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Conformal mapping of the domain bounded by a circular
polygon with zero angles onto the unit disc

by VLADIMIR MITYUSHEV (Stupsk)

Abstract. The conformal mapping w(z) of a domain D onto the unit disc must satisfy
the condition |w(t)] =1 on 0D, the boundary of D. The last condition can be considered
as a Dirichlet problem for the domain D. In the present paper this problem is reduced
to a system of functional equations when 0D is a circular polygon with zero angles. The
mapping is given in terms of a Poincaré series.

1. Introduction. This paper is devoted to constructing conformal maps
from circular polygons to the unit disc. The general theory [7] is based on
differential equations. It allows us to construct conformal mappings in closed
form for special polygons [4, 12-16] having five or less vertices.

In the present paper we use a boundary value problem [6, 9] to construct
the conformal mapping for polygons with zero angles. The number of vertices
can be arbitrary. As is well known [9], if for a certain simply connected
domain D we know a solution of the Dirichlet problem for the Laplace
equation, then it is possible to derive the function conformally transforming
this domain onto the unit disc.

Let w(z) be the unknown conformal mapping and w(0) = 0, where the
point z = 0 belongs to D. The function w(z) has to satisfy the bound-
ary condition |w(t)| = 1, t € 9D, where 0D is the boundary of D. Let
us introduce the auxiliary function ¢(z) = Inz~'w(z) which is analytic
and univalent in D, and continuous in D. The branch of the logarithm is
fixed in an arbitrary way. The function ¢(z) satisfies the boundary condi-
tion Rey(t) = —In|t|, t € OD. The last problem has a unique solution
up to an arbitrary additive purely imaginary constant iy (see [9]). Then
the conformal mapping w(z) is determined up to the factor exp i+, which
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corresponds to a rotation of the unit disc. This also applies to a circular
polygon.

Let us consider mutually disjoint discs Dy, := {z € C : |z — ax| < i}
with boundaries 0Dy, := {t € C: |[t—ag| =rr} (k=0,1,...,n). Let 9D, be
tangent to 0D, at the point w; 41 for i = 0,1,...,n, where the subscripts
are taken modulo n + 1. For instance, this means w11 = wy. Let the
circumferences divide the plane C into disjoint discs Dy, and two domains G4
and G5 := the complement of UZ:O D, UG. Here 0G1U0G, = UZ:O 0Dy,
0G1 NOGy =: W is the finite set {wg, wy,...,w,}. The circumferences 0Dy,
are oriented in the positive sense. Suppose the point z = 0 belongs to G,
and the point z = co belongs to Gs.

We solve the following boundary value problem:

(1.1) Rep(t) = f(t), te€ 0Gy,

where f(t) is a given function continuously differentiable on 0G1, ¢(2) is
an unknown function analytic in G4, continuous in G; and continuously
differentiable in G; \ W. The problem (1.1) is a particular case of the Hilbert
boundary value problem [6]

(1.2) Re \(t)p(t) = f(t), € dG.

Consider the inversions with respect to |t — ag| = 7:

2
r
Zp = =P+ ay,
Z — Qg

and the Mobius transformations
Zky = (25,5, Where by =0,1,...,n, kp =0,1,...,n;ky # Ky,

(1.3)
* P * * _
Zk1k2~~~k57n . — (Zkgkiy,...k,m)kl’ Where kl?"'Jk’l’n —0, 1,...771

and kj # kj4q1 for j = 1,...,m — 1. The number m is called the level of
(1.3). The functions (1.3) generate a Kleinian group £ [1, 2].

In [11] the exact solution of the Hilbert problem (1.2) has been con-
structed for each multiply connected circular domain. In the present paper
the results of [11] are applied to the problem (1.1). As a conclusion we obtain
the conformal mapping of the domain G onto the unit disc. This mapping is
given by the series (3.6) corresponding to the group £ [1, 2]. Necessary and
sufficient conditions of the absolute convergence of the Poincaré series have
been found in [1, 2]. We prove the uniform convergence of the series (3.6)
which is closely related to the Poincaré series. This does not contradict
[1, 2] because there is a difference between absolute and uniform conver-
gence.

The Schwarz problem [6, 9] for the disc Dy, (k fixed) consists in finding a
function 1 (z) analytic in Dy and continuous in D}, satisfying the boundary
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condition Re 9 (t) = ¢(t), |t —ax| = ri, where g(t) is a given function Hélder
continuous on |t — a| = 7.

The Schwarz problem can be viewed as the classical Dirichlet problem
with respect to the function Re(z) harmonic in Dj. A solution of the
Schwarz problem can be represented in the form [6, 9]

1 1
W(z) = — | 90 4 _ e 90 4
T T2 T h Tk
If g(t) is Holder continuous on 0Dy \ {w}, and the limit values g(+w) exist,
then the last formula holds, but ¢(z) is almost bounded at w (see [6]), i.e.

we have the representation
1
U(z) = 9%(2) — —l9(w+0) = g(w — 0)]In(z — w).

Here the function ¢°(z) is analytic in Dj, and continuous in Dy.

The R-linear problem [5, 6, 10] for the contour |J;_, 0Dy consists in
finding ¢(z) analytic in G; and Gs, and @g(z) analytic in Dy with the
boundary condition

(1.4) o(t) = r(t) — i (t) +g(t), |t—akx| =7, k=0,1,...,n.

We assume that ¢(z) is continuous in G; and Gy separately (1), and contin-
uously differentiable in (G; UG5) \ W and ¢(0) = ¢(c0) = 0. The function
@r(2) is continuously differentiable in Dy, \ W and almost bounded at wy,
and wy41. We shall consider the R-linear problem with A constant and g(t)
Hoélder continuous in dG; U9JGs. If |A| < 1 then the R-linear problem has a
unique solution [5].

2. Reducing to functional equations. Let us continue the given func-
tion f(t) to Dy (k = 0,1,...,n) in such a way that f(¢) is continuously
differentiable in UZ:O 0Dy,. Consider in GG9 the auxiliary problem

(2.1) Rep(t) = f(t), te€ dG,,

where ((z) is analytic in G, continuous in G5 and continuously differen-
tiable in Gy \ W. We consider the equalities (1.1) and (2.1) as a boundary
value problem with respect to ¢(z) for z € G; and z € G5. Consider the
problem (1.4) with A = 1:

(2.2)  o(t) =er(t) — k) + fu(), [t—ar|=re, k=0,1,...,n,

with respect to ¢ and ¢y. Here fi(t) is a solution of the Schwarz problem
Re fr(t) = f(t), |t — ax| = 7k, for the fixed disc Dy.

(1) The limit values of ¢(z) in W for G1 and Gz can be different.
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LEMMA 2.1. The function ¢(z) is a solution of the problem (1.1), (2.1),
if and only if p(z) satisfies (2.2) with some @i (z).

Proof. If p(z) is a solution of (2.2), then o(z) satisfies (1.1) and (2.1).
Conversely, let ¢(z) be a solution of the problem (1.1), (2.1). Then the real
part of (2.2) is valid. We have to construct a function ¢ (z) such that the
imaginary part of (2.2),

(2.3) 2Im ey (t) = Im(p(t) — fr(t), [t — ax| =7,

also holds. Consider (2.3) as a Schwarz problem in the disc Dy with respect
to —2ipy(z). It follows from the general theory that the function ¢(z) con-
tains a purely imaginary additive constant iy; in G and, generally speaking,
another constant iy, in Go. Hence the right side of (2.3) is discontinuous at
wy and wg41. Therefore we have [6]

1 I - 1 I -
)= L [ WO AE) 1 ) A0,

2w T—2Z 47 T — ag
8Dk aDk
1

=5 Im Ap(wy) In(z — wy) + ©2(2)
near z = wy. Here (9 (z) is analytic in Dy and continuous in Dy, and
A = li - li .

plwp) = lim_ o(z) = lim o)

An analogous representation holds near z = wg11. So, the function pg(2) is
represented in the form
(2.4) or(z) = Pp(2) + peIn(z — wy) + g In(z — wit1), 2z € Dy,
where pg, qi are real constants. The branch of the logarithm is fixed in such
a way that the cut connecting the points z = wy and z = oo lies in Go UW.
The function @ (z) is analytic in Dy, continuous in Dy and continuously
differentiable in Dy, \ W. So, assuming that ¢(z) satisfies (1.1) and (2.1) we
have constructed ¢ (z) in such a way that (2.2) holds.

The lemma is proved.

In order to reduce (2.2) to a system of functional equations we introduce
the function

ou(2)+ Y em(zh) + ful2), 2 €Dy,

m=0
.Q(Z) — m#k
n
o(z) + Z om(25), z € G1 UGa,
m=0
where z; is the inversion with respect to the circunlference [t — am| = Tm.

Using (2.2) one can see that {2(z) is continuous in C except in the set W,
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where it is almost bounded. By Liouville’s theorem, {2(z) = constant. Let
us calculate this constant:

02(2) = 200) = 0(0) + > 9m(0;,), z€C.
m=0

From the definition of £2(z) in Dy and (2.4) we obtain

(2.5) Pu(2) = = D [Bun(zh) — P (05,)] — fi(2) + 0(0) + D1 (0F) — an(2),

m=0
m#k

where

(2.6)  ag(z) =prIn(z —wi) /05 — wi + g In(z — Wi41) /05 — Wip1

n * *
S [pmln [m:ﬂ T gmin [%H
e 0%, — wm, 0%, — Wmt1
m#k
The points w,, and w,,+1 belong to dD,,,. Hence (wy,)’, =wy, and (Wp41)5,
= Wyp+1. Let us transform the expression appearing in (2.6)

72, (2 — wp,)

2 — am)(@m — W)

In(, ) = In(z5, — (w)f) = In ¢

Similarly,

72 (2 — Wpt1)

(z = am)(@m — Wmy1)

It follows from (2.5) that the function ay(z) has to be continuous in Dy. On
the other hand, the logarithms appearing in (2.6) have jumps along the curve
connecting the points z = wy, 2 = a and z = wy41. This contradiction can

be overcome only if p, = gr—1, K =0,1,...,n. Write the functions ay(z) in
the form ay(2) = 377 p; Hy(2), where

In(z¥, —wmy1) =In

ak(ar —wg)(z — ag—1)

HF(z) =1
k(z) il rzak—l )
ag(ar — weq1)(z — apq1)
(27) Hf ! (z) = n 2 =
kWEk+1
A 0 —w 0% . —w
Hi(z)=mZ—L I jtfkk+l

g% L o*
Zp Wizl —w

J
The function ¢(z) is analytic in G; and G5, continuous in G; and Gs.
Hence Cauchy’s theorem can be applied: SBGl o(z)dz + San w(z)dz = 0.

Let us rewrite the last equality in the form

(2.8) > | ez)dz=0.



232 V. Mityushev

From the definition of £2(z) and the representation (2.4) we have

(29) ¢(z) = 0(0) = Y [@nlzr,) = Ln(05,)] = D [ (2, — win)

m=0 m=0

+ Pm+1 1H(Z.;kn — wm+1)], S 61 U 62.

It follows from the original definition of In(z — w,,) that the cut connecting
the points z = w,, and z = a,, corresponds to the function In(z}, — w,,).
The cut from z = wy,4+1 to z = a, corresponds to In(z¥, — wy,4+1). Using
(2.9) let us calculate the integral (2.8). Since the terms with m = k under
the logarithm sign in (2.9) are equal to i, we have >} _,(px + pr+1) = 0,
or simply

(2.10) > pr=0.
k=0

Consider the Banach space C' of functions continuous in 0G; U 0Go =
Ur—o 0Dy, with norm || f|| := maxo<x<, maxgp, |f(t)| corresponding to uni-
form convergence. Let us introduce the closed subspace CT C C consisting
of the functions analytically continuable to all discs Dj. For one disc we
obtain the classical space of functions analytic in the disc and continuous in
its closure [7].

Consider the system (2.5) as an equation

(2.11) ®=Ad+F
in C*, where the operator A is defined by

AD(2) == > [@m(2,) — Pm(0;,)], z€ Dy (k=0,1,...,n).
m=0
m#k

Here ® € Ct and &(z) := ®y(2) in Dy.

3. Solution of functional equations

LEMMA 3.1. The homogeneous equation (2.11), & = AP, has only the
zero solution.

LEMMA 3.2. The non-homogeneous equation (2.11), & = A® + F, has a
unique solution in Ct for each F € C'T.

Proof (of Lemmas 3.1 and 3.2). Let &(z) be a solution of (2.11) in C*.
Hence the functions @ (z) := ®(z) are analytic in Dy, and continuous in Dy.
Let us introduce the function

(3.1) U(2) = = Y [@B(z) — P (03,)],
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analytic in G; U Gy and continuous in G; U G5. From (2.11) we have
Y(t) = Pp(t) — Pi(t) — F(t) + Pr(07), |t — ar| =7

Let us rewrite the last equality in the form

(3.2) Re(t) = — Re F(t) + Re P4 (0}), |t — ak| = r,

(3.3) 2Im @ (t) = Im[p(t) + F(t) + Pr(03)], [t —ak| = .

Since the functions F(t) and v (t) are continuous in 9Dy, from (3.2) we get
Re ®1,(0;) = Re®11(0;, ;). Therefore Re®;(0;) = constant for each k. If
F(t) = 0 then from (3.2) we have 1(z) = constant. But ¢(0) = 0, hence
¥(z) = 0. It follows from the definition (3.1) and the decomposition theorem
[3] that each function @,,(z%,) — P, (07,) is a constant. Therefore, using the
relation @ = AP we have @,,,(z) = 0 for each m. Lemma 3.1 is proved.

By [6] and Lemma 3.1 the non-homogeneous problem (3.2) with respect
to 1(z) analytic in G UG5 has a unique solution up to an additive constant
c+iv. Hence the problem (3.3) with respect to @, (z) has a unique solution
up to an arbitrary additive constant which vanishes in (2.11).

Lemma 3.2 is proved.

THEOREM 3.1 ([8]). If the equation

(3.4) U=MAU + F
has a unique solution for each |\| < 1, then the series
(3.5) U=> A"F

m=0

converges in CT.

THEOREM 3.2. The equation (2.11) has a unique solution in CT which
can be found by the method of successive approximations converging in CT.

Proof. The proof is based on Theorem 3.1. Let |\| = 1. Then equation
(3.4) reduces to the same equation with A = 1 by the change of variable
2 =VAZ, ar, = VN Ay, 21.(Z) = ¥(2). According to Lemma 3.2 the last
problem has a unique solution.

Let |A| < 1. We introduce the function 9 (z) := =AY [ @ (25,) —

?,,(0%,)]. By (3.4) we have the following R-linear problem:

¢(t) = st(t) - Adjk(t) - fk(t)7 ’t - ak’ =Tk, k= 07 17 sy,
with respect to ¢(z) analytic in G; U Gg and continuous in G1 U G2, and
& (z) analytic in Dy, and continuous in Dy. The last problem has a unique
solution, since |A| < 1 (see [5]). Using Theorem 3.1 we conclude the proof.

Applying the method of successive approximations to the system (2.5)
let us find @y (2}) — Pi(05) = Brh(z), where h(z) := hy(z) for |z —ag| < 7y,
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hi(2) = fr(2) + ag(z), the operator B has the form

n

(3.6) Brh(z) = — [hu(z) — (O] + > [, (2h,5) — Ty (05,1)]
i
- Z Z Py (2751, 1) — Pea (0% )] -
k1=0 ko=0
k1#k kao#ky

|z — ak| > 7.

It follows from the definitions of hy(z) and ay(z) that

(3.7) Dr(2f) — Pi(0;) = Brf(2 +ZPJD]

where Di( ) :=BrH,(z), Hj(z) := Hj( ) for |z — a| < 7. The functions
Hj (z) have the form (2.7).
Substituting z = 05 into (2.5) we obtain

(38) @u(0)) = Y |[(Buf)00) +ij (0)] = £1(0) + ¢ (0)

m=0
m#k
+ @ (0F) ijH] 0;)-

The real parts of the relations (3.8) together with (2.10) constitute a real
system of n + 2 linear algebraic equations with respect to n + 2 unknown
values Re ¢(0), po,p1,.-.,Pn. After solving the system using (2.9) we arrive
at the formula

n

(39) ¢(2) = Reg(0) +iTmp(0) = S (B (2) + D B Hj(2))

m=0 §=0

+1 Z pm IH - wm) + D41 IH( wm—i—l))a
ze G U GQ,

where i Im ¢(0) is an arbitrary imaginary constant. We prove that the system
(2.10), Re (3.8) always has a unique solution. The system (2.10), Re (3.8)
corresponding to the homogeneous system (f = 0 and ¢Im p(0) = 0) has
only the zero solution, because in the opposite case we would get non-zero
functions (2.4) from which it is impossible to get ¢(z) = 0 using (2.9) and
taking into account the equality iIm ¢(0) = 0. The last assertion is based
on the decomposition theorem [3]. So we have proved the following
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THEOREM 3.3. The solution of the problem (1.1), (2.1) has the form (3.9)
where i Im p(0) is an arbitrary constant. The numbers Re p(0),po, D1, -, Pn
are defined from the system (2.10), Re(3.8) of linear algebraic equations,
which always has a unique solution.

Let us apply the last theorem to construct the conformal mapping w(z)
from Section 1. Assume that f(t) = —In|t|. Then fi(z) = —Inz, z € Dy,
where the branch of the logarithm is such that the cut connecting z = 0 and
z = oo lies in Gy UW U Gs.

In (3.9) let us calculate

(3.10) ) B f(2)
m=0

2 Om 2*21m
-m [0 I [1 I IJ e

m=0 m=0 k;=0 klmk 0 k1=0 ko=0 Okzklm
ki1#m ki#m kao#ky

Finally, let us describe a finite algorithm for constructing the conformal
mapping in analytic form.
(i) Construct H’(z) := H,]c(z) for |z — ax| < rk, where the functions
H] (%) have the form (2.7).
(ii) Construct Di(z) = (BrH?)(2) and By f(z) according to (3.6) and
(3.10).
(iii) Solve the real system of n + 2 linear algebraic equations

zpj[z Re(D},(07) — HL(0}))] + Reo(0)

m;ék

= Re [£4(07) = D (Bu)OD)], k=0,1,....m,

m=0

m#k
with respect to po,p1, ..., Pn, Re(0).
(iv) The required conformal mapping is w(z) = zexp p(z), where the
function ¢(z) has the form (3.9), iIm(0) is an arbitrary pure imaginary
constant.
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