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The Frölicher–Nijenhuis bracket
on some functional spaces

by Ivan Kolář (Brno) and Marco Modugno (Florence)

Abstract. Two fiber bundles E1 and E2 over the same base spaceM yield the fibered
set F(E1, E2) → M , whose fibers are defined as C∞(E1x, E2x), for each x ∈ M . This
fibered set can be regarded as a smooth space in the sense of Frölicher and we construct
its tangent prolongation. Then we extend the Frölicher–Nijenhuis bracket to projectable
tangent valued forms on F(E1, E2). These forms turn out to be a kind of differential
operators. In particular, we consider a general connection on F(E1, E2) and study the
associated covariant differential and curvature.

1. Introduction. The idea of the Schrödinger connection on a double
fibered manifold by A. Jadczyk and the second author ([4], [5]) inspired the
study of differential geometric properties of certain bundles with infinite-
dimensional fibers. In particular, let E1 and E2 be two classical fiber bun-
dles over the same base space M and F(E1, E2) denote the set of all smooth
maps of a fiber of E1 into the fiber of E2 over the same base point. In [1],
A. Cabras and the first author studied the connections on F(E1, E2)→M
by means of some procedures which are based directly on the concept of
fiber jet [7]. However, essential progress in the theory of general connec-
tions on classical fiber bundles has recently been achieved by using the
Frölicher–Nijenhuis bracket. That is why we devote the present paper to
projectable tangent valued forms on F(E1, E2) and their Frölicher–Nijenhuis
bracket. Our main tool is a formula by P. W. Michor [7] and the second au-
thor [9] which expresses the classical Frölicher–Nijenhuis bracket in terms
of the bracket of vector fields. This enables us to develop a generalization
which preserves the most important properties of the classical case. In the
last section we present the first applications of our general results to con-
nections on F(E1, E2), but we hope there will be many others, similarly
to the classical case.
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Frölicher–Nijenhuis bracket.

[97]
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Since the objects we study represent a kind of differential operators, their
basic properties can be treated systematically within the framework of the
theory of smooth spaces by A. Frölicher [2]. However, we use a simplified
version of that theory, which is sufficient for our purposes. We define a
smooth space as a set S together with a set of curves C(S) = {c : R → S},
which is called the set of smooth curves. A map f : S → S′ between two
smooth spaces is called smooth if, for each smooth curve c : R → S, the
composition f ◦ c : R→ S′ is also a smooth curve.

In particular, each classical manifold becomes a smooth space by tak-
ing as smooth curves, in the sense of Frölicher, just the smooth curves in
the classical sense. Moreover, a map between classical manifolds turns out
to be smooth in the classical sense if and only if it is smooth in the sense
of Frölicher (see e.g. [7], p. 172). We observe that each subset ι : S′ ↪→ S
of a smooth space S inherits naturally a structure of a smooth space, by
taking as smooth curves the curves c′ : R → S′ such that ι ◦ c′ : R → S is
smooth. Actually, these curves constitute the largest set C(S′) which makes
ι smooth.

2. Preliminaries. Let p1 : E1 →M and p2 : E2 →M be two classical
fiber bundles over the same base space. Consider the fibered set

p : F(E1, E2) =
⋃
x∈M

C∞(E1x, E2x)→M

of all smooth maps of a fiber of E1 into the fiber of E2 over the same base
point. We define no topology on F(E1, E2), but equip naturally this set
with a structure of a smooth space by taking as smooth curves the curves
c : R→ F(E1, E2) such that p ◦ c : R→M is smooth and the induced map
ĉ : (p ◦ c)∗E1 → E2, given by ĉ(τ, y) = c(τ)(y), with τ ∈ R, y ∈ E1p(c(τ)), is
also smooth.

Next, we define the tangent space TF(E1, E2) in the following way. For
every smooth curve c : R → F(E1, E2) and τ ∈ R, we first construct the
tangent vector X = ∂

∂t

∣∣
τ
(p ◦ c) ∈ TxM , where x = p(c(τ)), and consider

the subsets TXE1 = (Tp1)−1(X) ⊂ TE1 and TXE2 = (Tp2)−1(X) ⊂ TE2.
It can be easily seen that TXE1 and TXE2 are affine bundles over E1x

and E2x with derived vector bundles T (E1x) = VxE1 and T (E2x) = VxE2,
respectively. Then we obtain a map Tτ c : TXE1 → TXE2 which is well
defined by the formula

(1) Tτ c

(
∂

∂t

∣∣∣∣
τ

h(t)
)

=
∂

∂t

∣∣∣∣
τ

c(t)(h(t)),

where h : R→ E1 is a smooth curve such that p◦c = p1 ◦h. Having another
smooth curve c′ : R→ F(E1, E2) and τ ′ ∈ R satisfying ∂

∂t

∣∣
τ ′

(p◦c′) = X, the



Frölicher–Nijenhuis bracket 99

equivalence relation Tτ c = Tτ ′c
′ : TXE1 → TXE2 defines a tangent vector of

F(E1, E2) which is denoted by ∂
∂t

∣∣
τ
c. Then the tangent space TF(E1, E2)

is defined as the set consisting of all tangent vectors of F(E1, E2).
By the way, we can interpret the tangent vectors also in the following

way. If A ∈ TF(E1, E2), then denote by Â : TXE1 → TXE2 the associated
map (1). One sees easily that Tτ c : TXE1 → TXE2 is an affine bundle
morphism over the base map φ = c(τ) : E1x → E2x with derived linear
morphism Tφ : T (E1x)→ T (E2x). In [1] the converse assertion is proved: if
C : TXE1 → TXE2 is an affine bundle morphism over φ : E1x → E2x with
derived linear morphism Tφ : T (E1x)→ T (E2x), then there exists a smooth

curve c : R→ F(E1, E2) and a τ ∈ R such that C = ∂̂
∂t

∣∣
τ
c.

The tangent space is naturally equipped with the following structures.
By (1) we have defined an inclusion

TF(E1, E2) ⊂ F(TE1 → TM, TE2 → TM).

Hence, TF(E1, E2) inherits a structure of a smooth space. Moreover, we
have two canonical projections π : TF(E1, E2) → F(E1, E2) and Tp :
TF(E1, E2) → TM , which turn out to be smooth. Even the tangent pro-
longation dc = ∂

∂tc : R → TF(E1, E2) : τ 7→ ∂
∂t

∣∣
τ
c of a smooth curve

c : R→ F(E1, E2) is smooth.
Now, consider the vector fields on F(E1, E2). As usual, a vector field

on F(E1, E2) is defined to be a smooth map A : F(E1, E2) → TF(E1, E2)
satisfying π ◦A = id. We say that A is projectable if there exists a classical
smooth vector field A0 : M → TM such that A0 ◦ p = Tp ◦A. A vector field
A on F(E1, E2) projectable over A0 is said to be of order r if the condition
jryφ = jryψ , with φ, ψ ∈ C∞(E1x, E2x) and y ∈ E1x, implies

(2) Âφ|(TA0(x)E1)y = Âψ|(TA0(x)E1)y.

Let S(TE1, TE2)→ E1 ×M E2 ×M TM be the fiber bundle of all affine
morphisms (TXE1)y → (TXE2)z with p1(y) = p2(z) = πM (X), where πM :
TM →M is the bundle projection. Write

FJr(E1, E2) =
⋃
x∈M

Jr(E1x, E2x),

which is also a classical manifold. An rth order vector field A over A0 defines
the associated map A : FJr(E1, E2)→ S(TE1, TE2) by

(3) A(jryφ) = Âφ|(TA0(x)E1)y.

In [1] it is proved that A is a classical C∞-map. The derived linear map of
each element of S(TE1, TE2) is identified with an element of FJ1(E1, E2).
This defines a map D : S(TE1, TE2) → FJ1(E1, E2) and the following
diagram commutes:
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(4)

FJ1(E1, E2) FJ1(E1, E2)

FJr(E1, E2) S(TE1, TE2)

E1 ×M E2 (E1 ×M E2) ×M TM

_________

_________

��

βr

OO

A //

D

OO

��

(id,A0)
//

where βr is the jet projection. Conversely, letA : F(E1, E2)→ S(TE1, TE2)
be a C∞-map with underlying vector field A0 : M → TM such that (4)
commutes. Then the rule

(5) Â(φ) =
⋃

y∈E1x

A(jryφ)

defines an rth order vector field A on F(E1, E2) over A0.
Let (xi) be a local chart on M , (yp) and (za) be additional fiber coordi-

nates on E1 and E2, respectively, and

(6) xi = ci(t), za = ca(yp, t)

be the coordinate expression of c : R → F(E1, E2). Write Y p = dyp, Za =
dza, φa(y, τ) = ca(y, τ), Φa(y, τ) = ∂ca

∂t (y, τ). Then the coordinate expres-
sion of dc(τ) is

(7) Za(τ) =
∂φa

∂yp
(y, τ)Y p + Φa(y, τ).

Hence, the tangent vector to (6) at τ is locally characterized by two sys-
tems of numbers xi = ci(τ), Xi = dci

dt (τ) and two systems of functions
φa(yp, τ), Φa(yp, τ). In this sense, the coordinate form of the map A asso-
ciated with an rth order vector field is given by Xi(xj) and

(8) Φa = Φa(xi, yp, zaα), 0 ≤ |α| ≤ r,

where α is a multi-index whose range is the dimension of the fiber of E1.

The inclusion TF(E1, E2) ⊂ F(TE1 → TM, TE2 → TM) defines the
second tangent bundle TTF(E1, E2) of F(E1, E2) (see [1]), which turns out
to be a smooth space. We can easily see that the usual geometric struc-
tures of the classical second tangent bundle (such as the canonical involu-
tion and vertical inclusion) can be naturally extended to our smooth spaces
F(E1, E2).

A projectable vector field A on F(E1, E2) is said to be differentiable if
the rule TA

(
∂
∂t

∣∣c) = ∂
∂t

∣∣(A ◦ c) defines a smooth map TA : TF(E1, E2) →
TTF(E1, E2). One sees easily that every rth order vector field is differen-
tiable [1].
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Given two differentiable vector fields A,B on TF(E1, E2) projectable
over A0, B0, their bracket [A,B] : F(E1, E2)→ TF(E1, E2) is a projectable
vector field over [A0, B0] defined by means of the so-called strong difference:

(9) [A,B] = TB ◦A÷ TA ◦B,

where ÷ is a special operation based on the geometry of the second tangent
bundle ([1], [6], [8]).

Let B be an sth order vector field with associated map Y i(xj) and

(10) Ψa(xi, yp, zaβ), 0 ≤ |β| ≤ s.

In [1] it is deduced that the bracket of (8) and (10) has order r + s. To
express its associated map, we need the concept of formal derivatives of a
smooth function f : FJr(E1, E2)→ R. The rule

Df(jr+1
y φ) = (df(jrφ))y

defines a map
Df : FJr+1(E1, E2)→ V ∗E1

called the formal differential of f . For the coordinate vector fields ∂/∂yp we
obtain the formal derivatives

(11) Dpf =
〈
Df,

∂

∂yp

〉
=

∂f

∂yp
+

∂f

∂za
zap + . . .+

∂f

∂zaα
zaα+p.

By iteration, we introduce Dα : FJr+|α|(E1, E2)→ R for every multi-index
α. According to [1], the map associated with [A,B] is given by [A0, B0] and

(12)
∂Ψa

∂xi
Xi +

∂Ψa

∂zb
Φb + . . .+

∂Ψa

∂zbβ
DβΦ

b

− ∂Φa

∂xi
Y i − ∂Φa

∂zb
Ψ b − . . .− ∂Φa

∂zbα
DαΨ

b.

We conclude this section by a lemma. Consider two differentiable vec-
tor fields A,B over A0, B0 and a function f ∈ C∞(M,R). Then fA is a
differentiable vector field as well.

Lemma 2.1. We have [fA,B] = f [A,B]− (B0f)A.

P r o o f. Let B(φ) = ∂
∂t

∣∣
0
g(t), φ ∈ F(E1, E2). Then we have

T (fA)
(
∂

∂t

∣∣∣∣
0

g(t)
)

=
∂

∂t

∣∣∣∣
0

f((p ◦ g)(t))A(g(t)) = (B0f)A+ fTA(B(φ)).

So, our claim follows from (9).

3. Projectable tangent valued forms on F(E1, E2). We start with
a more general concept. Let V →M be a vector bundle.
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Definition 3.1. A tangent valued form of type V on F(E1, E2) is defined
to be a map A : F(E1, E2)×M V → TF(E1, E2) which is linear in the second
factor and satisfies the following three conditions:

(i) π ◦A = pr1,
(ii) there exists a linear base-preserving morphism A0 : V → TM which

makes the following diagram commutative:

(13)

F(E1, E2) ×M V TF(E1, E2)

V TM

A //

pr2

��
Tp

��

A0
//

(iii) for every C∞-section s : M → V , the induced vector field As in
F(E1, E2) is smooth.

Clearly, the lifting s 7→ As is C∞(M,R)-linear, i.e., A(fs) = fAs for
every smooth function f : M → R. We say that A is differentiable if As is a
differentiable vector field for every C∞-section s. Furthermore, A is said to
have order r if As is an rth order vector field for every C∞-section s. Such a
form A defines the associated map A : FJr(E1, E2)×M V → S(TE1, TE2)
by

(14) A(jryφ, v) = ̂A(φ, v)(TA0(v)E1)y.

Let wλ be some additional linear fiber coordinate on V . Then the coordinate
form of A is given by Aiλ(x)vλ and

(15) Aaλ(xi, yp, zaα)vλ, 0 ≤ |α| ≤ r.
Obviously, every rth order tangent valued form of type V is differentiable.

Consider an arbitrary mapping Φ transforming C∞-sections of V into
vector fields on F(E1, E2). The following lemma will be of fundamental
importance in §4.

Lemma 3.1. If Φ is C∞(M,R)-linear , then there exists a tangent valued
form A of type V such that Φs = As for all s ∈ C∞V .

P r o o f. We first deduce that s|U = 0, for an open subset U ⊂ M ,
implies Φ(s)|p−1(U) = 0. Indeed, for every x ∈ U we take a function f ∈
C∞(M,R) such that f(x) = 0 and f |M\U = 1. Then s = fs, so that
Φ(s)(φ) = f(x)Φ(s)(φ) = 0 for φ ∈ p−1(x). By linearity, we now find that
s1|U = s2|U implies φ(s1)|p−1(U) = φ(s2)|p−1(U)). Further, let s(x0) = 0.
On a neighbourhood U of x0 we have s(x) = sλ(x)eλ(x), sλ(x0) = 0, where
eλ are C∞-sections of V over U such that eλ(x) constitute a basis of each Vx.
Take a neighbourhood W of x0 satisfying W ⊂ U and g ∈ C∞(M,R) with
g|W = 1, supp g ⊂ U . Then g2s|W = s|W and gsλ and geλ are globally
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defined. Hence Φ(s)(φ) = (gsλ(x0))Φ(geλ)(φ) = 0. By linearity, Φ(s)(φ)
depends on s(x) only. This induces the required map F(E1, E2) ×M V →
TF(E1, E2).

Now we restrict ourselves to the case V =
∧k

TM , which is the main
subject of the present paper.

Definition 3.2. A projectable tangent valued k-form on F(E1, E2) is
defined to be a tangent valued form of type

∧k
TM .

To simplify the notation, we shall write A(X1, . . . , Xk) instead of
A(X1 ∧ . . . ∧Xk), for X1, . . . , Xk ∈ C∞TM . The map A : FJr(E1, E2)×M∧k

TM → S(TE1, TE2) associated with an rth order projectable tangent
valued k-form A will be expressed by Aij1...jk(x) and

(16) Aaj1...jk(xi, yp, zaα), 0 ≤ |α| ≤ r,
which are antisymmetric in all subscripts.

4. The Frölicher–Nijenhuis bracket. Let A and B be differentiable
projectable tangent valued forms on F(E1, E2) of degree k and l, respec-
tively. Starting from a formula for the classical Frölicher–Nijenhuis bracket
[9], [6], we define a mapping [A,B] of C∞(

∧k+l
TM) into vector fields on

F(E1, E2) by

(17) [A,B](X1, . . . , Xk+l)

=
1
k!l!

∑
σ

signσ [A(Xσ(1), . . . , Xσ(k)), B(Xσ(k+1), . . . , Xσ(k+l))]

+
−1

k!(l − 1)!

∑
σ

signσ

×B([A0(Xσ(1), . . . , Xσ(k)), Xσ(k+1)], Xσ(k+2), . . . , Xσ(k+l))

+
(−1)kl

(k − 1)!l!

∑
σ

signσ

×A([B0(Xσ(1), . . . , Xσ(l)), Xσ(l+1)], Xσ(l+2), . . . , Xσ(k+l))

+
(−1)k−1

(k − 1)!(l − 1)!2

∑
σ

signσ

×B(A0([Xσ(1), Xσ(2)], . . . , Xσ(k+1)), Xσ(k+2), . . . , Xσ(k+l))

+
(−1)(k−1)l

(k − 1)!(l − 1)!2

∑
σ

signσ

×A(B0([Xσ(1), Xσ(2)], . . . , Xσ(l+1)), Xσ(l+2), . . . , Xσ(k+l)).
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Proposition 4.1. The map (17) is C∞(M,R)-linear.

P r o o f. It suffices to deduce that if we multiply X1 by f ∈ C∞(M,R) on
the left hand side of (17), then the right hand side is also multiplied by f .
Using Lemma 2.1 we reduce it to a combinatorial question, which can be
answered in the following way. In the case when E1 is the trivial fibering
M → M , we have F(E1, E2) = E2 and formula (17) defines the Frölicher–
Nijenhuis bracket of two classical projectable tangent valued forms on E2 in
the sense of the second author [9]. Here, we know that (17) well defines the
Frölicher–Nijenhuis bracket as a projectable tangent valued (k+l)-form. But
the combinatorics is the same in both situations, which proves our claim.

Applying Lemma 3.1, we obtain directly

Proposition 4.2. For every differentiable projectable tangent valued k-
form A and l-form B on F(E1, E2), [A,B] is a projectable tangent valued
(k+ l)-form on F(E1, E2), which will be called the Frölicher–Nijenhuis (F-N
for short) bracket of A and B. The following diagram commutes:

F(E1, E2) ×M
∧k+l

TM TF(E1, E2)

∧k+l
TM TM

pr2

��

[A,B] //

Tp

��

[A0,B0]
//

where [A0, B0] is the classical F-N bracket.

In [1] Cabras and the first author introduced the canonical involution κ
of the iterated tangent bundle TTF(E1, E2). If A is a differentiable vector
field on F(E1, E2), then κ ◦ TA is a vector field on TA.

Definition 4.1. A vector field A on F(E1, E2) is said to be twice differ-
entiable if κ◦TA is a differentiable vector field on TF(E1, E2). A projectable
tangent valued k-form A is said to be twice differentiable if A(X1, . . . , Xk) is
a twice differentiable vector field on F(E1, E2), for all X1, . . . , Xk ∈ C∞TM .

If A and B are twice differentiable vector fields on F(E1, E2), then the
bracket [A,B] is differentiable. Clearly, every finite order vector field is twice
differentiable.

There is a proof of the Jacobi identity for classical vector fields on a man-
ifold M , which is based on the concept of strong difference and on the geom-
etry of the third tangent bundle TTTM (see [11]). That approach implies
directly that every triple of twice differentiable vector fields on F(E1, E2)
satisfies the Jacobi identity. Then we obtain analogously to the classical case
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Proposition 4.3. The F-N bracket of twice differentiable projectable
tangent valued forms on F(E1, E2) has the algebraic properties of a graded
Lie algebra.

Let A and B be projectable tangent valued forms on F(E1, E2) of order
r and s, respectively. By (12), the order of [A,B] is r + s.

Proposition 4.4. Let (16) be the associated map of A and Bij1...jl(x),
Baj1...jl(x

i, yp, zaβ), with 0 ≤ |β| ≤ s, be the associated map of B. Then the
associated map of [A,B] is given by [A0, B0] and by the antisymmetrization
in i1, . . . , ik+l of the following expression:

(18) Aii1...ik
∂Baik+1...ik+l

∂xi
+Abi1...ik

∂Baik+1...ik+l

∂zb
+. . .+DβA

b
i1...ik

∂Baik+1...ik+l

∂zbβ

− (−1)kl
(
Bii1...il

∂Aail+1...ik+l

∂xi
+Bbi1...il

∂Aail+1...ik+l

∂zb
+ . . .

. . .+DαB
b
i1...il

∂Aail+1...ik+l

∂zbα

)

− kAai1...ik−1i

∂Baik+1...ik+l

∂xik
+ (−1)kllBii1...il−1i

∂Aiil+1...ik+l

∂xil
.

P r o o f. This follows directly from (12) and (17).

5. Connections on F(E1, E2). In accordance with [1], a connection Γ
on F(E1, E2) can be defined as a differentiable projectable tangent valued
1-form on F(E1, E2) over idTM . On the one hand, we have the curvature
CΓ of Γ introduced in [1]. On the other hand, we can construct the F-N
bracket [Γ, Γ ].

Proposition 5.1. We have [Γ, Γ ] = 2CΓ .

P r o o f. For 1-forms A and B, formula (17) reads

[A,B](X,Y ) = [A(X), B(Y )] + [B(X), A(Y )] +A(B0([X,Y ]))(19)
+B(A0([X,Y ]))−A([X,B0(Y )])
−A([B0(X), Y ])−B([X,A0(Y )])−B([A0(X), Y ]).

Setting A = B = Γ , A0 = B0 = id, we obtain 2[Γ (X), Γ (Y )]− 2Γ ([X,Y ]).
By Proposition 9 of [1], this is 2CΓ (X,Y ).

Let Γ be a connection and A a differentiable projectable tangent valued
k-form on F(E1, E2). The following definition generalizes [9].

Definition 5.1. The F-N bracket [Γ,A] is said to be the covariant ex-
terior differential of A with respect to Γ .
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Proposition 5.2 (Bianchi identity). Let Γ be a twice differentiable con-
nection on F(E1, E2). Then [Γ,CΓ ] = 0.

P r o o f. The relation [Γ, [Γ, Γ ]] = 0 follows directly from the graded
Jacobi identity.

Consider another connection ∆ on F(E1, E2).

Definition 5.2. The F-N bracket [Γ,∆] is said to be the mixed curvature
of Γ and ∆.

Proposition 5.3. We have

[Γ,∆](X,Y ) = [Γ (X), ∆(Y )] + [∆(X), Γ (Y )]− Γ ([X,Y ])−∆([X,Y ])

for every X,Y ∈ C∞TM .

P r o o f. This follows from (19).
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