Hedgehogs of constant width and equichordal points

by YVES MARTINEZ-MAURE (Rueil-Malmaison)

Abstract. We give a characterization of convex hypersurfaces with an equichordal point in terms of hedgehogs of constant width.

I. Introduction and statement of results. Let K be a convex body in (n+1)-dimensional Euclidean space \mathbb{E}^{n+1} and let S be its boundary. An interior point o of K is called an *equichordal point* of S if all chords of Spassing through o have the same length.

A famous unsolved problem is whether there exist plane convex curves with two equichordal points. A discussion of this problem, first raised by Fujiwara [2] and independently by Blaschke, Rothe and Weitzenböck [1], is given by Klee ([4] and [5]). Wirsing [10] proved (assuming their existence) that such curves are analytic. Petty and Crotty [8] have proved the existence of Minkowski spaces of arbitrary dimension in which there are convex hypersurfaces with exactly two equichordal points.

Let S be a smooth convex hypersurface in \mathbb{E}^{n+1} . The *pedal hypersurface* P(S) with respect to an interior point o is defined as follows: for each $m \in S$ the point P(m) is the foot of the perpendicular from the point o to the tangent hyperplane of S at m. If S is of constant width then P(S) has o as an equichordal point, but P(S) is not necessarily convex.

Conversely, Kelly [3] has shown that if a plane convex curve C has o as an equichordal point, then C is the pedal curve with respect to o of a curve $P^{-1}(C)$ with a kind of constant width. This curve $P^{-1}(C)$, called the *negative pedal* of the curve C, is not necessarily convex.

In this paper, we prove the following generalization to hypersurfaces.

THEOREM 1. If S is a smooth convex hypersurface with an equichordal point o, then S is the pedal hypersurface with respect to o of a hypersurface

¹⁹⁹¹ Mathematics Subject Classification: Primary 52A20.

Key words and phrases: convex body, hypersurface, pedal, equichordal, hedgehog.

^[285]

 $P^{-1}(S)$ with a kind of constant width. More precisely, $P^{-1}(S)$ is a hedgehog of constant width as defined below.

DEFINITION 1. For any $f \in C^{\infty}(\mathbb{S}^n; \mathbb{R})$, we define the *hedgehog* with supporting function f as the envelope \mathcal{H}_f of the family of hyperplanes defined by the equations

$$\langle x, p \rangle = f(p)$$

(these hyperplanes are called the *supporting hyperplanes* of \mathcal{H}_f). In other words, \mathcal{H}_f is the hypersurface (with possible singularities) parametrized by

$$x_f: \mathbb{S}^n \to \mathcal{H}_f, \quad p \mapsto x_f(p)$$

where $x_f(p) = f(p)p + (\text{grad } f)(p)$ is the unique solution of the system

$$\langle x, p \rangle = f(p), \quad \langle x, \cdot \rangle = df_p(\cdot).$$

R e m a r k. When \mathcal{H}_f has a well defined tangent hyperplane at $x_f(p)$, say T, then T is defined by the equation $\langle x, p \rangle = f(p)$: the unit vector p is normal to T and f(p) may be interpreted as the signed distance from the origin to T. Thus, any smooth part of \mathcal{H}_f inherits a natural transverse orientation for which x_f is the reverse Gauss map. A singularity-free hedgehog is simply a convex hypersurface. For a general study of hedgehogs see R. Langevin, G. Levitt and H. Rosenberg [6].

DEFINITION 2. The hedgehog with supporting function f is said to be of constant width if the distance between two parallel supporting hyperplanes is constant, that is, if f(p) + f(-p) is constant on \mathbb{S}^n .

We next prove the following results.

THEOREM 2. Let S be a smooth convex hypersurface with the origin as an equichordal point. The negative pedal hypersurface of S with respect to the origin is convex if and only if the hypersurface obtained from S by inversion with respect to \mathbb{S}^n is convex.

THEOREM 3. Let \mathcal{H}_f be a hedgehog of constant width such that f is never zero. Then the pedal hypersurface of \mathcal{H}_f with respect to the origin is a smooth hypersurface with the origin as an equichordal point. Furthermore, $P(\mathcal{H}_f)$ is convex if and only if 1/f is the supporting function of a convex hedgehog.

Note that these problems are related to equireciprocal points of convex bodies (see [4]).

II. Proof of results

Proof of Theorem 1. Assume without loss of generality that o is the origin. Since S is starlike relative to o, S has a parametrization of the form

$$X: \mathbb{S}^n \to S, \quad p \mapsto g(p)p,$$

where the function g is > 0. The condition that S have the origin as an equichordal point is simply that g be of the form g = h + r, where r is a constant and h is a function such that

$$\forall p \in \mathbb{S}^n, \quad h(-p) = -h(p).$$

Note that the hedgehog \mathcal{H}_h can be considered as a hedgehog of zero width: such a hedgehog is said to be *projective*. For a study of projective hedgehogs, see [7].

Since $(\operatorname{grad} g)(p) \in T_p \mathbb{S}^n$, it follows from the parametrization $x_g(p) = g(p)p + (\operatorname{grad} g)(p)$ of the hedgehog \mathcal{H}_g that S is the pedal hypersurface of \mathcal{H}_g with respect to o. Furthermore, this hedgehog \mathcal{H}_g is of constant width since the distance d(p) between the two supporting hyperplanes of \mathcal{H}_g which are orthogonal to $p \in \mathbb{S}^n$ is given by

$$d(p) = g(p) + g(-p) = 2r = \text{const.}$$

Theorems 2 and 3 are based on the following result (see for example the book by R. Schneider [9], Sections 1.6 and 1.7).

LEMMA. Let h_L (resp. ϱ_L) denote the supporting (resp. radial) function of a convex body L with the origin as an interior point. If a convex body K has the origin as an interior point, then its polar body K^* also has the origin as an interior point, and we have

$$h_{K^*} = 1/\varrho_K$$
 and $\varrho_{K^*} = 1/h_K$

Proof of Theorem 2. Let Σ and Σ^* denote respectively the negative pedal hypersurface $P^{-1}(S)$ and the hypersurface obtained from S by inversion with respect to \mathbb{S}^n . We can deduce from the Lemma that if Σ or Σ^* is convex, then Σ and Σ^* are the boundaries of polar bodies K and K^* . Theorem 2 follows immediately.

Proof of Theorem 3. The pedal hypersurface of \mathcal{H}_f is the smooth hypersurface parametrized by

$$X: \mathbb{S}^n \to S, \quad p \mapsto f(p)p$$

which has the origin as an equichordal point since f(p) + f(-p) is constant. Furthermore, we can deduce from the Lemma that if $P(\mathcal{H}_f)$ or $\mathcal{H}_{1/f}$ is convex, then $P(\mathcal{H}_f)$ and $\mathcal{H}_{1/f}$ are the boundaries of polar bodies. Theorem 3 follows immediately.

References

- W. Blaschke, H. Rothe und R. Weitzenböck, Aufgabe 552, Arch. Math. Phys. 27 (1917), 82.
- [2] M. Fujiwara, Über die Mittelkurve zweier geschlossenen konvexen Kurven in Bezug auf einen Punkt, Tôhoku Math. J. 10 (1916), 99–103.

- [3] P. J. Kelly, Curves with a kind of constant width, Amer. Math. Monthly 64 (1957), 333–336.
- [4] V. Klee, Can a plane convex body have two equichordal points?, Amer. Math. Monthly 76 (1969), 54–55.
- [5] —, Some unsolved problems in plane geometry, Math. Mag. 52 (3) (1979), 131–145.
- [6] R. Langevin, G. Levitt et H. Rosenberg, Hérissons et multihérissons (Enveloppes paramétrées par leur application de Gauss), in: Singularities (Warsaw, 1985), Banach Center Publ. 20, PWN, Warszawa, 1988, 245–253.
- [7] Y. Martinez-Maure, Sur les hérissons projectifs (enveloppes paramétrées par leur application de Gauss), Bull. Sci. Math., to appear.
- [8] C. M. Petty and J. M. Crotty, Characterization of spherical neighborhoods, Canad. J. Math. 22 (1970), 431–435.
- [9] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge Univ. Press, 1993.
- [10] E. Wirsing, Zur Analytizität von Doppelspeichkurven, Arch. Math. (Basel) 9 (1958), 300–307.

1, rue Auguste Perret 92500 Rueil-Malmaison, France

> Reçu par la Rédaction le 8.7.1996 Révisé le 5.3.1997