
ANNALES
POLONICI MATHEMATICI

LXVI (1997)

The strongest vector space topology is locally convex
on separable linear subspaces

by W. Żelazko (Warszawa)

W lodzimierz Mlak in memoriam

Abstract. Let X be a real or complex vector space equipped with the strongest
vector space topology τmax. Besides the result announced in the title we prove that X is
uncountable-dimensional if and only if it is not locally pseudoconvex.

Let X be a real or complex vector space. An F -seminorm on X is a
function x 7→ ‖x‖ satisfying the following conditions:

(i) ‖0‖ = 0 and ‖x‖ ≥ 0 for all x in X.
(ii) ‖tx‖ = ‖x‖ for all x in X and all scalars t with |t| = 1.
(iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X.
(iv) limn tnx = 0 for all x in X and all seqences (tn) of scalars tending

to zero.
(v) limn txn = 0 for all scalars t and all sequences (xn) of elements of X

satisfying limn xn = 0.

An F -seminorm ‖ · ‖ is said to be p-homogeneous, 0 < p ≤ 1, if the
conditions (iv) and (v) are replaced by

(vi) ‖tx‖ = |t|p‖x‖ for all x in X and all scalars t.

In case when p = 1 it is the familiar homogeneity condition. In this case
we call it just a seminorm.

It is well known that any vector space topology τ on X is given by
means of a family F(τ) of F -seminorms (see [3], Theorem 2.9.2). This means
that a net (xα) of elements of X tends to zero in the topology τ if and only
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if limα ‖xα‖ = 0 for all ‖ · ‖ in F(τ). If all F -seminorms in F(τ) are
p-homogeneous (with p depending upon ‖ · ‖) the space (X, τ) is said to
be locally pseudoconvex. For F(τ) we can always take the family of all F -
seminorms which are continuous in the topology τ . Note that an F -seminorm
‖ · ‖ is continuous in the topology given by means of some family F(τ) if
and only if there are a finite number of seminorms ‖ · ‖1, . . . , ‖ · ‖n in F(τ)
with the property that for each positive ε there is a positive δ such that
whenever max{‖x‖1, . . . , ‖x‖n} < δ then ‖x‖ < ε for all x in X.

Each vector space X has the strongest (maximal) vector space topology
given by means of all F -seminorms. We shall denote it by τmax. We can also
consider the maximal p-convex topology τpmax (with p satisfying 0 < p ≤ 1)
given by means of all p-homogeneous seminorms, and the topology τ q+max

(0 ≤ q < 1) given by means of all p-homogeneous seminorms for all p
satisfying q < p ≤ 1. Note that all q-homogeneous seminorms, p ≤ q ≤ 1,
are continuous in the topology τpmax. This follows from the fact that for any
q-homogeneous seminorm ‖ · ‖ the seminorm x 7→ ‖x‖p/q is p-homogeneous
whenever 0 < p ≤ q.

Let τ1 and τ2 be two vector space topologies on X. Writing τ1 ≤ τ2 if
τ2 is stronger than τ1 (every τ1-continuous F -seminorm is τ2-continuous, or
every τ1-open set is open in the topology τ2) we see that τLC

max ≤ τp+max ≤
τpmax ≤ τmax for 0 < p < 1 and τpmax ≤ τ q+max for 0 ≤ q < p ≤ 1. We also see
that τLC

max and τ0+
max are respectively the strongest locally convex and locally

pseudoconvex topologies on X.
Since for every x 6= 0 in X there is a linear functional f with f(x) 6= 0

so that the map x 7→ |f(x)| is a seminorm satisfying |x| 6= 0, we see that the
topology τLC

max and the stronger topologies τpmax, τ q+max, τmax are Hausdorff.
It is known that the topology τLC

max is complete (every Cauchy net is con-
vergent, see [8], Example on p. 56; cf. also [3], Proposition 6.6.7). Also the
topologies τpmax and τ q+max are complete for 0 < p ≤ 1 and 0 ≤ q < 1 (see [5]).
In [5] it is shown that if the dimension (the cardinality of a Hamel basis)
of X is uncountable then all topologies τpmax, τ q+max are different while they
coincide whenever the dimension is at most countable. As a consequence,
in [5] a complete non-locally convex topological vector space was obtained
such that every separable subspace is locally convex. Here we shall offer
simplified proofs of these results by showing that the topology τmax is also
complete and coincides with τLC

max on countable-dimensional spaces. These
results, however, are known and follow from Propositions 4.4.3 and 6.6.9 of
[3] (see also [11], p. 213). The author is greatly indebted to Hans Jarchow for
calling his attention to this fact. The proofs presented here are different and
more elementary. We shall also show that all topologies under discussion are
different if the dimension of X is uncountable. For basic facts concerning
topological vector spaces the reader is referred to [1]–[4] and [6]–[11].
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We now construct a certain family F1 of F -seminorms which give the
topology τmax. Consider the family S of all continuous non-decreasing func-
tions on the real closed half-line R+ of all non-negative real numbers such
that

(1) f(0) = 0 and f(t1 + t2) ≤ f(t1) + f(t2) for all t1, t2 ≥ 0.

Let (hi)i∈J be a Hamel basis for X, so that every element x ∈ X can be
uniquely written in the form x =

∑
i∈J gi(x)hi, where only finitely many

scalar coefficients gi(x) are different from zero. Clearly the maps x 7→ gi(x)
are linear functionals on X. Consider a map i 7→ fi ∈ S, i ∈ J . To each such
map there corresponds an F -seminorm on X given by the formula

(2) |x| =
∑
i∈J

fi(|gi(x)|);

this is a well defined function on X and an easy proof that it is an F -
seminorm is left to the reader. Denote by F1 the family of all F -seminorms
of the form (2).

We now show that each F -seminorm on X is continuous with respect to
some F -seminorm of the form (2), so that F1 gives the topology τmax. In
fact, let ‖ · ‖ be an arbitrary seminorm on X. Put ‖x‖1 = max0≤t≤1 ‖tx‖.
Using the properties (i)–(iv) we easily see that ‖ · ‖1 is an F -seminorm on
X; moreover, the map |t| 7→ ‖tx‖1 is non-decreasing and ‖x‖ ≤ ‖x‖1 for all
x in X (actually both F -seminorms are equivalent, see [8], Theorem 1.2.2).
Now by (iii) we obtain

(3) ‖x‖ ≤ ‖x‖1 =
∥∥∥∑
i∈J

gi(x)hi
∥∥∥

1
≤
∑
i∈J
‖gi(x)hi‖1 = |x|.

Thus | · | is of the form (2) with fi(t) = ‖thi‖1 (one easily sees that these
functions fi are in S). The formula (3) implies that ‖ · ‖ is continuous with
respect to | · |. Since ‖ · ‖ was chosen arbitrarily and | · | ∈ F , the family F1

gives the topology τmax.
Let (hi)i∈J be a fixed Hamel basis in X. Define the support of x ∈ X by

(4) supp(x) = {i ∈ J : gi(x) 6= 0};
it is a finite or void subset of J . It is clear that any F -seminorm in F1 has
the following property:

(5) ‖x+ y‖ = ‖x‖+ ‖y‖ for all x, y ∈ X with supp(x) ∩ supp(y) = ∅.
Proposition 1 ([3]). Let X be a real or complex vector space provided

with the topology τmax. Then X is a complete (Hausdorff ) topological vector
space.

P r o o f. Let (xα)α∈a be a Cauchy net in X; we have to show that it
is convergent to some element x0. We can assume that the topology of
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X is given by the above defined family F1. Clearly for every continuous
linear functional f on X the net (f(xα))α∈a is also Cauchy. Since all linear
functionals on X are continuous the (finite) limits ai = limα gi(xα) exist for
all i in J .

We claim that only finitely many numbers ai can be different from zero.
If not, we have ain 6= 0 for a sequence (in)∞n=1 of (different) indices in J .
Setting

(6) |x|a =
∞∑
n=1

2n|gin(x)|/|ain |

we obtain a well defined (continuous) seminorm on X. Since for every (con-
tinuous) F -seminorm | · | the net (|xα|) is also Cauchy, the (finite) limit M =
limα |xα|a exists. For a fixed natural m there is an index α0 ∈ a such that
|gim(xα)| > |aim |/2 for all α � α0. Thus |xα|a ≥ 2m|gim(xα)|/|aim | > m for
all α � α0. This implies M ≥ m, and since m was arbitrarily chosen, this
gives a contradiction proving our claim.

Thus x0 =
∑
i∈J aihi is a well defined element of X. Setting yα=xα−x0

we obtain a Cauchy net in X with limα gi(yα) = 0 for all i in J . Our
conclusion will follow if we show that limα yα = 0, because then limα xα =
x0.

Suppose that (yα) does not tend to zero. By the assumption there is an
F -seminorm | · |0 in F1 with M0 = limα |yα|0 > 0. We can now find an index
α1 ∈ a such that

(7) |yα − yα1 |0 < M0/2 for all α � α1.

Put J0 = supp(yα1) and define on X a (continuous) projection

Px =
∑
i∈J0

gi(x)hi.

Clearly supp(Px)∩ supp((I −P )x) = ∅ and supp((I −P )x)∩ J0 = ∅ for all
x ∈ X, where I is the identity operator on X. Applying to | · |0 the formula
(5) we obtain

|yα − yα1 |0 = |Pyα − yα1 + (I − P )yα|0
= |Pyα − yα1 |0 + |(I − P )yα|0 ≥ |(I − P )yα|0,

which, by (7), implies

(8) |(I − P )yα|0 < M0/2 for all α � α1.

Since limα gi(yα) = 0 for all i and the set J0 is finite, we see by the definition
of the class F1 that lim |Pyα|0 = 0. Thus (5) and (8) imply

M0 = lim
α
|yα|0 = lim

α
|Pyα|0 + lim

α
|(I − P )yα|0 = lim |(I − P )yα|0 ≤M0/2.

This contradiction completes the proof.
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The following result was obtained by means of inductive limits; here we
present an elementary proof.

Proposition 2 ([3], [11]). Let X be a real or complex vector space.
Then the topologies τLC

max and τmax coincide on X whenever it is countable-
dimensional.

P r o o f. By assumption X has a countable Hamel basis (hi)∞i=1. Let |·|0∈
F1. We shall be done if we show that | · |0 is continuous with respect to some
(homogeneous) seminorm ‖ ·‖ on X. Thus we have to construct a seminorm
‖ · ‖ with the property that for each positive ε there is a positive δ such that
‖x‖ < δ implies |x|0 < ε for all x in X. Let (fi) be the sequence of functions
of class S giving | · |0 by means of (2). Since limt→0 fi(t) = 0 for i = 1, 2, . . . ,
there is a sequence (ai) of positive numbers such that

(9)
∞∑
i=1

fi(ai) ≤ 1.

Take a positive ε and choose a natural n0 so that

(10)
∞∑

i=n0+1

fi(ai) < ε/2.

Since the fi are non-decreasing and tend to zero at 0 there is a positive
δ ≤ 1 such that

(11)
n0∑
i=1

fi(δai) < ε/2.

Define

(12) ‖x‖ =
∞∑
i=1

|gi(x)|/ai.

It is a (continuous) seminorm on X. Let ‖x‖ < δ. By (12) we have |gi(x)| <
δai ≤ ai for all i and so by (10) and (11) we obtain

|x|0 =
∞∑
i=1

fi(|gi(x)|) ≤
n0∑
i=1

fi(δai) +
∞∑

i=n0+1

fi(ai) < ε.

The conclusion follows.
As a corollary we have a result of [5] obtained here in a much simpler

way.

Corollary 3. Let X be as above. Then all the topologies τpmax and τ q+max,
0 < p ≤ 1, 0 ≤ q < 1, coincide with τLC

max.

P r o o f. This follows immediately from the previous theorem and the
relations τLC

max ≤ τpmax ≤ τmax and τLC
max ≤ τ q+max ≤ τmax.
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As another corollary we obtain our main result:

Theorem 4. Let X be a real or complex vector space provided with the
topology τmax. Then each separable subspace of X is locally convex.

P r o o f. Let X0 be a separable subspace of X with a dense subset (xi)∞i=1.
Since all linear subspaces of X are closed, we have X0 = span{xi}, so that
X0 is at most countable-dimensional. To obtain the conclusion it is sufficient
to show that the relative topology of X0 is again the topology τmax, or that
every F -seminorm of class F1 on X0 extends to one on X. Without loss of
generality we can assume that X0 is countable-dimensional and take in it a
Hamel basis (hi)∞i=1. Take any F -seminorm of class F1 on X0:

|x|0 =
∣∣∣ ∞∑
i=1

gi(x)hi
∣∣∣
0

=
∞∑
i=1

fi(|gi(x)|).

Since (hi) extends to a Hamel basis on X, all gi can be viewed as functionals
on X, and the same formula gives an F -seminorm of class F1 on X; we have
thus obtained the desired extension. The conclusion follows.

It is known that for an uncountable-dimensional vector space X the
topologies τLC

max and τmax are different (see [11], p. 213). As was shown in
[5], also all the topologies τpmax and τ q+max are mutually different in this case.
We now show that they are also different from τmax.

Proposition 5. Let X be an uncountable-dimensional real or complex
vector space. Then the topology τmax on X is strictly stronger than each of
the topologies τpmax, τ q+max, 0 < p ≤ 1, 0 ≤ q < 1.

P r o o f. Since τ0+
max is the strongest of the topologies τpmax, τ

q+
max it is

sufficient to show that τmax is strictly stronger than τ0+
max. To this end we

shall construct an F -seminorm ‖ · ‖0 which is discontinuous in the topol-
ogy τ0+

max, i.e. it is continuous with respect to no p-homogeneous semi-
norm on X (any finite number ‖ · ‖1, . . . , ‖ · ‖n of pi-homogeneous semi-
norms are each continuous with respect to the p-homogeneous seminorm
‖x‖ = max{‖x‖p/p11 , . . . , ‖x‖p/pn

n }, where p = min{p1, . . . , pn}).
Define

q(t) =
{

1/|log t|1/2 if 0 < t ≤ e−1,
1 if t ≥ e−1,

and put f(t) = tq(t) for t > 0 and f(0) = 0. It is easy to verify that f is in
the class S and

(13) lim
t→0

f(t)/tp =∞ for each p > 0.
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Fix a Hamel basis (hi)i∈J for X and put

‖x‖0 =
∑
i∈J

f(|gi(x)|);

it is an F -seminorm on X. Assume that ‖ · ‖0 is continuous with respect to
some p-homogeneous seminorm | · |. We have

|x| =
∣∣∣∑
i∈J

gi(x)hi
∣∣∣ ≤∑

i∈J
|gi(x)|pri = ‖x‖r,

where ri = |hi| and the p-homogeneous seminorm ‖·‖r is defined by the right-
hand equality. Clearly ‖·‖must also be continuous with respect to ‖·‖r. Since
J is uncountable, there is a natural k such that the set Jk = {i ∈ J : ri ≤ k}
is infinite. By the assumption there is a positive δ such that ‖x‖0 < 1
whenever ‖x‖ < δ. Choose a natural n so that

(14) nδ > 2.

By (13) there is a positive t0 such that

(15) f(t0) > nktp0

and

(16) ktp0 < δ/4.

Let s be the largest integer for which sktp0 < δ. By (16) we have

(17) δ/2 < sktp0 < δ.

Choose arbitrarily i1, . . . , is in Jk and put x0 =
∑s
j=1 t0hij . By (17) we have

‖x0‖r =
s∑
i=1

tp0rij ≤ st
p
0k < δ,

so that we should have ‖x0‖0 < 1. But by (14), (15) and (17) we obtain

‖x0‖0 = sf(t0) > snktp0 > nδ/2 > 1,

which gives a contradiction. The conclusion follows.

Corollary 6. The topology τmax is not locally pseudoconvex on a vector
space X if and only if the dimension of X is uncountable.
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