - a_k| = r_k\}$ (k = 0, 1, ..., n). Let ∂D_i be tangent to ∂D_{i+1} at the point w_{i+1} for i = 0, 1, ..., n, where the subscripts are taken modulo n + 1. For instance, this means $w_{n+1} = w_0$. Let the circumferences divide the plane $\overline{\mathbb{C}}$ into disjoint discs D_k and two domains G_1 and $G_2 :=$ the complement of $\bigcup_{k=0}^n D_k \cup G_1$. Here $\partial G_1 \cup \partial G_2 = \bigcup_{k=0}^n \partial D_k$, $\partial G_1 \cap \partial G_2 =: W$ is the finite set $\{w_0, w_1, \ldots, w_n\}$. The circumferences ∂D_k are oriented in the positive sense. Suppose the point z = 0 belongs to G_1 , and the point $z = \infty$ belongs to G_2 .

We solve the following boundary value problem:

(1.1)
$$\operatorname{Re}\varphi(t) = f(t), \quad t \in \partial G_1,$$

where f(t) is a given function continuously differentiable on ∂G_1 , $\varphi(z)$ is an unknown function analytic in G_1 , continuous in \overline{G}_1 and continuously differentiable in $\overline{G}_1 \setminus W$. The problem (1.1) is a particular case of the Hilbert boundary value problem [6]

(1.2)
$$\operatorname{Re} \lambda(t)\varphi(t) = f(t), \quad t \in \partial G_1.$$

Consider the inversions with respect to $|t - a_k| = r_k$:

$$z_k^* := \frac{r_k^2}{\overline{z - a_k}} + a_k,$$

and the Möbius transformations

(1.3)
$$\begin{aligned} z_{k_1k_2}^* &:= (z_{k_2}^*)_{k_1}^*, & \text{where } k_1 = 0, 1, \dots, n, \ k_2 = 0, 1, \dots, n; \ k_2 \neq k_1, \\ z_{k_1k_2\dots k_m}^* &:= (z_{k_2k_3\dots k_m}^*)_{k_1}^*, & \text{where } k_1, \dots, k_m = 0, 1, \dots, n \end{aligned}$$

and $k_j \neq k_{j+1}$ for j = 1, ..., m - 1. The number *m* is called the *level* of (1.3). The functions (1.3) generate a Kleinian group \Re [1, 2].

In [11] the exact solution of the Hilbert problem (1.2) has been constructed for each multiply connected circular domain. In the present paper the results of [11] are applied to the problem (1.1). As a conclusion we obtain the conformal mapping of the domain G_1 onto the unit disc. This mapping is given by the series (3.6) corresponding to the group \Re [1, 2]. Necessary and sufficient conditions of the absolute convergence of the Poincaré series have been found in [1, 2]. We prove the uniform convergence of the series (3.6) which is closely related to the Poincaré series. This does not contradict [1, 2] because there is a difference between absolute and uniform convergence.

The Schwarz problem [6, 9] for the disc D_k (k fixed) consists in finding a function $\psi(z)$ analytic in D_k and continuous in \overline{D}_k satisfying the boundary

condition Re $\psi(t) = g(t)$, $|t - a_k| = r_k$, where g(t) is a given function Hölder continuous on $|t - a_k| = r_k$.

The Schwarz problem can be viewed as the classical Dirichlet problem with respect to the function $\operatorname{Re} \psi(z)$ harmonic in D_k . A solution of the Schwarz problem can be represented in the form [6, 9]

$$\psi(z) = \frac{1}{\pi i} \int_{\partial D_k} \frac{g(\tau)}{\tau - z} d\tau - \frac{1}{2\pi i} \int_{\partial D_k} \frac{g(\tau)}{\tau - a_k} d\tau.$$

If g(t) is Hölder continuous on $\partial D_k \setminus \{w\}$, and the limit values $g(\pm w)$ exist, then the last formula holds, but $\psi(z)$ is almost bounded at w (see [6]), i.e. we have the representation

$$\psi(z) = \psi^0(z) - \frac{1}{\pi i} [g(w+0) - g(w-0)] \ln(z-w).$$

Here the function $\psi^0(z)$ is analytic in D_k and continuous in \overline{D}_k .

The \mathbb{R} -linear problem [5, 6, 10] for the contour $\bigcup_{k=0}^{n} \partial D_k$ consists in finding $\varphi(z)$ analytic in G_1 and G_2 , and $\varphi_k(z)$ analytic in D_k with the boundary condition

(1.4)
$$\varphi(t) = \varphi_k(t) - \lambda \overline{\varphi_k(t)} + g(t), \quad |t - a_k| = r_k, \ k = 0, 1, \dots, n.$$

We assume that $\varphi(z)$ is continuous in \overline{G}_1 and \overline{G}_2 separately (¹), and continuously differentiable in $(\overline{G}_1 \cup \overline{G}_2) \setminus W$ and $\varphi(0) = \varphi(\infty) = 0$. The function $\varphi_k(z)$ is continuously differentiable in $\overline{D}_k \setminus W$ and almost bounded at w_k and w_{k+1} . We shall consider the \mathbb{R} -linear problem with λ constant and g(t)Hölder continuous in $\partial G_1 \cup \partial G_2$. If $|\lambda| < 1$ then the \mathbb{R} -linear problem has a unique solution [5].

2. Reducing to functional equations. Let us continue the given function f(t) to ∂D_k (k = 0, 1, ..., n) in such a way that f(t) is continuously differentiable in $\bigcup_{k=0}^{n} \partial D_k$. Consider in G_2 the auxiliary problem

(2.1)
$$\operatorname{Re}\varphi(t) = f(t), \quad t \in \partial G_2$$

where $\varphi(z)$ is analytic in G_2 , continuous in \overline{G}_2 and continuously differentiable in $\overline{G}_2 \setminus W$. We consider the equalities (1.1) and (2.1) as a boundary value problem with respect to $\varphi(z)$ for $z \in \overline{G}_1$ and $z \in \overline{G}_2$. Consider the problem (1.4) with $\lambda = 1$:

(2.2)
$$\varphi(t) = \varphi_k(t) - \overline{\varphi_k(t)} + f_k(t), \quad |t - a_k| = r_k, \ k = 0, 1, \dots, n$$

with respect to φ and φ_k . Here $f_k(t)$ is a solution of the Schwarz problem Re $f_k(t) = f(t), |t - a_k| = r_k$, for the fixed disc D_k .

^{(&}lt;sup>1</sup>) The limit values of $\varphi(z)$ in W for \overline{G}_1 and \overline{G}_2 can be different.

LEMMA 2.1. The function $\varphi(z)$ is a solution of the problem (1.1), (2.1), if and only if $\varphi(z)$ satisfies (2.2) with some $\varphi_k(z)$.

Proof. If $\varphi(z)$ is a solution of (2.2), then $\varphi(z)$ satisfies (1.1) and (2.1). Conversely, let $\varphi(z)$ be a solution of the problem (1.1), (2.1). Then the real part of (2.2) is valid. We have to construct a function $\varphi_k(z)$ such that the imaginary part of (2.2),

(2.3)
$$2\operatorname{Im}\varphi_k(t) = \operatorname{Im}(\varphi(t) - f_k(t)), \quad |t - a_k| = r_k,$$

also holds. Consider (2.3) as a Schwarz problem in the disc D_k with respect to $-2i\varphi_k(z)$. It follows from the general theory that the function $\varphi(z)$ contains a purely imaginary additive constant $i\gamma_1$ in G_1 and, generally speaking, another constant $i\gamma_2$ in G_2 . Hence the right side of (2.3) is discontinuous at w_k and w_{k+1} . Therefore we have [6]

$$\varphi_k(z) = \frac{1}{2\pi} \int_{\partial D_k} \frac{\operatorname{Im}(\varphi(\tau) - f_k(\tau))}{\tau - z} d\tau - \frac{1}{4\pi} \int_{\partial D_k} \frac{\operatorname{Im}(\varphi(\tau) - f_k(\tau))}{\tau - a_k} d\tau$$
$$= -\frac{1}{2\pi} \operatorname{Im} \Delta \varphi(w_k) \ln(z - w_k) + \varphi_k^0(z)$$

near $z = w_k$. Here $\varphi_k^0(z)$ is analytic in D_k and continuous in \overline{D}_k , and

$$\Delta \varphi(w_k) := \lim_{z \to w_k, z \in G_1} \varphi(z) - \lim_{z \to w_k, z \in G_2} \varphi(z)$$

An analogous representation holds near $z = w_{k+1}$. So, the function $\varphi_k(z)$ is represented in the form

(2.4)
$$\varphi_k(z) = \Phi_k(z) + p_k \ln(z - w_k) + q_k \ln(z - w_{k+1}), \quad z \in D_k,$$

where p_k , q_k are real constants. The branch of the logarithm is fixed in such a way that the cut connecting the points $z = w_k$ and $z = \infty$ lies in $G_2 \cup W$. The function $\Phi_k(z)$ is analytic in D_k , continuous in \overline{D}_k and continuously differentiable in $\overline{D}_k \setminus W$. So, assuming that $\varphi(z)$ satisfies (1.1) and (2.1) we have constructed $\varphi_k(z)$ in such a way that (2.2) holds.

The lemma is proved.

In order to reduce (2.2) to a system of functional equations we introduce the function

$$\Omega(z) = \begin{cases} \varphi_k(z) + \sum_{\substack{m=0\\m \neq k}}^n \overline{\varphi_m(z_m^*)} + f_k(z), & z \in D_k, \\\\ \varphi(z) + \sum_{m=0}^n \overline{\varphi_m(z_m^*)}, & z \in G_1 \cup G_2, \end{cases}$$

where z_m^* is the inversion with respect to the circumference $|t - a_m| = r_m$. Using (2.2) one can see that $\Omega(z)$ is continuous in $\overline{\mathbb{C}}$ except in the set W, Conformal mapping

where it is almost bounded. By Liouville's theorem, $\Omega(z) = \text{constant}$. Let us calculate this constant:

$$\Omega(z) = \Omega(0) = \varphi(0) + \sum_{m=0}^{n} \overline{\varphi_m(0_m^*)}, \quad z \in \overline{\mathbb{C}}.$$

From the definition of $\Omega(z)$ in D_k and (2.4) we obtain

(2.5)
$$\Phi_k(z) = -\sum_{\substack{m=0\\m\neq k}}^n [\overline{\Phi_m(z_m^*)} - \overline{\Phi_m(0_m^*)}] - f_k(z) + \varphi(0) + \overline{\Phi_k(0_k^*)} - \alpha_k(z),$$

where

(2.6)
$$\alpha_k(z) = p_k \ln(z - w_k) / \overline{0_k^* - w_k} + q_k \ln(z - w_{k+1}) / \overline{0_k^* - w_{k+1}} \\ - \sum_{\substack{m=0\\m \neq k}}^n \left[p_m \ln\left[\frac{\overline{z_m^* - w_m}}{\overline{0_m^* - w_m}}\right] + q_m \ln\left[\frac{\overline{z_m^* - w_{m+1}}}{\overline{0_m^* - w_{m+1}}}\right] \right].$$

The points w_m and w_{m+1} belong to ∂D_m . Hence $(w_m)_m^* = w_m$ and $(w_{m+1})_m^* = w_{m+1}$. Let us transform the expression appearing in (2.6)

$$\ln(\overline{z_m^* - w_m}) = \ln(\overline{z_m^* - (w_m)_m^*}) = \ln\frac{r_m^2(z - w_m)}{(z - a_m)(a_m - w_m)}$$

Similarly,

$$\ln(\overline{z_m^* - w_{m+1}}) = \ln \frac{r_m^2(z - w_{m+1})}{(z - a_m)(a_m - w_{m+1})}$$

It follows from (2.5) that the function $\alpha_k(z)$ has to be continuous in \overline{D}_k . On the other hand, the logarithms appearing in (2.6) have jumps along the curve connecting the points $z = w_k$, $z = a_k$ and $z = w_{k+1}$. This contradiction can be overcome only if $p_k = q_{k-1}$, $k = 0, 1, \ldots, n$. Write the functions $\alpha_k(z)$ in the form $\alpha_k(z) = \sum_{j=0}^n p_j H_k^j(z)$, where

(2.7)
$$H_k^k(z) = \ln \frac{a_k(a_k - w_k)(z - a_{k-1})}{r_k^2 a_{k-1}},$$
$$H_k^{k+1}(z) = \ln \frac{a_k(a_k - w_{k+1})(z - a_{k+1})}{r_k^2 a_{k+1}},$$
$$H_k^j(z) = \ln \frac{\overline{0_j^* - w_j^*} \cdot \overline{0_{j-1}^* - w_j^*}}{\overline{z_j^* - w_j^*} \cdot \overline{z_{j-1}^* - w_j^*}}, \quad j \neq k, k + k$$

The function $\varphi(z)$ is analytic in G_1 and G_2 , continuous in \overline{G}_1 and \overline{G}_2 . Hence Cauchy's theorem can be applied: $\int_{\partial G_1} \varphi(z) dz + \int_{\partial G_2} \varphi(z) dz = 0$. Let us rewrite the last equality in the form

1.

(2.8)
$$\sum_{k=0}^{n} \int_{\partial D_k} \varphi(z) \, dz = 0.$$

From the definition of $\Omega(z)$ and the representation (2.4) we have

(2.9)
$$\varphi(z) = \varphi(0) - \sum_{m=0}^{n} [\overline{\Phi_m(z_m^*)} - \overline{\Phi_m(0_m^*)}] - \sum_{m=0}^{n} [p_m \ln(\overline{z_m^* - w_m}) + p_{m+1} \ln(\overline{z_m^* - w_{m+1}})], \quad z \in \overline{G}_1 \cup \overline{G}_2.$$

It follows from the original definition of $\ln(z - w_m)$ that the cut connecting the points $z = w_m$ and $z = a_m$ corresponds to the function $\ln(\overline{z_m^* - w_m})$. The cut from $z = w_{m+1}$ to $z = a_m$ corresponds to $\ln(\overline{z_m^* - w_{m+1}})$. Using (2.9) let us calculate the integral (2.8). Since the terms with m = k under the logarithm sign in (2.9) are equal to πi , we have $\sum_{k=0}^{n} (p_k + p_{k+1}) = 0$, or simply

(2.10)
$$\sum_{k=0}^{n} p_k = 0.$$

Consider the Banach space C of functions continuous in $\partial G_1 \cup \partial G_2 = \bigcup_{k=0}^n \partial D_k$ with norm $||f|| := \max_{0 \le k \le n} \max_{\partial D_k} |f(t)|$ corresponding to uniform convergence. Let us introduce the closed subspace $C^+ \subset C$ consisting of the functions analytically continuable to all discs D_k . For one disc we obtain the classical space of functions analytic in the disc and continuous in its closure [7].

Consider the system (2.5) as an equation

$$(2.11) \qquad \qquad \Phi = A\Phi + F$$

in C^+ , where the operator A is defined by

$$A\Phi(z) := -\sum_{\substack{m=0\\m\neq k}}^{n} [\overline{\Phi_m(z_m^*)} - \overline{\Phi_m(0_m^*)}], \quad z \in D_k \ (k = 0, 1, \dots, n).$$

Here $\Phi \in C^+$ and $\Phi(z) := \Phi_k(z)$ in \overline{D}_k .

3. Solution of functional equations

LEMMA 3.1. The homogeneous equation (2.11), $\Phi = A\Phi$, has only the zero solution.

LEMMA 3.2. The non-homogeneous equation (2.11), $\Phi = A\Phi + F$, has a unique solution in C^+ for each $F \in C^+$.

Proof (of Lemmas 3.1 and 3.2). Let $\Phi(z)$ be a solution of (2.11) in C^+ . Hence the functions $\Phi_k(z) := \Phi(z)$ are analytic in D_k and continuous in \overline{D}_k . Let us introduce the function

(3.1)
$$\psi(z) := -\sum_{m=0}^{n} [\overline{\Phi_m(z_m^*)} - \overline{\Phi_m(0_m^*)}],$$

232

analytic in $G_1 \cup G_2$ and continuous in $\overline{G_1 \cup G_2}$. From (2.11) we have

$$\psi(t) = \Phi_k(t) - \overline{\Phi_k(t)} - F(t) + \overline{\Phi_k(0_k^*)}, \quad |t - a_k| = r_k.$$

Let us rewrite the last equality in the form

(3.2)
$$\operatorname{Re} \psi(t) = -\operatorname{Re} F(t) + \operatorname{Re} \Phi_k(0_k^*), \quad |t - a_k| = r_k,$$

(3.3) $2\operatorname{Im} \Phi_k(t) = \operatorname{Im}[\psi(t) + F(t) + \Phi_k(0_k^*)], \quad |t - a_k| = r_k.$

Since the functions F(t) and $\psi(t)$ are continuous in ∂D_k , from (3.2) we get $\operatorname{Re} \Phi_k(0_k^*) = \operatorname{Re} \Phi_{k+1}(0_{k+1}^*)$. Therefore $\operatorname{Re} \Phi_k(0_k^*) = \operatorname{constant}$ for each k. If $F(t) \equiv 0$ then from (3.2) we have $\psi(z) \equiv \operatorname{constant}$. But $\psi(0) = 0$, hence $\psi(z) \equiv 0$. It follows from the definition (3.1) and the decomposition theorem [3] that each function $\overline{\Phi_m(z_m^*)} - \overline{\Phi_m(0_m^*)}$ is a constant. Therefore, using the relation $\Phi = A\Phi$ we have $\Phi_m(z) \equiv 0$ for each m. Lemma 3.1 is proved.

By [6] and Lemma 3.1 the non-homogeneous problem (3.2) with respect to $\psi(z)$ analytic in $G_1 \cup G_2$ has a unique solution up to an additive constant $c+i\gamma$. Hence the problem (3.3) with respect to $\Phi_k(z)$ has a unique solution up to an arbitrary additive constant which vanishes in (2.11).

Lemma 3.2 is proved.

THEOREM 3.1 ([8]). If the equation

$$(3.4) U = \lambda A U + F$$

has a unique solution for each $|\lambda| \leq 1$, then the series

$$(3.5) U = \sum_{m=0}^{\infty} A^m F$$

converges in C^+ .

THEOREM 3.2. The equation (2.11) has a unique solution in C^+ which can be found by the method of successive approximations converging in C^+ .

Proof. The proof is based on Theorem 3.1. Let $|\lambda| = 1$. Then equation (3.4) reduces to the same equation with $\lambda = 1$ by the change of variable $z = \sqrt{\lambda} Z$, $a_k = \sqrt{\lambda} A_k$, $\Omega_k(Z) = \Psi_k(z)$. According to Lemma 3.2 the last problem has a unique solution.

Let $|\lambda| < 1$. We introduce the function $\psi(z) := -\lambda \sum_{m=0}^{n} [\overline{\Phi_m(z_m^*)} - \overline{\Phi_m(0_m^*)}]$. By (3.4) we have the following \mathbb{R} -linear problem:

$$\psi(t) = \Phi_k(t) - \lambda \overline{\Phi_k(t)} - f_k(t), \quad |t - a_k| = r_k, \ k = 0, 1, \dots, n,$$

with respect to $\psi(z)$ analytic in $G_1 \cup G_2$ and continuous in $G_1 \cup G_2$, and $\Phi_k(z)$ analytic in D_k and continuous in \overline{D}_k . The last problem has a unique solution, since $|\lambda| < 1$ (see [5]). Using Theorem 3.1 we conclude the proof.

Applying the method of successive approximations to the system (2.5) let us find $\overline{\Phi_k(z_k^*)} - \overline{\Phi_k(0_k^*)} = \mathfrak{B}_k h(z)$, where $h(z) := h_k(z)$ for $|z - a_k| \leq r_k$,

 $h_k(z) := f_k(z) + \alpha_k(z)$, the operator \mathfrak{B}_k has the form

$$(3.6) \quad \mathfrak{B}_{k}h(z) := -\left[\overline{h_{k}(z_{k}^{*})} - \overline{h_{k}(0_{k}^{*})}\right] + \sum_{\substack{k_{1}=0\\k_{1}\neq k}}^{n} \left[h_{k_{1}}(z_{k_{1}k}^{*}) - h_{k_{1}}(0_{k_{1}k}^{*})\right] \\ - \sum_{\substack{k_{1}=0\\k_{1}\neq k}}^{n} \sum_{\substack{k_{2}=0\\k_{2}\neq k_{1}}}^{n} \left[\overline{h_{k_{2}}(z_{k_{2}k_{1}k}^{*})} - \overline{h_{k_{2}}(0_{k_{2}k_{1}k}^{*})}\right] + \dots, \\ |z - a_{k}| > r_{k}$$

It follows from the definitions of $h_k(z)$ and $\alpha_k(z)$ that

(3.7)
$$\overline{\Phi_k(z_k^*)} - \overline{\Phi_k(0_k^*)} = \mathfrak{B}_k f(z) + \sum_{j=0}^n p_j D_k^j(z),$$

where $D_k^j(z) := \mathfrak{B}_k H_j(z), H_j(z) := H_k^j(z)$ for $|z - a_k| \le r_k$. The functions $H_k^j(z)$ have the form (2.7).

Substituting $z = 0_k^*$ into (2.5) we obtain

(3.8)
$$\Phi_k(0_k^*) = \sum_{\substack{m=0\\m\neq k}}^n \left[(\mathfrak{B}_m f)(0_k^*) + \sum_{j=0}^n p_j D_m^j(0_k^*) \right] - f_k(0_k^*) + \varphi(0)$$
$$+ \overline{\Phi_k(0_k^*)} - \sum_{j=0}^n p_j H_k^j(0_k^*).$$

The real parts of the relations (3.8) together with (2.10) constitute a real system of n + 2 linear algebraic equations with respect to n + 2 unknown values $\operatorname{Re} \varphi(0), p_0, p_1, \ldots, p_n$. After solving the system using (2.9) we arrive at the formula

(3.9)
$$\varphi(z) = \operatorname{Re} \varphi(0) + i \operatorname{Im} \varphi(0) - \sum_{m=0}^{n} \left(\mathfrak{B}_{m} f(z) + \sum_{j=0}^{n} p_{j} \mathfrak{B}_{m} H_{j}(z) \right)$$

 $+ i \sum_{m=0}^{n} (p_{m} \ln(\overline{z_{m}^{*} - w_{m}}) + p_{m+1} \ln(\overline{z_{m}^{*} - w_{m+1}})),$
 $z \in G_{1} \cup G_{2}.$

where $i \operatorname{Im} \varphi(0)$ is an arbitrary imaginary constant. We prove that the system (2.10), Re (3.8) always has a unique solution. The system (2.10), Re (3.8) corresponding to the homogeneous system $(f = 0 \text{ and } i \operatorname{Im} \varphi(0) = 0)$ has only the zero solution, because in the opposite case we would get non-zero functions (2.4) from which it is impossible to get $\varphi(z) \equiv 0$ using (2.9) and taking into account the equality $i \operatorname{Im} \varphi(0) = 0$. The last assertion is based on the decomposition theorem [3]. So we have proved the following

THEOREM 3.3. The solution of the problem (1.1), (2.1) has the form (3.9) where $i \operatorname{Im} \varphi(0)$ is an arbitrary constant. The numbers $\operatorname{Re} \varphi(0), p_0, p_1, \ldots, p_n$ are defined from the system (2.10), $\operatorname{Re}(3.8)$ of linear algebraic equations, which always has a unique solution.

Let us apply the last theorem to construct the conformal mapping $\omega(z)$ from Section 1. Assume that $f(t) = -\ln |t|$. Then $f_k(z) = -\ln z$, $z \in \overline{D}_k$, where the branch of the logarithm is such that the cut connecting z = 0 and $z = \infty$ lies in $G_1 \cup W \cup G_2$.

In (3.9) let us calculate

$$(3.10) \qquad \sum_{m=0}^{n} \mathfrak{B}_{m}f(z) \\ = \sum_{m=0}^{n} [\overline{\ln z_{m}^{*}} - \overline{\ln 0_{m}^{*}}] - \sum_{m=0}^{n} \sum_{\substack{k_{1}=0\\k_{1}\neq m}}^{n} [\overline{\ln z_{k_{1}m}^{*}} - \overline{\ln 0_{k_{1}m}^{*}}] + \dots \\ = \ln \prod_{m=0}^{n} \frac{\overline{z_{m}^{*}}}{\overline{0_{m}^{*}}} \prod_{m=0}^{n} \prod_{\substack{k_{1}=0\\k_{1}\neq m}}^{n} \frac{\overline{0_{k_{1}m}^{*}}}{\overline{1_{k_{1}m}^{*}}} \prod_{k=0}^{n} \prod_{\substack{k_{1}=0\\k_{1}\neq m}}^{n} \prod_{\substack{k_{2}=0\\k_{2}\neq k_{1}}}^{n} \frac{\overline{z_{k_{2}k_{1}m}^{*}}}{\overline{0_{k_{2}k_{1}m}^{*}}} \dots$$

Finally, let us describe a finite algorithm for constructing the conformal mapping in analytic form.

(i) Construct $H^j(z) := H^j_k(z)$ for $|z - a_k| \le r_k$, where the functions $H^j_k(z)$ have the form (2.7).

(ii) Construct $D_k^j(z) := (\mathfrak{B}_k H^j)(z)$ and $\mathfrak{B}_k f(z)$ according to (3.6) and (3.10).

(iii) Solve the real system of n + 2 linear algebraic equations

$$\begin{cases} \sum_{j=0}^{n} p_{j} \Big[\sum_{\substack{m=0\\m\neq k}}^{n} \operatorname{Re}(D_{m}^{j}(0_{k}^{*}) - H_{k}^{j}(0_{k}^{*})) \Big] + \operatorname{Re}\varphi(0) \\ = \operatorname{Re}\left[f_{k}(0_{k}^{*}) - \sum_{\substack{m=0\\m\neq k}}^{n} (\mathfrak{B}_{m}f)(0_{k}^{*}) \right], \quad k = 0, 1, \dots, n, \\ \sum_{j=0}^{n} p_{j} = 0, \end{cases}$$

with respect to p_0, p_1, \ldots, p_n , $\operatorname{Re} \varphi(0)$.

(iv) The required conformal mapping is $\omega(z) = z \exp \varphi(z)$, where the function $\varphi(z)$ has the form (3.9), $i \operatorname{Im} \varphi(0)$ is an arbitrary pure imaginary constant.

V. Mityushev

References

- T. Akaza, Singular sets of some Kleinian groups, Nagoya Math. J. 26 (1966), 127–143.
- T. Akaza and K. Inoue, Limit sets of geometrically finite free Kleinian groups, Tôhoku Math. J. 36 (1984), 1–16.
- [3] S. Axler, P. Bourdon and W. Ramey, *Harmonic Function Theory*, Springer, New York, 1992.
- [4] È. N. Bereslavskiĭ, On integrating in closed form of a class of Fuchsian equations and its applications, Differentsial'nye Uravneniya 25 (1989), 1048–1050 (in Russian).
- B. Bojarski, On the generalized Hilbert boundary value problem, Soobshch. Akad. Nauk Gruzin. SSR 25 (1960), 385–390 (in Russian).
- [6] F. D. Gakhov, Boundary Value Problems, Pergamon Press, Oxford, 1966.
- [7] G. M. Golusin, Geometrische Funktionentheorie, Deutscher Verlag Wiss., Berlin 1957.
- [8] M. A. Krasnosel'skiĭ, Approximate Methods for Solution of Operator Equations, Nauka, Moscow, 1969 (in Russian).
- [9] S. G. Michlin, Integral Equations, Pergamon Press, New York, 1964.
- [10] V. V. Mityushev, Plane problem for the steady heat conduction of material with circular inclusions, Arch. Mech. 45 (1993), 211–215.
- [11] —, Solution of the Hilbert problem for a multiply connected domain, Słupskie Prace Mat. Przyr. 9a (1994), 37–69.
- [12] P. Ya. Polubarinova-Kochina, On additional parameters on the examples of circular 4-polygons, Prikl. Mat. i Mekh. 55 (1991), 222-227 (in Russian).
- [13] A. R. Tsitskishvili, On construction of analytic functions which map conformally the half-plane onto circular polygons, Differentsial'nye Uravneniya 21 (1985), 646– 656 (in Russian).
- [14] V. I. Vlasov and S. L. Skorokhod, Analytical solution of the Dirichlet problem for the Poisson equation for a class of polygonal domains, Vychisl. Tsentr Akad. Nauk SSSR, Moscow, 1988 (in Russian).
- [15] V. I. Vlasov and D. B. Volkov, The Dirichlet problem in a disk with a corner cut, Vychisl. Tsentr Akad. Nauk SSSR, Moscow, 1986 (in Russian).
- [16] —, —, Solution of the Dirichlet problem for the Poisson equation in some domains with a complex boundary structure, Vychisl. Tsentr Akad. Nauk SSSR, Moscow, 1989 (in Russian).

Institute of Mathematics Pedagogical University Arciszewskiego 22b 76-200 Słupsk, Poland

Reçu par la Rédaction le 24.2.1997