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On a property of weak resolvents

and its application to a spectral problem

by Yoichi Uetake (Poznań)

Abstract. We show that the poles of a resolvent coincide with the poles of its weak
resolvent up to their orders, for operators on Hilbert space which have some cyclic proper-
ties. Using this, we show that a theorem similar to the Mlak theorem holds under milder
conditions, if a given operator and its adjoint have cyclic vectors.

1. Introduction. For a linear bounded operator A : X → X, where
X is a Hilbert space, we define a complex-valued function ϕ(z) = 〈c, (zI −
A)−1b〉, which we call a weak resolvent , due to Fong, Nordgren, Radjavi,
and Rosenthal (cf. [3], [15]). Here b, c ∈ X, and 〈f, g〉 denotes the scalar
product of the vectors f and g. Nordgren et al . considered this function
in the study of the invariant subspace problem. Earlier, in the 1960’s, in
the model theory of operators, Sz.-Nagy and Foiaş introduced this kind of
functions (cf. [17]). Also, in the study of the spectral problem, Mlak proved
the following theorem, which also concerns model theory. See also Lebow
[12] and Nikol’skĭı [14].

Theorem 1 ([13]). If , for every b, c in X, z−1ϕ(z−1) = 〈c, (I − zA)−1b〉
∈ H1, then ̺(A) < 1. Here ̺(A) is the spectral radius of A.

Janas [7] and Jakóbczak and Janas [6] have extended the above theorem
to several commuting operators.

During the 1960’s, Lax and Phillips developed a scattering theory (cf.
[11]). Meanwhile, during the same period, engineers developed indepen-
dently a control theory, initiated by, among others, Kalman (cf. [9], [8]).
Surprisingly enough, the above kind of abstract operator theory and these
two theories have been shown to be related to one another by Adamyan and
Arov (see references in [11]) and Helton ([4], [5]). The weak resolvent cor-
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responds to a scattering matrix in scattering theory and a transfer function
(or a frequency response function) in control theory, respectively. The above
Mlak theorem is also related to the input-output stability of control systems
(cf. [8]).

In our paper, we show that if both A and its adjoint have cyclic vectors,
then the poles of the resolvent of A and their orders exactly coincide with
those of the weak resolvent of A. Next, using this result, we show that such
operators, a result similar to Mlak’s theorem holds under milder conditions.

Notations which we use are as follows:

D = {z : |z| < 1} (open unit disc in the complex plane),

D = {z : |z| ≤ 1} (closed unit disc in the complex plane),

T = {z : |z| = 1} (unit circle in the complex plane),

H1 = {f(z) analytic in D : supr<1

T2π

0
|f(reiθ)| dθ = ‖f‖1 < +∞}

(Hardy space with p = 1).

2. Main theorems

Definition.We say that b is cyclic for A iff
⋃

∞

n=0 Spann
k=0{A

kb} = X.

The following lemma is known as the Popov–Belevich–Hautus–
Rosenbrock test in control theory for the finite-dimensional case (cf. [8]).
To make the paper self-contained, we include the result with a proof for the
infinite-dimensional case.

Lemma 1. If b is cyclic for A and x is an eigenvector of A∗, i.e., for

some z0 ∈ C, A∗x = z0x, x 6= 0, then 〈b, x〉 6= 0.

P r o o f. Suppose 〈b, x〉 = 0. Then

〈Ab, x〉 = 〈b,A∗x〉 = z0〈b, x〉 = 0,

〈A2b, x〉 = 〈Ab,A∗x〉 = z0〈Ab, x〉 = 0,

...

〈Akb, x〉 = 〈Ak−1b,A∗x〉 = z0〈A
k−1b, x〉 = 0 (k = 1, 2, . . .),

Thus x 6∈
⋃

∞

n=0 Spann
k=0{A

kb} = X. However, this contradicts the assump-
tion that b is cyclic for A. This completes the proof.

In the following theorem and its proof, a pole is an isolated (not accu-
mulating) pole.

Theorem 2. Let (zI − A)−1 be meromorphic in an open neighborhood

of z0. Further , let b be cyclic for A and c be cyclic for A∗. Then the weak

resolvent ϕ(z) = 〈c, (zI−A)−1b〉 has a pole of order m at z = z0 if and only

if the resolvent (zI −A)−1 has a pole of order m at z = z0.
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P r o o f. “If”. Write (zI −A)−1 in the following form:

(zI −A)−1 = B−m(z − z0)
−m +B

−(m−1)(z − z0)
−(m−1) + . . .+B0

+B1(z − z0) + . . .

From this,

(z0I −A)B−m = 0.

Suppose B−mb 6= 0. Then, since A∗ is cyclic for c by assumption, we have
〈c,B−mb〉 6= 0 by Lemma 1, and thus the weak resolvent ϕ(z) has a pole
of order m at z = z0. Now we show B−mb 6= 0. Define the Riesz projection
E(z0) : X → X by

E(z0) =
1

2πi

L
C

(zI −A)−1 dz,

where C, the path of integration, is a small circle about z0 containing no
other spectral point of A. As is well known, E(z0) is a projection from X
onto X(z0) = E(z0)X and A commutes with E(z0). For the spectral theory
used in this proof see, e.g., [1], [2], [10]. For each n = 0, 1, 2, . . . and z ∈ C
define a subspace R(z;n) of X by

R(z;n) = {x : (zI −A)nx = 0}.

For each z ∈ C define the index υ(z) to be the least integer such that
R(z;υ(z)) = R(z;υ(z) + 1). Then obviously

{0} = R(z; 0)  R(z; 1)  . . .  R(z;υ(z)) = R(z;υ(z) + 1).

From this we see that

dimR(z0;υ(z0)) ≥ υ(z0).

It is known that X(z0) = R(z0, υ(z0) and that if z0 is a pole of (zI − A)−1

of order m then υ(z0) = m. Therefore

dimX(z0) ≥ m.

It is also known that

B−k = (A− z0I)
k−1E(z0), k ≥ 1.

Recalling that A commutes with E(z0), we get

B−mb = (A− z0I)
m−1E(z0)b = E(z0)(A− z0I)

m−1b.

If B−mb = 0, then E(z0)A
m−1b is a linear combination of E(z0)b,E(z0)Ab,

. . . , E(z0)A
m−2b and thus so is E(z0)A

kb for k ≥ m. Since b is cyclic for A,

dimX(z0) = dimE(z0)X = dimE(z0)

∞
⋃

n=0

Spann

k=0{A
kb} = X ≤ m− 1.

However, this contradicts the fact that dimX(z0) ≥ m.
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“Only if”. Let

(zI −A)−1 = B−k(z − z0)
−k +B

−(k−1)(z − z0)
−(k−1) + . . .

Since

ϕ(z) = 〈c, (zI −A)−1b〉

= 〈c,B−kb〉(z − z0)
−k + 〈c,B

−(k−1)b〉(z − z0)
−(k−1) + . . . ,

k must be ≥ m. Now suppose k ≥ m+ 1. Then by the previous discussion
deriving the “if” part, ϕ(z) has a pole z0 of order k, which is greater than m.
However, this contradicts the fact that ϕ(z) has a pole z0 of order m. Thus
k must be equal to m.

R e m a r k. An analogous theorem holds for finite-dimensional linear sys-
tems (cf. [8]). In [5], Helton has proved an analogous theorem for the infinite-
dimensional continuous time case by embedding a (continuously controllable
and observable) system into a Lax–Phillips scattering model and using the
result of the Lax–Phillips scattering theory.

We now show a result similar to Mlak’s theorem (Theorem 3 below). We
need the following lemma.

Lemma 2. If h(z) ∈ H1 and is meromorphic in an open set including

D, then h(z) has no pole in D.

P r o o f. By the definition of H1 we see that h(z)∈H1 is analytic in D
and thus has no pole in D. So we prove that h(z) has no pole on T. A function
h(z) that is meromorphic in an open set containing T may have only a finite
number of poles on T, since if there exist an infinite number of poles on T,
then there exists an accumulating point on T since T is compact. However,
this contradicts the definition of meromorphic functions (see, e.g., [16]). Let
the finite number of poles of h(z) on T (and thus in D) be z1, . . . , zm. Then
at each point zi, i = 1, . . . ,m, h(z) can be written locally in the form

h(z) = ηi(z) + ψi(z),

where

ηi(z) = bini
(z − zi)

−ni + . . .+ bi1(z − zi)
−1, bini

6= 0, i = 1, . . . ,m,

and ψi(z) is analytic in a neighbourhood of zi. Since ηi(z), i = 1, . . . ,m, is
analytic in D− {zi}, it is easily seen that

ψ(z) = h(z) −
m

∑

i=1

ηi(z)

is analytic in D. Thus h(z) can be written as

h(z) = ψ(z) +

m
∑

i=1

ηi(z).
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Multiplying h(z) by

q(z) = (z − z1)
n1−1(z − z2)

n2 . . . (z − zm)nm = (z − z1)
n1−1g(z),

and noting that g(z1) 6= 0, we obtain

q(z)h(z) =
c

z − z1
+ p(z) + q(z)ψ(z),

where p(z) is a polynomial and c 6= 0. Since p(z), q(z) and ψ(z) are holo-
morphic in D and thus bounded in D, if h(z) ∈ H1 then

sup
r<1

2π\
0

∣

∣

∣

∣

c

reiθ − z1

∣

∣

∣

∣

dθ

≤ sup
r<1

2π\
0

[|q(reiθ)| · |h(reiθ)| + |p(reiθ)| + |q(reiθ)| · |ψ(reiθ)|] dθ

<∞.

Thus c/(z − z1) ∈ H1. However, this is obviously impossible, which follows
immediately from the celebrated Hardy inequality, i.e.,

∞
∑

n=1

|an|

n+ 1
≤

1

π
‖f‖1

for f(z) = a0 + a1z + a2z
2 + . . . ∈ H1. Therefore h(z) has no pole in D.

We can now prove the following theorem.

Theorem 3. Assume that (I − zA)−1 is meromorphic in an open set

including D. Let b be cyclic for A and c be cyclic for A∗. If z−1ϕ(z−1) =
〈c, (I − zA)−1b〉 ∈ H1, then ̺(A) < 1.

P r o o f. By the assumption and Lemma 2, z−1ϕ(z−1) has no pole in D.
Thus ϕ(z) = 〈c, (zI − A)−1b〉 has no pole in C − D = {z : |z| ≥ 1}. Hence,
by Theorem 2, (zI −A)−1 has no pole in C− D. Therefore ̺(A) ≤ 1. Now
suppose ̺(A) = 1. Then there exists an infinite sequence z1, z2, . . . in σ(A),
the spectrum of A, such that |zi| → 1. Since the spectrum of A is compact,
a subsequence of {zi} has a limit point z0 ∈ σ(A) on T. However, again by
Lemma 2 and Theorem 2, this is impossible. Thus ̺(A) < 1.
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