On operators with unitary ϱ-dilations

by T. Ando and K. Takahashi (Sapporo)

To the memory of Professor Włodzimierz Mlak

Abstract. We show a polynomially boundend operator T is similar to a unitary operator if there is a singular unitary operator W and an injection X such that $XT = WX$. If, in addition, T is of class C_ϱ, then T itself is unitary.

According to Sz.-Nagy and Foiaş [5], a (bounded linear) operator T on a separable Hilbert space \mathcal{H} is said to be of class C_ϱ with $\varrho > 0$ if there exists a unitary operator U on a Hilbert space $\mathcal{K} (\supset \mathcal{H})$ such that $T^n = \varrho P_\mathcal{H} U^n |\mathcal{H}$ for $n = 1, 2, \ldots$, where $P_\mathcal{H}$ is the orthogonal projection of \mathcal{K} onto \mathcal{H}. For $\varrho = 2$ it is known (see [5, Chapter I, Proposition 11.2]) that T is of class C_2 if and only if its numerical radius $w(T) := \sup\{|(Tx, x) : \|x\| \leq 1\}$ is not greater than one. In this paper we show that if T is of class C_ϱ and there exist a singular unitary operator W and an injection X such that $XT = WX$, then T is unitary. Here a unitary operator is singular by definition if its spectral measure is singular with respect to the (linear) Lebesgue measure on the unit circle \mathbb{T}. Such a situation occurs in connection with a compact operator A, as observed by Watanabe [6], which satisfies $|(Ax, x)| \leq (|A|x, x)$ for all x. Our result gives an affirmative answer to a conjecture that such an operator A is normal. Clearly, if T is of class C_ϱ, then T is polynomially bounded, i.e., there exists a constant M such that $\|p(T)\| \leq M \max\{|p(z)| : |z| = 1\}$ for every polynomial p. In our main result (Theorem 1) an assertion for the case of a polynomially bounded operator T is also included. Though this part can be derived from a result of Mlak [2] (see also [3]), our proof is quite different from Mlak’s.

Let $A(\mathbb{T})$ be the disk algebra, that is, $A(\mathbb{T})$ is the norm closure of polynomials in the algebra $C(\mathbb{T})$ of all continuous functions on \mathbb{T} with norm

1991 Mathematics Subject Classification: Primary 47A20.

Key words and phrases: polynomially bounded operators, operators of class C_ϱ, unitary ϱ-dilation.
\[\|f\| = \sup \{|f(z)| : z \in \mathbb{T} \} \text{ for } f \in C(\mathbb{T}). \]

If \(T \) is a polynomially bounded operator, then there exists a bounded algebra homomorphism, \(f \mapsto f(T) \), from \(A(\mathbb{T}) \) to the uniformly closed algebra generated by \(T \) and \(I \) which maps each polynomial \(p \) to \(p(T) \).

Theorem 1. Let \(T \) be an operator on \(\mathcal{H} \), and suppose that there exist a singular unitary operator \(W \) on \(\mathcal{G} \) and an injection \(X : \mathcal{H} \to \mathcal{G} \) such that \(XT = WX \).

(i) If \(T \) is polynomially bounded, then \(T \) is similar to a unitary operator.

(ii) If \(T \) is of class \(C_p \), then \(T \) is unitary.

Proof. (i) Let \(W = \int_\mathbb{C} z \, dE(z) \) be the spectral decomposition of \(W \). Let us first show that for every closed set \(\delta (\subset \mathbb{T}) \) of Lebesgue measure zero, there exists an idempotent \(Q \) on \(\mathcal{H} \) such that

\[XQ = E(\delta)X \quad \text{and} \quad \|Q\| \leq M, \]

where \(M = \sup \{\|h(T)\| : h \in A(\mathbb{T}) \text{ and } \|h\| \leq 1\} \). For such a set \(\delta \), we can take a function \(g \) in \(A(\mathbb{T}) \) such that \(g(z) = 1 \) for \(z \in \delta \) and \(|g(z)| < 1 \) for \(z \in \mathbb{T} \setminus \delta \) (see [1, p. 81]). Then, since \(T \) is polynomially bounded, \(g^n(T) \) is well defined and it follows from the identity \(XT = WX \) that \(Xg^n(T) = g^n(W)X \). Clearly, \(g^n(W) \) converges strongly to \(E(\delta) \), so

\[\lim_{n \to \infty} (g^n(T)x, X^*y) = (E(\delta)x, y) \quad \text{for } x \in \mathcal{H} \text{ and } y \in \mathcal{G}. \]

Hence, since \(\|g^n(T)\| \leq M \|g^n\| = M \) for \(n = 1, 2, \ldots \) and \(X^* \) has dense range, \(g^n(T) \) converges weakly to an operator \(Q \) such that \(XQ = E(\delta)X \) and \(\|Q\| \leq M \).

Since \(X \) is injective, the identity \(XQ = E(\delta)X \) shows that \(Q \) is idempotent.

Now we prove that \(T \) is invertible and \(\|T^k\| \leq M^2 \) for \(k = 0, \pm 1, \pm 2, \ldots \).

Then it follows from the theorem of Sz.-Nagy [4] that \(T \) is similar to a unitary operator. Since \(W \) is singular, there exists a sequence \(\{\delta_n\} \) of closed sets with Lebesgue measure zero such that \(E(\delta_n) \) converges to the identity \(I \) as \(n \to \infty \). Applying the fact shown above to \(\delta = \delta_n \), we obtain an idempotent \(Q_n \) such that \(XQ_n = E(\delta_n)X \) and \(\|Q_n\| \leq M \). For each \(k \) and \(n = 1, 2, \ldots \), take an \(h_{k,n} \in A(\mathbb{T}) \) such that \(h_{k,n}(z) = z^{-k} \) for \(z \in \delta_n \) and \(\|h_{k,n}\| \leq 1 \) (see [1, p. 81]). Then we have

\[Xh_{k,n}(T)Q_n = h_{k,n}(W)E(\delta_n)X = W^{*k}E(\delta_n)X. \]

For each \(k \), \(W^{*k}E(\delta_n) \) converges strongly to \(W^{*k} \) as \(n \to \infty \) and, for \(n = 1, 2, \ldots \), \(\|h_{k,n}(T)Q_n\| \leq M^2 \). Therefore we can conclude that \(h_{k,n}(T)Q_n \) converges weakly to an operator \(S_k \) such that \(XS_k = W^{*k}X \) and \(\|S_k\| \leq M^2 \). Since

\[XS_kT^k = W^{*k}XT^k = W^{*k}W^kX = X \quad \text{and} \quad XT^kS_k = W^kW^{*k}X = X, \]

the injectivity of \(X \) shows that \(T \) is invertible and \(T^{-k} = S_k \) for \(k = 1, 2, \ldots \), so that \(\|T^k\| \leq M^2 \) for all \(k = 0, \pm 1, \pm 2, \ldots \).
(ii) Let U be a unitary g-dilation of T on \mathcal{K}, i.e., a unitary operator such that $T^n = gP_\mathcal{K}U^n|\mathcal{K}$ for $n = 1, 2, \ldots$, and let $U = \int_T z \, dF(z)$ be the spectral decomposition of U. For any closed set δ with Lebesgue measure zero, let g and Q be as in the proof of (i). Since the idempotent Q is a weak limit of $g^n(T)$ and
\[g^n(T) = P_\mathcal{K}[gg^n(U) + (1 - g)g^n(0)1_\mathcal{K}]|\mathcal{H}, \]
we have $Q = gP_\mathcal{K}F(\delta)|\mathcal{K}$ because $g^n(0) \to 0$ as $n \to \infty$, so that Q is self-adjoint. Hence it follows from $XQ = E(\delta)X$ that $E(\delta)XX^* = XQX^*$ and so XX^* commutes with $E(\delta)$. Then, since W is singular, XX^* commutes with $E(\delta)$ for any Borel set α and so commutes with W. Thus $W|\text{ran } X)^-$ is unitary and, using the polar decomposition of X^*, we can conclude that T is unitarily equivalent to $W|\text{ran } X)^-$, so T itself is unitary. This completes the proof.

Clearly, a polynomially bounded operator T is power-bounded, that is, $\sup\{\|T^n\| : n = 1, 2, \ldots\} < \infty$. When an operator T is power-bounded, by requiring compactness of the intertwining operator X in Theorem 1(i) we can obtain a similar conclusion.

Theorem 2. Let T be a power-bounded operator on \mathcal{H} and let V be an isometry on \mathcal{G}. If there exists a compact injection $K : \mathcal{H} \to \mathcal{G}$ having dense range such that $KT = VK$, then V is a singular unitary operator, and T is similar to a unitary operator.

Proof. Since T is power-bounded, we can take a subsequence $\{T^n(k)\}$ of $\{T^n\}$ which converges weakly to an operator S as $k \to \infty$. Then, since $KT^n(k) = V^n(k)K$ for $k = 1, 2, \ldots$ and K is compact, $V^n(k)K$ converges strongly to KS. But K has dense range, so it follows that $V^n(k)$ converges strongly to an isometry W. Considering the Wold decomposition of V (see [5, Chapter I, Theorem 1.1]) and the decomposition of its unitary part into the sum of the singular and absolutely continuous summands, we see that V is singular unitary because $U^n \to 0$ weakly as $n \to \infty$ for an isometry U whose unitary part is absolutely continuous. Next, for integers j, l and k with $n(k) > n(l) + j$, we have
\[KT^n(k) - n(l) - j = V^{*(j+n(l))}V^n(k)K \]
and $V^{*(j+n(l))}V^n(k)$ converges weakly to $V^{*(j+n(l))}W$ as $k \to \infty$. Hence, since T is power-bounded and K^* has dense range by the injectivity of K, $T^n(k) - n(l) - j$ converges weakly to an operator $S_{j,l}$ as $k \to \infty$, which satisfies
\[KS_{j,l} = V^{*(j+n(l))}WK \quad \text{and} \quad \|S_{j,l}\| \leq M, \]
where $M = \sup\{\|T^n\| : n = 0, 1, 2, \ldots\}$. Also, for each j, $V^{*(j+n(l))}W$ converges weakly to V^* as $l \to \infty$ (because W is isometric). So, letting $l \to \infty$ in the identity $KS_{j,l} = V^{*(j+n(l))}WK$, we get an operator S_j such that
KS_j = V^*j K \text{ and } \|S_j\| \leq M. \text{ Thus, as in the proof of Theorem 1(i), it follows that } T \text{ is invertible and } \|T^{-j}\| \leq M \text{ for } j = 1, 2, \ldots, \text{ and by the theorem of Sz.-Nagy [4], } T \text{ is similar to a unitary operator.}

Theorem 1(ii) and Theorem 2 can give an affirmative answer to the question posed in [6]:

Corollary 3. If A is a compact operator and satisfies $|\langle Ax, x \rangle| \leq (\|A\|_x, x)$ for all x, then A is normal.

Proof. Let $A = V|A|$ be the polar decomposition. By [6, Theorem 2.1] there exists an operator T with $w(T) \leq 1$ such that $V|A|^{1/2} = |A|^{1/2}T$. Let $\mathcal{M} = (\text{ran }|A|)^{-}$. The identity $V|A|^{1/2} = |A|^{1/2}T$ implies that \mathcal{M} is invariant for V. Let $V_1 = V|\mathcal{M}$ and $T_1 = P_M T|\mathcal{M}$. Then V_1 is isometric and T_1 belongs to the class C_2. Also, the operator $X = |A|^{1/2}|\mathcal{M} : \mathcal{M} \rightarrow \mathcal{M}$ is a compact injection with dense range and satisfies $XT_1 = V_1 X$. So, by Theorem 2 and the proof of Theorem 1(ii), V_1 is a unitary operator which commutes with $|A||\mathcal{M}$. Hence it follows that A is normal.

References

Faculty of Economics
Hokusei Gakuen University
Atsubetsu-ku, Sapporo 004
Japan
E-mail: ando@hokusei.ac.jp

Department of Mathematics
Hokkaido University
Sapporo 060
Japan
E-mail: ktaka@math.hokudai.ac.jp

Reçu par la Rédaction le 15.2.1995