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Hedgehogs of constant width and equichordal points

by Yves Martinez-Maure (Rueil-Malmaison)

Abstract. We give a characterization of convex hypersurfaces with an equichordal
point in terms of hedgehogs of constant width.

I. Introduction and statement of results. Let K be a convex body
in (n+ 1)-dimensional Euclidean space En+1 and let S be its boundary. An
interior point o of K is called an equichordal point of S if all chords of S
passing through o have the same length.

A famous unsolved problem is whether there exist plane convex curves
with two equichordal points. A discussion of this problem, first raised by
Fujiwara [2] and independently by Blaschke, Rothe and Weitzenböck [1], is
given by Klee ([4] and [5]). Wirsing [10] proved (assuming their existence)
that such curves are analytic. Petty and Crotty [8] have proved the exis-
tence of Minkowski spaces of arbitrary dimension in which there are convex
hypersurfaces with exactly two equichordal points.

Let S be a smooth convex hypersurface in En+1. The pedal hypersurface
P (S) with respect to an interior point o is defined as follows: for each m∈S
the point P (m) is the foot of the perpendicular from the point o to the
tangent hyperplane of S at m. If S is of constant width then P (S) has o as
an equichordal point, but P (S) is not necessarily convex.

Conversely, Kelly [3] has shown that if a plane convex curve C has o
as an equichordal point, then C is the pedal curve with respect to o of a
curve P−1(C) with a kind of constant width. This curve P−1(C), called the
negative pedal of the curve C, is not necessarily convex.

In this paper, we prove the following generalization to hypersurfaces.

Theorem 1. If S is a smooth convex hypersurface with an equichordal
point o, then S is the pedal hypersurface with respect to o of a hypersurface
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P−1(S) with a kind of constant width. More precisely , P−1(S) is a hedgehog
of constant width as defined below.

Definition 1. For any f ∈ C∞(Sn; R), we define the hedgehog with sup-
porting function f as the envelope Hf of the family of hyperplanes defined
by the equations

〈x, p〉 = f(p)
(these hyperplanes are called the supporting hyperplanes of Hf ). In other
words, Hf is the hypersurface (with possible singularities) parametrized by

xf : Sn → Hf , p 7→ xf (p),

where xf (p) = f(p)p+ (grad f)(p) is the unique solution of the system

〈x, p〉 = f(p), 〈x, ·〉 = dfp(·).
R e m a r k. When Hf has a well defined tangent hyperplane at xf (p), say

T , then T is defined by the equation 〈x, p〉 = f(p): the unit vector p is normal
to T and f(p) may be interpreted as the signed distance from the origin to
T . Thus, any smooth part of Hf inherits a natural transverse orientation for
which xf is the reverse Gauss map. A singularity-free hedgehog is simply a
convex hypersurface. For a general study of hedgehogs see R. Langevin, G.
Levitt and H. Rosenberg [6].

Definition 2. The hedgehog with supporting function f is said to be of
constant width if the distance between two parallel supporting hyperplanes
is constant, that is, if f(p) + f(− p) is constant on Sn.

We next prove the following results.

Theorem 2. Let S be a smooth convex hypersurface with the origin as an
equichordal point. The negative pedal hypersurface of S with respect to the
origin is convex if and only if the hypersurface obtained from S by inversion
with respect to Sn is convex.

Theorem 3. Let Hf be a hedgehog of constant width such that f is never
zero. Then the pedal hypersurface of Hf with respect to the origin is a smooth
hypersurface with the origin as an equichordal point. Furthermore, P (Hf ) is
convex if and only if 1/f is the supporting function of a convex hedgehog.

Note that these problems are related to equireciprocal points of convex
bodies (see [4]).

II. Proof of results

P r o o f o f T h e o r e m 1. Assume without loss of generality that o is
the origin. Since S is starlike relative to o, S has a parametrization of the
form

X : Sn → S, p 7→ g(p)p,
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where the function g is > 0. The condition that S have the origin as an
equichordal point is simply that g be of the form g = h + r, where r is a
constant and h is a function such that

∀p ∈ Sn, h(− p) = −h(p).

Note that the hedgehog Hh can be considered as a hedgehog of zero width:
such a hedgehog is said to be projective. For a study of projective hedgehogs,
see [7].

Since (grad g)(p) ∈ TpSn, it follows from the parametrization xg(p) =
g(p)p+ (grad g)(p) of the hedgehog Hg that S is the pedal hypersurface of
Hg with respect to o. Furthermore, this hedgehog Hg is of constant width
since the distance d(p) between the two supporting hyperplanes of Hg which
are orthogonal to p ∈ Sn is given by

d(p) = g(p) + g(−p) = 2r = const.

Theorems 2 and 3 are based on the following result (see for example the
book by R. Schneider [9], Sections 1.6 and 1.7).

Lemma. Let hL (resp. %L) denote the supporting (resp. radial) function
of a convex body L with the origin as an interior point. If a convex body
K has the origin as an interior point , then its polar body K∗ also has the
origin as an interior point , and we have

hK∗ = 1/%K and %K∗ = 1/hK .

P r o o f o f T h e o r e m 2. Let Σ and Σ∗ denote respectively the neg-
ative pedal hypersurface P−1(S) and the hypersurface obtained from S by
inversion with respect to Sn. We can deduce from the Lemma that if Σ or
Σ∗ is convex, then Σ and Σ∗ are the boundaries of polar bodies K and K∗.
Theorem 2 follows immediately.

P r o o f o f T h e o r e m 3. The pedal hypersurface of Hf is the smooth
hypersurface parametrized by

X : Sn → S, p 7→ f(p)p,

which has the origin as an equichordal point since f(p) + f(−p) is constant.
Furthermore, we can deduce from the Lemma that if P (Hf ) or H1/f is
convex, then P (Hf ) and H1/f are the boundaries of polar bodies. Theorem
3 follows immediately.
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