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Commutators of diffeomorphisms of
a manifold with boundary

by Tomasz Rybicki (Rzeszów)

Abstract. A well known theorem of Herman–Thurston states that the identity com-
ponent of the group of diffeomorphisms of a boundaryless manifold is perfect and simple.
We generalize this result to manifolds with boundary. Remarks on Cr-diffeomorphisms
are included.

1. Introduction. The aim of this paper is to extend a well known theo-
rem of M. Herman and W. Thurston to manifolds with boundary. Let us fix
the notation. Let M be an n-dimensional smooth manifold, and Diffr(M)0
denote the totality of Cr-diffeomorphisms of M which are isotopic to the
identity through a compactly supported isotopy. It is clear that (as a re-
sult of local contractibility) Diffr(M)0 is the identity component in the Cr

topology iff M is compact.

Theorem 1 (Herman, Thurston, Mather). If M is a boundaryless man-
ifold , and 1 ≤ r ≤ ∞, r 6= n+ 1, then Diffr(M)0 is a simple group.

D. B. A. Epstein [2] demonstrated for a large class of transitive groups
of homeomorphisms that the perfectness yields the simplicity (the converse
statement is trivial). By appealing to a difficult K.A.M. theory Herman [5]
proved that Diff∞(Tn)0 is perfect, Tn being the n-dimensional torus. Next,
Thurston announced in [12] (for the proof, see [1]) that the result of Herman
can be extended to an arbitrary manifold by making use of Kan simplices.
Finally, J. N. Mather in [7] showed the assertion for any positive integer r
not equal to n+ 1 by a completely different argument.

The case of manifolds with boundary has been considered by A. Mas-
son [6] who extended the results of F. Sergeraert [11]. By making use of a
different method than the two above they proved
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Theorem 2. If M is a manifold with boundary , and Diff∞∞(M) is the
group of all C∞ diffeomorphisms which are infinitely tangent to the identity
on the boundary , then Diff∞∞(M)0 (defined as in the previous theorem) is a
perfect group.

It is interesting to consider the group of all diffeomorphisms of a manifold
with boundary. Such a group cannot be simple for obvious reasons, but the
problem of its perfectness is still meaningful. The following result can be
viewed as an extension of the above theorems.

Theorem 3. Let M be an n-dimensional manifold with boundary , n ≥ 2.
Then Diff∞(M)0 is perfect.

The proof consists in a modification and a slight correction of an argu-
ment from Epstein [3] which, in turn, extends Mather [7, I]. The case of Cr

diffeomorphisms is considered in the last section, and a partial analogue of
Theorem 3 is announced.

Throughout, all manifolds are supposed to be C∞, connected and second
countable.

2. Notation and preliminary results

2.1. Factorization property . Let us recall the following

Proposition 1. Let 1 ≤ r ≤ ∞. If f ∈ Diffr(M)0 is sufficiently near the
identity , and supp(f) ⊂ U1 ∪ . . .∪Ur, where Ui are open balls or open half-
balls, then there is a factorization f = fs . . . f1 such that supp(fj) ⊂ Ui(j)

for j = 1, . . . , s.

For the proof see [8, Lemma 3.1]. The proof is still valid in the case of
manifolds with boundary.

The factorization property enables us to reduce our considerations to the
case M = Rn or M = Rn

+ = {xn ≥ 0}. We shall deal with the case M = Rn
+

exclusively as the case M = Rn has been solved in [3]. From now on we
adopt the notation

Diff(n)0 = Diff∞(Rn
+)0.

Next for any finite interval U in Rn
+ let DiffU (n)0 be the totality of elements

of Diff(n)0 compactly supported in U .

2.2. Fixed point theory . We shall appeal to the following well-known
theorem.

Theorem 4 (Schauder–Tychonoff). Let C be a convex and compact set
in a locally convex topological vector space E. Then every continuous map
F : C → C has a fixed point.

This will be applied to the space of C∞ mappings.
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2.3. The space of C∞ mappings. For any map u : Rn
+ → Rn

+ of class C∞

we have the sequence of seminorms

‖u‖r = sup
x
‖Dru(x)‖, r = 1, 2, . . . ,

where Dru(x) denotes the rth differential of u at x, and ‖ · ‖ is the usual
norm on the space of r-linear mappings between normed vector spaces. These
seminorms may be infinite in general. However, we restrict ourselves to the
space of all C∞ maps u : Rn

+ → Rn
+ having support contained in a fixed

finite interval U . Then ‖ ·‖r become norms. Notice that the Cr topology on
this space is defined by the norm ‖ · ‖r, and the C∞ topology is defined by
the sequence of these norms. Of course ‖u+ id‖r = ‖u‖r for r ≥ 2.

For each C∞ map u of Rn
+ we define

Mr(u+ id) = max(‖u‖1, . . . , ‖u‖r)

for any r ≥ 1.

Proposition 2. Let U be a finite interval of Rn
+, and C ⊂ DiffU (n)0

with the C∞ topology. Then C is compact if and only if it is bounded and
closed.

This fact is well known for Rn. It is still true for the half-space Rn
+.

Indeed, the proofs of Corollaries 2 and 3 of Theorem 51, Ch. VII in [10] are
exactly the same in this case.

Let us recall the formulae for the differential of composed maps. Let
u, v : Rn

+ → Rn
+ be of class C∞. Then we have (cf. [3])

(2.3.1) D(u ◦ v) = Du ◦ v.Dv
and

Dr(u ◦ v) = (Dru ◦ v)(Dv × . . .×Dv) + (Du ◦ v)(Drv)(2.3.2)

+
∑

C(i, j1, . . . , ji)(Diu ◦ v)(Dj1v × . . .×Djiv),

where C(i, j1, . . . , ji) is an integer independent of n, 1 < i < r, jl > 0, and
j1 + . . .+ ji = r. It follows that there is s ∈ {1, . . . , i} with js ≥ 2.

2.4. Rolling-up operators Ψi,A. First we give preparatory definitions. For
a given integer A greater than 1 denote by Di = Di,A the closed interval
[−2, 2]i × [−2A, 2A]n−1−i × [0, 2A] ⊂ Rn

+ for i = 0, . . . , n− 1, and

Dn = [−2, 2]n−1 × [0, 2].

Then we have

Dn ⊂ Dn−1 = [−2, 2]n−1 × [0, 2A] ⊂ . . . ⊂ D0 = [−2A, 2A]n−1 × [0, 2A].

We shall make use of Mather’s operator Ψi,A which rolls up a diffeomorphism
along the xi-axis, i = 1, . . . , n − 1. Since in our case Ψi,A does not act
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transversely to the boundary, the operation of rolling up diffeomorphisms
will be applied n− 1 times only while Mather applies it n times.

In our case we just take the restriction of Mather’s original operator
Ψi,A to (a sufficiently small C1 neighbourhood of the identity in) Diff(n)0.
This restriction will be still denoted by Ψi,A. Basic features of Ψi,A are the
following.

(2.4.1) The domain of Ψi,A is a sufficiently small C1 neighbourhood of
the identity in DiffDi−1(n)0, and the range of Ψi,A is a C1 neighbourhood
of the identity in DiffDi(n)0.

(2.4.2) It is continuous with respect to the C∞ topology, and it preserves
the identity.

(2.4.3) There is τi ∈ Diff(n)0 such that for any u ∈ dom(Ψi,A), τiu and
τiΨi,A(u) are conjugate.

(2.4.4) There are a universal constant K > 1 and a constant δ > 0
depending on A such that M1(u) < δ yields

M1(Ψi,A(u)) ≤ KAM1(u).

(2.4.5) Let r ≥ 2. There are constants δ > 0, K > 1, Cr > 1 such that

‖Ψi,A(u)‖r ≤ KA‖u‖r + Cr(Mr−1(u)),

whenever u ∈ dom(Ψi,A) and u satisfies M1(u) < δ. Here K is a universal
constant, δ depends on A but not on r, and Cr depends on A, r.

(2.4.6) For r ≥ 2 there are constants δ > 0, K ′r > 1, and an admissible
polynomial Fr such that

‖Ψi,A(u)‖r ≤ K ′rA‖u‖r + Fr(Mr−1(u))

for any u ∈ dom(Ψi,A) with M1(u) < δ, where δ depends on A but not on
r, K ′r depends on r but not on A, and Fr depends on A, r.

The constants and polynomials in (2.4.4)–(2.4.6) do not depend on i.
A polynomial of one variable is said to be admissible iff it has no constant

or linear term and its coefficients are non-negative integers. The explicit
definition of the Ψi,A and τi will be given in Section 4 in order to check that
they are applicable to our case.

Remark. The condition (2.4.5) has been omitted in [3], and the constant
K ′r in (2.4.6) has been claimed there to be independent of r. This seems to
be incorrect (see Section 4). However, the conditions (2.4.5) and (2.4.6) are
sufficient to have the proof in the boundaryless case [3] as well as in our case
(see Section 3).

3. Proof of Theorem 3. The basic idea of the proof is to apply the
operators Ψi,A only tangently to the boundary. Next, by making use of an
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additional operation we replace a diffeomorphism in question by another
one with support away from the boundary.

Let f ∈ Diff(n)0 and, without loss of generality, we assume that f is
supported in D′ = [−2, 2]n−1× [0, 1]. This may be accomplished by making
use of a conjugation. Moreover, we may and do suppose that f is sufficiently
near the identity in the C∞ topology.

We set

C = {u− id ∈ DiffDn
(n)− id : ‖u‖r ≤ ar, r ≥ r0},

where r0 ≥ n+ 1 is a fixed integer, and the sequence ar will be specified in
due course. Then C is convex and, in view of Proposition 2, compact.

Note that choosing the constant ar0 small enough we may assume that
each diffeomorphism u such that u − id ∈ C is in a sufficiently small C1

neighbourhood of id. In fact, by integrating over a finite interval we have,
for such u,

(3.1) M1(u) ≤ C1‖u‖r0 , ‖u‖s ≤ Cs‖u‖r0

for any s = 2, . . . , r0, with some universal constants Ci.
For any u− id ∈ C we define

u0 = ÃfuÃ−1,

where Ã ∈ Diff(n)0 such that Ã is the multiplication by A in a neighbour-
hood of Dn and supp Ã ⊂ [−2A− 1, 2A+ 1]n−1 × [0, 2A+ 1].

Observe that in view of (2.3.1) one has

M1(u0) = ‖u0 − id‖1 = ‖fu− id‖1(3.2)
≤ ‖(f − id)u‖1 + ‖u− id‖1
≤M1(f)(1 +M1(u)) +M1(u)
= M1(f) +M1(u) +M1(f)M1(u).

Next we let

u1 = Ψ1,A(u0), . . . , un−1 = Ψn−1,A(un−2),

so that ui is supported in Di.
Let ξ : [0,∞) → [0, 1] be an arbitrary C∞ function such that ξ = 1 on

[0, 1] and ξ = 0 on [2,∞). We define un by

un − id = ξ(xn)(un−1 − id).

By shrinking the initial C1 neighbourhood if necessary, un is a diffeomor-
phism. By definition suppun ⊂ Dn. Observe that un−1 = un, that is,
un−1u

−1
n = id, in a neighbourhood of the boundary.

Suppose that for some universal choice of the ar we have un − id ∈ C.
Then we can conclude the proof as follows. Due to (2.4.2) and Theorem 4
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there exists u− id ∈ C such that un − id = u− id, i.e. un = u. Now by the
definition of u0 and (2.4.3),

[fu] = [u0] = [u1] = . . . = [un−1]

and, consequently,

[f ] = [un−1u
−1]

in the abelianization of Diff(n)0. But [un−1u
−1] = e by Theorem 1, and

[f ] = e. Thus f can be written as a product of commutators.
Now we have to choose a suitable sequence ar.
By the definition of the norm ‖ · ‖r and (2.3.2) we have

‖u0‖r = A1−r‖fu‖r(3.3)
≤ A1−r(‖f‖r + ‖u‖r)(1 +M1(f) +M1(u))r + F1(Mr−1(u)),

where F1 is an admissible polynomial which depends on A, r and f .
Next, proceeding by induction, and making use of (2.4.4) and (2.4.6) we

get
(3.4) ‖un−1‖r ≤ KrA

n−1‖u0‖r + F2(Mr−1(u0))

for each u− id ∈ C with M1(u0) < δ. Here Kr depends on r and is indepen-
dent of A, and F2 is an admissible polynomial depending on r, A and f . By
choosing f close enough to id, by using (3.2), and by taking δ/3 instead of
δ, we may and do assume that (3.4) is fulfilled whenever M1(u) < δ.

Likewise, from (2.4.4) and (2.4.5) we obtain the existence of a universal
constant K ′, and a constant C ′r depending on A, r such that

(3.5) ‖un−1‖r ≤ K ′An−1‖u0‖r + C ′rMr−1(u)

whenever M1(u) < δ.
Finally, we can estimate un by

(3.6) ‖un‖r ≤ K ′′‖un−1‖r + C ′′r (Mr−1(un−1)),

where K ′′ is a universal constant, and C ′′r is a constant depending on r and
ξ. This inequality is an immediate consequence of the Leibniz formula. Next,
from (3.6) follows the existence of a constant K ′′r which depends on r and ξ
but not on A such that

(3.7) ‖un‖r ≤ K ′′r ‖un−1‖r.

In fact, (3.7) follows from (3.6) and the estimates

M1(un−1) ≤ C ′′′1 ‖un−1‖r, ‖un−1‖s ≤ C ′′′s ‖un−1‖r
for s = 2, . . . , r − 1, where C ′′′i are independent of A. This is easily seen
by repeated integration with respect to xi, i = 1, . . . , n− 1, as the interval
Dn−1 is of length 4 in the directions of these xi.
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By combining (3.2), (3.3), (3.5) and (3.6) one can deduce that there are
a universal constant K > 1 and a constant Cr which depends on r, A, f
and ξ such that

(3.8) ‖un‖r ≤ KAn−r(‖f‖r + ‖u‖r) + Cr(Mr−1(u))

whenever M1(u) < δ. Likewise, (3.1), (3.3), (3.4) and (3.7) imply the exis-
tence of a constant Kr depending on r, f and ξ but independent of A such
that

(3.9) ‖un‖r ≤ KrA
n−r(‖f‖r + ‖u‖r)

if M1(u) < δ.
Now let us fix r0 ≥ n+ 1 and choose A so large that

Kr0A
n−r0 ≤ 1/2.

Then setting ar0 = ‖f‖r0 we deduce from (3.9) that ‖u‖r0 ≤ ar0 implies
‖un‖r0 ≤ ar0 . We stress that ‖f‖r0 may be chosen sufficiently small. Next
we proceed by induction. Suppose as are defined for s < r. By enlarging A
if necessary we have KAn−r ≤ 1/4 for any r ≥ r0, and (3.8) assumes the
form

‖un‖r ≤
1
4

(‖f‖r + ‖u‖r) + br

for some constant br which depends on as, s<r, and Cr. Therefore it suffices
to put ar = ‖f‖r + 2br, and the induction follows.

This completes the proof.

Remarks. (1) The original method of proof of Theorem 1 (in case
r = ∞) is much more difficult and longer than the method of Mather–
Epstein presented above. Furthermore, it seems impossible to make use of
the Herman–Thurston method in case of manifolds with boundary as the
diffeomorphism group of the torus is a starting point. On the other hand, in
the case of the leaf preserving diffeomorphism group of a foliated manifold
(which is also a nontransitive group of diffeomorphisms) the first method
works after some essential modifications (cf. [9]) while it is unclear how to
apply the second method.

(2) Our proof breaks down in case dimM = 1. Indeed, we had to use
the rolling-up operators Ψi along the boundary. Moreover, due to results of
K. Fukui [4] one cannot expect that Theorem 3 holds in this case. Namely,

H1(Diff∞([0, 1])0) = abelianization of Diff∞([0, 1])0 = R2

and

H1(Diff∞r (R, 0)0) = abelianization of Diff∞r (R, 0)0 = Rr+1,

where Diff∞r (R, 0) is the group of all C∞ diffeomorphisms of R which are
r-tangent to the identity at 0.
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4. Properties of the operators Ψi,A. The construction of Ψi,A is the
following (cf. [7, I]). For i = 1, . . . , n− 1 we write Ci for Ri−1 × S1 × Rn−i

+ ,
i.e. Ci is the set of n-tuples (x1, . . . , ϑi, . . . , xn) where ϑi is a real defined
mod 1, and xn ≥ 0. Let π : Rn → Ci be the canonical projection. Notice
that there is the obvious action of S1 on Ci, and denote by Gi the group of
equivariant diffeomorphisms with respect to this action.

Now let u ∈ DiffDi−1(n)0 and ‖u − id‖0 < 1/2. We define a diffeomor-
phism Γi(u) : Ci → Ci in the following way. For ϑ ∈ Ci we choose x ∈ Rn

+

such that π(x) = ϑ and xi < −2A. Next we choose an integer N > 0 so
large that

(Tiu)N (x)i > 2A.

Here Ti : Rn
+ → Rn

+ denotes the time-one transformation of the vector field
∂i = ∂/∂xi, that is, the unit translation along the xi-axis. It is visible that
we can arrange so that N = [8A+ 4]. We define

Γi(u)(ϑ) = π(Tiu)N (x).

In particular, if |xj | > 2A for some j 6= i then Γi(u)(ϑ) = ϑ. One can also
check that the operation u 7→ Γi(u) is continuous.

For Γi(u) sufficiently small there is a unique S1-equivariant diffeomor-
phism Γ̃i(u) : Ci → Ci such that

Γ̃i(u)|{ϑi = 0} = Γi(u)|{ϑi = 0}.

Let g = Γ̃i(u)−1Γi(u).
On Ci we introduce a bump function ζ : Ci → R such that ζ = 1 on a

neighbourhood of 0, and ζ = 0 on a neighbourhood of 1/2. Shrinking the
neighbourhood of the identity in Diff(n)0 if necessary, one can lift Γ̃i(u)−id :
Ci → Ci to γ : Ci → Rn such that πγ = Γ̃i(u) − id and ‖γ‖0 < 1/2. Then
we set

(4.1) g0(ϑ) = π(ζ(ϑ)γ(ϑ)) + ϑ

for ϑ ∈ Ci. Again, by reducing the C1 neighbourhood one can assume that
g0 : Ci → Ci is a diffeomorphism. We set g1 = g−1

0 g.
Finally, putting E−i = {x ∈ Rn

+ : −1 < xi < 0} and E+
i = {x ∈ Rn

+ :
1/2 < xi < 3/2} we define v = Ψi,A(u) as the unique diffeomorphism of Rn

+

characterized by the equalities:

v|Rn
+ − (E−i ∪ E

+
i ) = id,

πv|E+
i = g0π|E+

i , πv|E−i = g1π|E−i ,
v(E+

i ) = E+
i , v(E−i ) = E−i .

It is visible that Γi(v) = g0g1 = g. Therefore

Γi(u)Γi(v)−1 = Γ̃i(u) ∈ Gi,
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and this is a key relation in order to obtain the property (2.4.3) (see Prop. 3).
Furthermore, it is easily checked that (2.4.1) and (2.4.2) are satisfied.

Following [7] we give the definition of τi, i ≤ n− 1.
Choose a function % ∈ C∞(R) such that % = 1 on [−2A, 2A] and

supp(%) ⊂ [−2A− 1, 2A+ 1]. Next, define %̃ ∈ C∞(Rn
+) by %̃(x) = %(x1) . . .

. . . %(xn). We set

τi(x) = exp(%̃(x)∂i), i = 1, . . . , n− 1.

Next let φi, i = 1, . . . , n − 1, be diffeomorphisms characterized by the
following properties:

(a) dom(φi) = {x ∈ Rn
+ : |xj | ≤ 2A, i 6= j},

(b) φi∗(∂i) = %̃∂i,
(c) φ|D0 = id.

Note that

(4.2) τi = φiTiφ
−1
i , i = 1, . . . , n− 1,

since Ti = exp(∂i), τi = exp(%̃∂i).
The following is a repetition of [7, I] and [3], and we reproduce only a

sketch of the proof.

Proposition 3. Let i = 1, . . . , n − 1 and let u, v ∈ DiffD0(n)0. If u
and v are sufficiently C1-close to the identity and Γi(v)Γi(u)−1 ∈ Gi then
λτiuλ

−1 = τiv, where λ ∈ Diff(n)0.

P r o o f. Following Mather we put

Λ(x) = (Tiv)N (Tiu)−N (x),

where N is a positive integer so large that (Tiu)−N (x)i < 2A. For any
x ∈ Rn

+ such an N exists, and the definition is independent of N (large).
Observe that suppΛ ⊂ {x ∈ Rn

+ : xi > −2A, |xj | < 2A, j 6= i}. It follows
from the definition

(4.3) ΛTiuΛ
−1 = Tiv

and

(4.4) Γi(v)Γi(u)−1π = πΛ.

The assumption Γi(v)Γi(u)−1 ∈ Gi and (4.4) yield the existence of Λj :
Rn−1

+ → R, j 6= i, satisfying

Λj(x′i) = Λ(x)j

for xi > 2A, where x′i = (x1, . . . , x̂i, . . . , xn). Let

Λ′(x′i) = (Λ1(x′i), . . . , Λn(x′i)),

and let Λ′t be an isotopy from Λ′ to id supported in {|xj | < 2A, j 6= i}.
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Now the definition of λ is the following (in the second and third line the
ith coordinate is written last)

λ(x) =


φiΛφ

−1
i , x ∈ im(φi),

(Λ′(x′i), exp(%̃(Λ(x)i − xi)∂i)(x)i), 2A ≤ xi ≤ 2A+ 1,
(Λ′t(x

′
i), xi), 2A+ 1 ≤ xi ≤ 2A+ 2,

x otherwise.
The proof is completed by the observation that conjugating by φi the

equality (4.3) and making use of (4.2) imply the desired equality λτiuλ−1 =
τiv.

Proof of (2.4.5) and (2.4.6). As in [3] for each u ∈ dom(Ψi,A) in a suffi-
ciently small C1 neighbourhood of id there are a universal constant K and
an admissible polynomial Fr which depends on A, r such that

‖g‖r ≤ KrA‖u‖r + Fr(Mr−1(u)).

Next we can estimate g0 (defined by (4.1)) by means of the Leibniz formula.
As the coefficients of this formula cannot be estimated by Kr, and due to
the fact that we know nothing about ‖ζ‖r, we only have

‖g0‖r ≤ K1‖g‖r + Cr(Mr−1(g)),

where K1 is a universal constant, and the large constant Cr depends on r but
not on A. The last term cannot be included in any admissible polynomial.
Bearing in mind that g = id in a neighbourhood of {θi = 1/2}, and making
use of analogues of (3.1) for g one can transform the above inequality into

‖g0‖r ≤ K ′r‖g‖r,
where the constant K ′r depends on r and is independent of A. The rest of
the proof is the same as in [7, I] or [3].

5. Commutators of Cr diffeomorphisms. In this case we have the
following partial analogue of Theorem 1.

Theorem 5. Let M be an n-dimensional manifold with boundary , n ≥ 2,
and let a positive integer r 6= n, n+ 1. Then Diffr(M)0 is a perfect group.

The proof for r < n follows closely the lines of [7, II]. Similarly to the
proof of Theorem 3 we unroll and roll-up diffeomorphisms along the bound-
ary, and not transversely to it. The estimations of [7, II] are still valid in our
case, and suffice to prove the result under the assumption r < n (in [7, II]
one has r ≤ n). In contrast to Theorem 3 no modifications are needed.

On the other hand, in case r > n + 1 the proof is similar to that of
Theorem 3. In fact, it is a little simpler as the condition (2.4.5) is superfluous.
Also the end of the proof follows [7, I] rather than [3]. Recall that the case
r = n + 1 is also unknown for boundaryless manifolds (cf. [7, III]). This is
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the only reason that our method breaks down for r = n+ 1. The case r = n
cannot be covered by our method because we use Mather’s operators only
n− 1 times.

In order to give some examples of non-perfectness we introduce the fol-
lowing notation. Denote by Diffr

s(M) the group of all diffeomorphisms of
class Cr on M which are s-tangent to the identity on the boundary, where
0 ≤ s ≤ r ≤ ∞. The condition of s-tangency means that the s-jets of a
diffeomorphism and the identity are equal at any point of the boundary.
Suppose 1 ≤ s < r ≤ ∞. We show that Diffr

s(M) is not a perfect group.
Indeed, let (U, x1, . . . , xn) be a local coordinate system at p ∈ ∂M such that
U = {xn ≥ 0}. For any diffeomorphisms f, g ∈ Diffr

s(M) we have, in view
of (2.3.2),

Ds+1(f ◦ g)(p) = Ds+1f(p) +Ds+1g(p)
and

Ds+1f−1(p) = −Ds+1f(p).
Therefore if we choose h ∈ Diffr

s(M) such that Ds+1h(p) 6= 0, the above
equalities yield that h cannot be in the commutator subgroup as

Ds+1[f, g](p) = 0.

The same reasoning is true for Diffr
s(M)0, the identity component of the

group Diffr
s(M).

We have as well, due to (2.3.1) and a similar argument, that neither
Diffr

0(M) nor Diffr
0(M)0 is perfect.

References

[1] A. Banyaga, Sur la structure du groupe des difféomorphismes qui préservent une
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