On a property of weak resolvents and its application to a spectral problem

by Yoichi Uetake (Poznań)

Abstract. We show that the poles of a resolvent coincide with the poles of its weak resolvent up to their orders, for operators on Hilbert space which have some cyclic properties. Using this, we show that a theorem similar to the Mlak theorem holds under milder conditions, if a given operator and its adjoint have cyclic vectors.

1. Introduction. For a linear bounded operator $A : X \to X$, where X is a Hilbert space, we define a complex-valued function $\varphi(z) = \langle c, (zI - A)^{-1}b \rangle$, which we call a weak resolvent, due to Fong, Nordgren, Radjavi, and Rosenthal (cf. [3], [15]). Here $b, c \in X$, and $\langle f, g \rangle$ denotes the scalar product of the vectors f and g. Nordgren et al. considered this function in the study of the invariant subspace problem. Earlier, in the 1960’s, in the model theory of operators, Sz.-Nagy and Foiaş introduced this kind of functions (cf. [17]). Also, in the study of the spectral problem, Mlak proved the following theorem, which also concerns model theory. See also Lebow [12] and Nikol’skiı [14].

Theorem 1 ([13]). If, for every b, c in X, $z^{-1}\varphi(z^{-1}) = \langle c, (I - zA)^{-1}b \rangle \in H^1$, then $\rho(A) < 1$. Here $\rho(A)$ is the spectral radius of A.

Janas [7] and Jakóbczak and Janas [6] have extended the above theorem to several commuting operators.

During the 1960’s, Lax and Phillips developed a scattering theory (cf. [11]). Meanwhile, during the same period, engineers developed independently a control theory, initiated by, among others, Kalman (cf. [9], [8]). Surprisingly enough, the above kind of abstract operator theory and these two theories have been shown to be related to one another by Adamyan and Arov (see references in [11]) and Helton ([4], [5]). The weak resolvent cor-

1991 Mathematics Subject Classification: 47A10, 47A45, 47A40, 30D55, 93B.

Key words and phrases: weak resolvent, cyclic vector, spectral radius, Hardy class, operator model theory, scattering theory, control theory.
responds to a scattering matrix in scattering theory and a transfer function (or a frequency response function) in control theory, respectively. The above Mlak theorem is also related to the input-output stability of control systems (cf. [8]).

In our paper, we show that if both \(A \) and its adjoint have cyclic vectors, then the poles of the resolvent of \(A \) and their orders exactly coincide with those of the weak resolvent of \(A \). Next, using this result, we show that such operators, a result similar to Mlak’s theorem holds under milder conditions.

Notations which we use are as follows:

\[
\mathbb{D} = \{ z : |z| < 1 \} \quad \text{(open unit disc in the complex plane)},
\]

\[
\overline{\mathbb{D}} = \{ z : |z| \leq 1 \} \quad \text{(closed unit disc in the complex plane)},
\]

\[
T = \{ z : |z| = 1 \} \quad \text{(unit circle in the complex plane)},
\]

\[
H^1 = \{ f(z) \text{ analytic in } \mathbb{D} : \sup_{r<1} \int_0^{2\pi} |f(re^{i\theta})| \, d\theta = \|f\|_1 < +\infty \}
\]

(\(\text{Hardy space with } p = 1 \)).

2. Main theorems

Definition. We say that \(b \) is cyclic for \(A \) iff

\[
\bigcup_{n=0}^{\infty} \text{Span}_{k=0}^{n} \{ A^k b \} = X.
\]

The following lemma is known as the Popov–Belevich–Hautus–Rosenbrock test in control theory for the finite-dimensional case (cf. [8]). To make the paper self-contained, we include the result with a proof for the infinite-dimensional case.

Lemma 1. If \(b \) is cyclic for \(A \) and \(x \) is an eigenvector of \(A^* \), i.e., for some \(z_0 \in \mathbb{C} \), \(A^* x = z_0 x \), \(x \neq 0 \), then \(\langle b, x \rangle \neq 0 \).

Proof. Suppose \(\langle b, x \rangle = 0 \). Then

\[
\langle A b, x \rangle = \langle b, A^* x \rangle = z_0 \langle b, x \rangle = 0,
\]

\[
\langle A^2 b, x \rangle = \langle A b, A^* x \rangle = z_0 \langle A b, x \rangle = 0,
\]

\[
\vdots
\]

\[
\langle A^k b, x \rangle = \langle A^{k-1} b, A^* x \rangle = z_0 \langle A^{k-1} b, x \rangle = 0 \quad (k = 1, 2, \ldots),
\]

Thus \(x \not\in \bigcup_{n=0}^{\infty} \text{Span}_{k=0}^{n} \{ A^k b \} = X \). However, this contradicts the assumption that \(b \) is cyclic for \(A \). This completes the proof.

In the following theorem and its proof, a pole is an isolated (not accumulating) pole.

Theorem 2. Let \((zI - A)^{-1}\) be meromorphic in an open neighborhood of \(z_0 \). Further, let \(b \) be cyclic for \(A \) and \(c \) be cyclic for \(A^* \). Then the weak resolvent \(\varphi(z) = \langle c, (zI - A)^{-1} b \rangle \) has a pole of order \(m \) at \(z = z_0 \) if and only if the resolvent \((zI - A)^{-1}\) has a pole of order \(m \) at \(z = z_0 \).
Proof. “If”. Write \((zI - A)^{-1}\) in the following form:
\[
(zI - A)^{-1} = B_{-m}(z - z_0)^{-m} + B_{-(m-1)}(z - z_0)^{-(m-1)} + \ldots + B_0
+ B_1(z - z_0) + \ldots
\]
From this,
\[
(z_0I - A)B_{-m} = 0.
\]
Suppose \(B_{-m}b \neq 0\). Then, since \(A^*\) is cyclic for \(c\) by assumption, we have \(\langle c, B_{-m}b \rangle \neq 0\) by Lemma 1, and thus the weak resolvent \(\varphi(z)\) has a pole of order \(m\) at \(z = z_0\). Now we show \(B_{-m}b \neq 0\). Define the Riesz projection \(E(z_0) : X \rightarrow X\) by
\[
E(z_0) = \frac{1}{2\pi i} \int_C (zI - A)^{-1} \, dz,
\]
where \(C\), the path of integration, is a small circle about \(z_0\) containing no other spectral point of \(A\). As is well known, \(E(z_0)\) is a projection from \(X\) onto \(X(z_0) = E(z_0)X\) and \(A\) commutes with \(E(z_0)\). For the spectral theory used in this proof see, e.g., [1], [2], [10]. For each \(n = 0, 1, 2, \ldots\) and \(z \in \mathbb{C}\) define a subspace \(R(z; n)\) of \(X\) by
\[
R(z; n) = \{x : (zI - A)^n x = 0\}.
\]
For each \(z \in \mathbb{C}\) define the index \(v(z)\) to be the least integer such that \(R(z; v(z)) = R(z; v(z) + 1)\). Then obviously
\[
\{0\} = R(z; 0) \subset R(z; 1) \subset \ldots \subset R(z; v(z)) = R(z; v(z) + 1).
\]
From this we see that
\[
\dim R(z_0; v(z_0)) \geq v(z_0).
\]
It is known that \(X(z_0) = R(z_0, v(z_0))\) and that if \(z_0\) is a pole of \((zI - A)^{-1}\) of order \(m\) then \(v(z_0) = m\). Therefore
\[
\dim X(z_0) \geq m.
\]
It is also known that
\[
B_{-k} = (A - z_0I)^{k-1}E(z_0), \quad k \geq 1.
\]
Recalling that \(A\) commutes with \(E(z_0)\), we get
\[
B_{-m}b = (A - z_0I)^{m-1}E(z_0)b = E(z_0)(A - z_0I)^{m-1}b.
\]
If \(B_{-m}b = 0\), then \(E(z_0)A^{m-1}b\) is a linear combination of \(E(z_0)b, E(z_0)Ab, \ldots, E(z_0)A^{m-2}b\) and thus so is \(E(z_0)A^k b\) for \(k \geq m\). Since \(b\) is cyclic for \(A\),
\[
\dim X(z_0) = \dim E(z_0)X = \dim E(z_0) \bigcup_{n=0}^{\infty} \text{Span}_{k=0}^n \{A^k b\} = X \leq m - 1.
\]
However, this contradicts the fact that \(\dim X(z_0) \geq m\).
“Only if”. Let
\[(zI - A)^{-1} = B_{-k}(z - z_0)^{-k} + B_{-(k-1)}(z - z_0)^{-(k-1)} + \ldots \]

Since
\[\varphi(z) = \langle c, \langle zI - A \rangle^{-1} b \rangle = \langle c, B_{-k}b \rangle(z - z_0)^{-k} + \langle c, B_{-(k-1)}b \rangle(z - z_0)^{-(k-1)} + \ldots ,\]
k must be \(\geq m\). Now suppose \(k \geq m + 1\). Then by the previous discussion deriving the “if” part, \(\varphi(z)\) has a pole \(z_0\) of order \(k\), which is greater than \(m\). However, this contradicts the fact that \(\varphi(z)\) has a pole \(z_0\) of order \(m\). Thus \(k\) must be equal to \(m\).

Remark. An analogous theorem holds for finite-dimensional linear systems (cf. [8]). In [5], Helton has proved an analogous theorem for the finite-dimensional continuous time case by embedding a (continuously controllable and observable) system into a Lax–Phillips scattering model and using the result of the Lax–Phillips scattering theory.

We now show a result similar to Mlak’s theorem (Theorem 3 below). We need the following lemma.

Lemma 2. If \(h(z) \in H^1\) and is meromorphic in an open set including \(\mathbb{D}\), then \(h(z)\) has no pole in \(\mathbb{D}\).

Proof. By the definition of \(H^1\) we see that \(h(z) \in H^1\) is analytic in \(\mathbb{D}\) and thus has no pole in \(\mathbb{D}\). So we prove that \(h(z)\) has no pole on \(\mathbb{T}\). A function \(h(z)\) that is meromorphic in an open set containing \(\mathbb{T}\) may have only a finite number of poles on \(\mathbb{T}\), since if there exist an infinite number of poles on \(\mathbb{T}\), then there exists an accumulating point on \(\mathbb{T}\) since \(\mathbb{T}\) is compact. However, this contradicts the definition of meromorphic functions (see, e.g., [16]). Let the finite number of poles of \(h(z)\) on \(\mathbb{T}\) (and thus in \(\overline{\mathbb{D}}\)) be \(z_1, \ldots, z_m\). Then at each point \(z_i, i = 1, \ldots, m\), \(h(z)\) can be written locally in the form
\[h(z) = \eta_i(z) + \psi_i(z),\]

where
\[\eta_i(z) = b_{m_i} (z - z_i)^{-n_i} + \ldots + b_{i1} (z - z_i)^{-1}, \quad b_{m_i} \neq 0, \quad i = 1, \ldots, m,\]
and \(\psi_i(z)\) is analytic in a neighbourhood of \(z_i\). Since \(\eta_i(z), i = 1, \ldots, m,\) is analytic in \(\mathbb{D} - \{z_i\}\), it is easily seen that
\[\psi(z) = h(z) - \sum_{i=1}^{m} \eta_i(z)\]
is analytic in \(\overline{\mathbb{D}}\). Thus \(h(z)\) can be written as
\[h(z) = \psi(z) + \sum_{i=1}^{m} \eta_i(z).\]
Multiplying $h(z)$ by
\[q(z) = (z - z_1)^{n_1-1}(z - z_2)^{n_2} \cdots (z - z_m)^{n_m} = (z - z_1)^{n_1-1}g(z), \]
and noting that $g(z_1) \neq 0$, we obtain
\[q(z)h(z) = \frac{c}{z - z_1} + p(z) + q(z)\psi(z), \]
where $p(z)$ is a polynomial and $c \neq 0$. Since $p(z)$, $q(z)$ and \(\psi(z) \) are holomorphic in \overline{D} and thus bounded in \overline{D}, if $h(z) \in H^1$ then
\[
\sup_{r<1} \int_0^{2\pi} \left| \frac{c}{re^{i\theta} - z_1} \right| \, d\theta \\
\leq \sup_{r<1} \int_0^{2\pi} \left[|q(re^{i\theta})| \cdot |h(re^{i\theta})| + |p(re^{i\theta})| + |q(re^{i\theta})| \cdot |\psi(re^{i\theta})| \right] \, d\theta \\
< \infty.
\]
Thus $c/(z - z_1) \in H^1$. However, this is obviously impossible, which follows immediately from the celebrated Hardy inequality, i.e.,
\[
\sum_{n=1}^{\infty} \frac{|a_n|}{n+1} \leq \frac{1}{\pi} \|f\|_1
\]
for $f(z) = a_0 + a_1z + a_2z^2 + \ldots \in H^1$. Therefore $h(z)$ has no pole in \overline{D}.

We can now prove the following theorem.

Theorem 3. Assume that $(I - zA)^{-1}$ is meromorphic in an open set including \overline{D}. Let b be cyclic for A and c be cyclic for A^*. If $z^{-1}\varphi(z^{-1}) = \langle c, (I - zA)^{-1}b \rangle \in H^1$, then $\varrho(A) < 1$.

Proof. By the assumption and Lemma 2, $z^{-1}\varphi(z^{-1})$ has no pole in \overline{D}. Thus $\varphi(z) = \langle c, (zI - A)^{-1}b \rangle$ has no pole in $C - D = \{z : |z| \geq 1\}$. Hence, by Theorem 2, $(zI - A)^{-1}$ has no pole in $C - D$. Therefore $\varrho(A) \leq 1$. Now suppose $\varrho(A) = 1$. Then there exists an infinite sequence z_1, z_2, \ldots in $\sigma(A)$, the spectrum of A, such that $|z_i| \to 1$. Since the spectrum of A is compact, a subsequence of $\{z_i\}$ has a limit point $z_0 \in \sigma(A)$ on T. However, again by Lemma 2 and Theorem 2, this is impossible. Thus $\varrho(A) < 1$.

Acknowledgements. I would like to thank Prof. Jaroslav Zemanek for encouragement, stimulating discussion and helpful comments. I would like to thank Prof. Jan Janas for helpful suggestions. I would like to thank Prof. Krzysztof Rudol for improving the proof of Lemma 2. I would also like to thank Prof. Olavi Nevanlinna for correcting some points of the original manuscript. Finally, I would like to thank Prof. Graham R. Allan, Prof. Joseph Ball and Prof. J. A. van Casteren for helpful comments.
References

Department of Mathematics and Computer Science
Adam Mickiewicz University
Matejki 48/49
60-769 Poznań, Poland
E-mail: uetake@math.amu.edu.pl

Reçu par la Rédaction le 29.11.1995