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Conformal mapping of the domain bounded by a circular

polygon with zero angles onto the unit disc

by Vladimir Mityushev (S lupsk)

Abstract. The conformal mapping ω(z) of a domain D onto the unit disc must satisfy
the condition |ω(t)| = 1 on ∂D, the boundary of D. The last condition can be considered
as a Dirichlet problem for the domain D. In the present paper this problem is reduced
to a system of functional equations when ∂D is a circular polygon with zero angles. The
mapping is given in terms of a Poincaré series.

1. Introduction. This paper is devoted to constructing conformal maps
from circular polygons to the unit disc. The general theory [7] is based on
differential equations. It allows us to construct conformal mappings in closed
form for special polygons [4, 12–16] having five or less vertices.

In the present paper we use a boundary value problem [6, 9] to construct
the conformal mapping for polygons with zero angles. The number of vertices
can be arbitrary. As is well known [9], if for a certain simply connected
domain D we know a solution of the Dirichlet problem for the Laplace
equation, then it is possible to derive the function conformally transforming
this domain onto the unit disc.

Let ω(z) be the unknown conformal mapping and ω(0) = 0, where the
point z = 0 belongs to D. The function ω(z) has to satisfy the bound-
ary condition |ω(t)| = 1, t ∈ ∂D, where ∂D is the boundary of D. Let
us introduce the auxiliary function ϕ(z) = ln z−1ω(z) which is analytic
and univalent in D, and continuous in D. The branch of the logarithm is
fixed in an arbitrary way. The function ϕ(z) satisfies the boundary condi-
tion Reϕ(t) = − ln |t|, t ∈ ∂D. The last problem has a unique solution
up to an arbitrary additive purely imaginary constant iγ (see [9]). Then
the conformal mapping ω(z) is determined up to the factor exp iγ, which
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corresponds to a rotation of the unit disc. This also applies to a circular
polygon.

Let us consider mutually disjoint discs Dk := {z ∈ C : |z − ak| < rk}
with boundaries ∂Dk := {t ∈ C : |t−ak| = rk} (k = 0, 1, . . . , n). Let ∂Di be
tangent to ∂Di+1 at the point wi+1 for i = 0, 1, . . . , n, where the subscripts
are taken modulo n + 1. For instance, this means wn+1 = w0. Let the
circumferences divide the plane C into disjoint discs Dk and two domains G1

and G2 := the complement of
⋃n

k=0
Dk∪G1. Here ∂G1∪∂G2 =

⋃n
k=0

∂Dk,
∂G1 ∩∂G2 =: W is the finite set {w0, w1, . . . , wn}. The circumferences ∂Dk

are oriented in the positive sense. Suppose the point z = 0 belongs to G1,
and the point z = ∞ belongs to G2.

We solve the following boundary value problem:

(1.1) Reϕ(t) = f(t), t ∈ ∂G1,

where f(t) is a given function continuously differentiable on ∂G1, ϕ(z) is
an unknown function analytic in G1, continuous in G1 and continuously
differentiable in G1\W . The problem (1.1) is a particular case of the Hilbert
boundary value problem [6]

(1.2) Reλ(t)ϕ(t) = f(t), t ∈ ∂G1.

Consider the inversions with respect to |t− ak| = rk:

z∗k :=
r2k

z − ak

+ ak,

and the Möbius transformations

(1.3)
z∗k1k2

:= (z∗k2
)∗k1
, where k1 = 0, 1, . . . , n, k2 = 0, 1, . . . , n; k2 6= k1,

z∗k1k2...km
:= (z∗k2k3...km

)∗k1
, where k1, . . . , km = 0, 1, . . . , n

and kj 6= kj+1 for j = 1, . . . ,m − 1. The number m is called the level of
(1.3). The functions (1.3) generate a Kleinian group K [1, 2].

In [11] the exact solution of the Hilbert problem (1.2) has been con-
structed for each multiply connected circular domain. In the present paper
the results of [11] are applied to the problem (1.1). As a conclusion we obtain
the conformal mapping of the domain G1 onto the unit disc. This mapping is
given by the series (3.6) corresponding to the group K [1, 2]. Necessary and
sufficient conditions of the absolute convergence of the Poincaré series have
been found in [1, 2]. We prove the uniform convergence of the series (3.6)
which is closely related to the Poincaré series. This does not contradict
[1, 2] because there is a difference between absolute and uniform conver-
gence.

The Schwarz problem [6, 9] for the disc Dk (k fixed) consists in finding a
function ψ(z) analytic in Dk and continuous in Dk satisfying the boundary
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condition Reψ(t) = g(t), |t−ak| = rk, where g(t) is a given function Hölder
continuous on |t− ak| = rk.

The Schwarz problem can be viewed as the classical Dirichlet problem
with respect to the function Reψ(z) harmonic in Dk. A solution of the
Schwarz problem can be represented in the form [6, 9]

ψ(z) =
1

πi

\
∂Dk

g(τ)

τ − z
dτ − 1

2πi

\
∂Dk

g(τ)

τ − ak

dτ.

If g(t) is Hölder continuous on ∂Dk \{w}, and the limit values g(±w) exist,
then the last formula holds, but ψ(z) is almost bounded at w (see [6]), i.e.
we have the representation

ψ(z) = ψ0(z) − 1

πi
[g(w + 0) − g(w − 0)] ln(z − w).

Here the function ψ0(z) is analytic in Dk and continuous in Dk.

The R-linear problem [5, 6, 10] for the contour
⋃n

k=0
∂Dk consists in

finding ϕ(z) analytic in G1 and G2, and ϕk(z) analytic in Dk with the
boundary condition

(1.4) ϕ(t) = ϕk(t) − λϕk(t) + g(t), |t− ak| = rk, k = 0, 1, . . . , n.

We assume that ϕ(z) is continuous in G1 and G2 separately (1), and contin-
uously differentiable in (G1 ∪G2) \W and ϕ(0) = ϕ(∞) = 0. The function
ϕk(z) is continuously differentiable in Dk \W and almost bounded at wk

and wk+1. We shall consider the R-linear problem with λ constant and g(t)
Hölder continuous in ∂G1 ∪ ∂G2. If |λ| < 1 then the R-linear problem has a
unique solution [5].

2.Reducing to functional equations. Let us continue the given func-
tion f(t) to ∂Dk (k = 0, 1, . . . , n) in such a way that f(t) is continuously
differentiable in

⋃n
k=0

∂Dk. Consider in G2 the auxiliary problem

(2.1) Reϕ(t) = f(t), t ∈ ∂G2,

where ϕ(z) is analytic in G2, continuous in G2 and continuously differen-
tiable in G2 \W . We consider the equalities (1.1) and (2.1) as a boundary
value problem with respect to ϕ(z) for z ∈ G1 and z ∈ G2. Consider the
problem (1.4) with λ = 1:

(2.2) ϕ(t) = ϕk(t) − ϕk(t) + fk(t), |t− ak| = rk, k = 0, 1, . . . , n,

with respect to ϕ and ϕk. Here fk(t) is a solution of the Schwarz problem
Re fk(t) = f(t), |t− ak| = rk, for the fixed disc Dk.

(1) The limit values of ϕ(z) in W for G1 and G2 can be different.
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Lemma 2.1. The function ϕ(z) is a solution of the problem (1.1), (2.1),
if and only if ϕ(z) satisfies (2.2) with some ϕk(z).

P r o o f. If ϕ(z) is a solution of (2.2), then ϕ(z) satisfies (1.1) and (2.1).
Conversely, let ϕ(z) be a solution of the problem (1.1), (2.1). Then the real
part of (2.2) is valid. We have to construct a function ϕk(z) such that the
imaginary part of (2.2),

(2.3) 2 Imϕk(t) = Im(ϕ(t) − fk(t)), |t− ak| = rk,

also holds. Consider (2.3) as a Schwarz problem in the disc Dk with respect
to −2iϕk(z). It follows from the general theory that the function ϕ(z) con-
tains a purely imaginary additive constant iγ1 in G1 and, generally speaking,
another constant iγ2 in G2. Hence the right side of (2.3) is discontinuous at
wk and wk+1. Therefore we have [6]

ϕk(z) =
1

2π

\
∂Dk

Im(ϕ(τ) − fk(τ))

τ − z
dτ − 1

4π

\
∂Dk

Im(ϕ(τ) − fk(τ))

τ − ak

dτ

= − 1

2π
Im∆ϕ(wk) ln(z − wk) + ϕ0

k(z)

near z = wk. Here ϕ0
k(z) is analytic in Dk and continuous in Dk, and

∆ϕ(wk) := lim
z→wk, z∈G1

ϕ(z) − lim
z→wk, z∈G2

ϕ(z).

An analogous representation holds near z = wk+1. So, the function ϕk(z) is
represented in the form

(2.4) ϕk(z) = Φk(z) + pk ln(z −wk) + qk ln(z − wk+1), z ∈ Dk,

where pk, qk are real constants. The branch of the logarithm is fixed in such
a way that the cut connecting the points z = wk and z = ∞ lies in G2 ∪W .
The function Φk(z) is analytic in Dk, continuous in Dk and continuously
differentiable in Dk \W . So, assuming that ϕ(z) satisfies (1.1) and (2.1) we
have constructed ϕk(z) in such a way that (2.2) holds.

The lemma is proved.

In order to reduce (2.2) to a system of functional equations we introduce
the function

Ω(z) =



























ϕk(z) +
n

∑

m=0
m 6=k

ϕm(z∗m) + fk(z), z ∈ Dk,

ϕ(z) +

n
∑

m=0

ϕm(z∗m), z ∈ G1 ∪G2,

where z∗m is the inversion with respect to the circumference |t− am| = rm.
Using (2.2) one can see that Ω(z) is continuous in C except in the set W ,
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where it is almost bounded. By Liouville’s theorem, Ω(z) = constant. Let
us calculate this constant:

Ω(z) = Ω(0) = ϕ(0) +

n
∑

m=0

ϕm(0∗m), z ∈ C.

From the definition of Ω(z) in Dk and (2.4) we obtain

(2.5) Φk(z) = −
n

∑

m=0
m 6=k

[Φm(z∗m)−Φm(0∗m)]− fk(z) +ϕ(0) +Φk(0∗k)−αk(z),

where

αk(z) = pk ln(z − wk)/0∗k − wk + qk ln(z − wk+1)/0∗k − wk+1(2.6)

−
n

∑

m=0
m 6=k

[

pm ln

[

z∗m −wm

0∗m − wm

]

+ qm ln

[

z∗m − wm+1

0∗m − wm+1

]]

.

The points wm and wm+1 belong to ∂Dm. Hence (wm)∗m =wm and (wm+1)∗m
= wm+1. Let us transform the expression appearing in (2.6)

ln(z∗m − wm) = ln(z∗m − (wm)∗m) = ln
r2m(z − wm)

(z − am)(am − wm)
.

Similarly,

ln(z∗m − wm+1) = ln
r2m(z − wm+1)

(z − am)(am − wm+1)
.

It follows from (2.5) that the function αk(z) has to be continuous in Dk. On
the other hand, the logarithms appearing in (2.6) have jumps along the curve
connecting the points z = wk, z = ak and z = wk+1. This contradiction can
be overcome only if pk = qk−1, k = 0, 1, . . . , n. Write the functions αk(z) in
the form αk(z) =

∑n
j=0

pjH
j
k(z), where

(2.7)

Hk
k (z) = ln

ak(ak − wk)(z − ak−1)

r2kak−1

,

Hk+1

k (z) = ln
ak(ak − wk+1)(z − ak+1)

r2kak+1

,

Hj
k(z) = ln

0∗j −w∗
j · 0∗j−1 − w∗

j

z∗j −w∗
j · z∗j−1

− w∗
j

, j 6= k, k + 1.

The function ϕ(z) is analytic in G1 and G2, continuous in G1 and G2.
Hence Cauchy’s theorem can be applied:

T
∂G1

ϕ(z) dz +
T
∂G2

ϕ(z) dz = 0.
Let us rewrite the last equality in the form

(2.8)
n

∑

k=0

\
∂Dk

ϕ(z) dz = 0.
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From the definition of Ω(z) and the representation (2.4) we have

ϕ(z) = ϕ(0) −
n

∑

m=0

[Φm(z∗m) − Φm(0∗m)] −
n

∑

m=0

[pm ln(z∗m −wm)(2.9)

+ pm+1 ln(z∗m − wm+1)], z ∈ G1 ∪G2.

It follows from the original definition of ln(z −wm) that the cut connecting
the points z = wm and z = am corresponds to the function ln(z∗m − wm).
The cut from z = wm+1 to z = am corresponds to ln(z∗m − wm+1). Using
(2.9) let us calculate the integral (2.8). Since the terms with m = k under
the logarithm sign in (2.9) are equal to πi, we have

∑n
k=0

(pk + pk+1) = 0,
or simply

(2.10)

n
∑

k=0

pk = 0.

Consider the Banach space C of functions continuous in ∂G1 ∪ ∂G2 =
⋃n

k=0
∂Dk with norm ‖f‖ := max0≤k≤n max∂Dk

|f(t)| corresponding to uni-
form convergence. Let us introduce the closed subspace C+ ⊂ C consisting
of the functions analytically continuable to all discs Dk. For one disc we
obtain the classical space of functions analytic in the disc and continuous in
its closure [7].

Consider the system (2.5) as an equation

(2.11) Φ = AΦ+ F

in C+, where the operator A is defined by

AΦ(z) := −
n

∑

m=0
m 6=k

[Φm(z∗m) − Φm(0∗m)], z ∈ Dk (k = 0, 1, . . . , n).

Here Φ ∈ C+ and Φ(z) := Φk(z) in Dk.

3. Solution of functional equations

Lemma 3.1. The homogeneous equation (2.11), Φ = AΦ, has only the

zero solution.

Lemma 3.2. The non-homogeneous equation (2.11), Φ = AΦ+ F , has a

unique solution in C+ for each F ∈ C+.

P r o o f (of Lemmas 3.1 and 3.2). Let Φ(z) be a solution of (2.11) in C+.
Hence the functions Φk(z) := Φ(z) are analytic in Dk and continuous in Dk.
Let us introduce the function

(3.1) ψ(z) := −
n

∑

m=0

[Φm(z∗m) − Φm(0∗m)],
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analytic in G1 ∪G2 and continuous in G1 ∪G2. From (2.11) we have

ψ(t) = Φk(t) − Φk(t) − F (t) + Φk(0∗k), |t− ak| = rk.

Let us rewrite the last equality in the form

Reψ(t) = − ReF (t) + ReΦk(0∗k), |t− ak| = rk,(3.2)

2 ImΦk(t) = Im[ψ(t) + F (t) + Φk(0∗k)], |t− ak| = rk.(3.3)

Since the functions F (t) and ψ(t) are continuous in ∂Dk, from (3.2) we get
ReΦk(0∗k) = ReΦk+1(0∗k+1

). Therefore ReΦk(0∗k) = constant for each k. If
F (t) ≡ 0 then from (3.2) we have ψ(z) ≡ constant. But ψ(0) = 0, hence
ψ(z) ≡ 0. It follows from the definition (3.1) and the decomposition theorem
[3] that each function Φm(z∗m)−Φm(0∗m) is a constant. Therefore, using the
relation Φ = AΦ we have Φm(z) ≡ 0 for each m. Lemma 3.1 is proved.

By [6] and Lemma 3.1 the non-homogeneous problem (3.2) with respect
to ψ(z) analytic in G1∪G2 has a unique solution up to an additive constant
c+ iγ. Hence the problem (3.3) with respect to Φk(z) has a unique solution
up to an arbitrary additive constant which vanishes in (2.11).

Lemma 3.2 is proved.

Theorem 3.1 ([8]). If the equation

(3.4) U = λAU + F

has a unique solution for each |λ| ≤ 1, then the series

(3.5) U =

∞
∑

m=0

AmF

converges in C+.

Theorem 3.2. The equation (2.11) has a unique solution in C+ which

can be found by the method of successive approximations converging in C+.

P r o o f. The proof is based on Theorem 3.1. Let |λ| = 1. Then equation
(3.4) reduces to the same equation with λ = 1 by the change of variable
z =

√
λZ, ak =

√
λAk, Ωk(Z) = Ψk(z). According to Lemma 3.2 the last

problem has a unique solution.
Let |λ| < 1. We introduce the function ψ(z) := −λ∑n

m=0
[Φm(z∗m) −

Φm(0∗m)]. By (3.4) we have the following R-linear problem:

ψ(t) = Φk(t) − λΦk(t) − fk(t), |t− ak| = rk, k = 0, 1, . . . , n,

with respect to ψ(z) analytic in G1 ∪ G2 and continuous in G1 ∪G2, and
Φk(z) analytic in Dk and continuous in Dk. The last problem has a unique
solution, since |λ| < 1 (see [5]). Using Theorem 3.1 we conclude the proof.

Applying the method of successive approximations to the system (2.5)
let us find Φk(z∗k)−Φk(0∗k) = Bkh(z), where h(z) := hk(z) for |z−ak| ≤ rk,
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hk(z) := fk(z) + αk(z), the operator Bk has the form

Bkh(z) := − [hk(z∗k) − hk(0∗k)] +

n
∑

k1=0

k1 6=k

[hk1
(z∗k1k) − hk1

(0∗k1k)](3.6)

−
n

∑

k1=0

k1 6=k

n
∑

k2=0

k2 6=k1

[hk2
(z∗k2k1k) − hk2

(0∗k2k1k)] + . . . ,

|z − ak| > rk.

It follows from the definitions of hk(z) and αk(z) that

(3.7) Φk(z∗k) − Φk(0∗k) = Bkf(z) +
n

∑

j=0

pjD
j
k(z),

where Dj
k(z) := BkHj(z), Hj(z) := Hj

k(z) for |z − ak| ≤ rk. The functions

Hj
k(z) have the form (2.7).

Substituting z = 0∗k into (2.5) we obtain

Φk(0∗k) =
n

∑

m=0
m 6=k

[

(Bmf)(0∗k) +
n

∑

j=0

pjD
j
m(0∗k)

]

− fk(0∗k) + ϕ(0)(3.8)

+ Φk(0∗k) −
n

∑

j=0

pjH
j
k(0∗k).

The real parts of the relations (3.8) together with (2.10) constitute a real
system of n + 2 linear algebraic equations with respect to n + 2 unknown
values Reϕ(0), p0, p1, . . . , pn. After solving the system using (2.9) we arrive
at the formula

ϕ(z) = Reϕ(0) + i Imϕ(0) −
n

∑

m=0

(

Bmf(z) +
n

∑

j=0

pjBmHj(z)
)

(3.9)

+ i

n
∑

m=0

(pm ln(z∗m −wm) + pm+1 ln(z∗m − wm+1)),

z ∈ G1 ∪G2,

where i Imϕ(0) is an arbitrary imaginary constant. We prove that the system
(2.10), Re (3.8) always has a unique solution. The system (2.10), Re (3.8)
corresponding to the homogeneous system (f = 0 and i Imϕ(0) = 0) has
only the zero solution, because in the opposite case we would get non-zero
functions (2.4) from which it is impossible to get ϕ(z) ≡ 0 using (2.9) and
taking into account the equality i Imϕ(0) = 0. The last assertion is based
on the decomposition theorem [3]. So we have proved the following
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Theorem 3.3. The solution of the problem (1.1), (2.1) has the form (3.9)
where i Imϕ(0) is an arbitrary constant. The numbers Reϕ(0), p0, p1, . . . , pn

are defined from the system (2.10), Re (3.8) of linear algebraic equations,
which always has a unique solution.

Let us apply the last theorem to construct the conformal mapping ω(z)
from Section 1. Assume that f(t) = − ln |t|. Then fk(z) = − ln z, z ∈ Dk,
where the branch of the logarithm is such that the cut connecting z = 0 and
z = ∞ lies in G1 ∪W ∪G2.

In (3.9) let us calculate

(3.10)

n
∑

m=0

Bmf(z)

=
n

∑

m=0

[ln z∗m − ln 0∗m] −
n

∑

m=0

n
∑

k1=0

k1 6=m

[ln z∗k1m − ln 0∗k1m] + . . .

= ln
n

∏

m=0

z∗m
0∗m

n
∏

m=0

n
∏

k1=0

k1 6=m

0∗k1m

z∗k1m

n
∏

k=0

n
∏

k1=0

k1 6=m

n
∏

k2=0

k2 6=k1

z∗k2k1m

0∗k2k1m

. . .

Finally, let us describe a finite algorithm for constructing the conformal
mapping in analytic form.

(i) Construct Hj(z) := Hj
k(z) for |z − ak| ≤ rk, where the functions

Hj
k(z) have the form (2.7).

(ii) Construct Dj
k(z) := (BkH

j)(z) and Bkf(z) according to (3.6) and
(3.10).

(iii) Solve the real system of n+ 2 linear algebraic equations


















































n
∑

j=0

pj

[

n
∑

m=0
m 6=k

Re(Dj
m(0∗k) −Hj

k(0∗k))
]

+ Reϕ(0)

= Re
[

fk(0∗k) −
n

∑

m=0
m 6=k

(Bmf)(0∗k)
]

, k = 0, 1, . . . , n,

n
∑

j=0

pj = 0,

with respect to p0, p1, . . . , pn, Reϕ(0).

(iv) The required conformal mapping is ω(z) = z expϕ(z), where the
function ϕ(z) has the form (3.9), i Imϕ(0) is an arbitrary pure imaginary
constant.
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