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Abstract. In this paper we give some analytic formulas for the hyperbolic (Harnack)
distance between two contractions which permit concrete computations in several situ-
ations, including the finite-dimensional case. The main consequence of these formulas is
the proof of the Schwarz—Pick Lemma. It modifies those given in [13] by the avoidance
of a general Schur type formula for contractive analytic functions, more exactly by reduc-
ing the case to the more manageable situation when the function takes as values strict
contractions.

The Harnack equivalence was introduced in [11] and studied in many
articles (cf. [1], [3], [5], [6], [16]).

The hyperbolic (Harnack) distance on the Harnack parts was introduced
in [15] in a general context of completely positive maps from a subspace of a
C*-algebra into B(H). The special case of the contractions was considered
in [13], where the Schwarz—Pick Lemma for an operator-valued contractive
analytic function defined on the open unit disc in the complex plane was
proved.

In the present paper we give some analytic formulas for the hyperbolic
(Harnack) distance between two contractions (Sections 2, 3) which permit
concrete computations in several situations, including the finite-dimensional
case. The main consequence of these formulas is the proof of the Schwarz—
Pick Lemma given in Section 4. It modifies those given in [13] by the avoid-
ance of a general Schur type formula for contractive analytic functions, more
exactly by reducing the case to the more manageable situation when the
function takes strict contractions as values.
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The paper uses as preliminaries elements of the Sz.-Nagy—Foiag theory
of contractions. Some of them are presented in Section 1, following mainly
[4], [7] and [17].

1. Preliminaries. Let H be a separable Hilbert space and B(H) be
the Banach space of all linear bounded operators on H. We shall denote
by Bo(H) the open unit ball in B(H) and by B;j(H) its closure. For a
contraction A € By (H),D4 = [I — A*A]'/? is the defect operator of A and
Da = D4(H) its defect space.

We shall denote by (7,4~acting on K4 the minimal unitary dilation of A
(Cf. [17]) If Ky = \/n>0 UXH, K.y = \/n<0 UZH, Uy = UA’KA then Uy
acting on K 4 is the minimal isometric dilation of A. We have

(1.1) Kia=|K.a0H) ®H®[Ks0 H.

For the minimal isometric dilation of A we have the following matrix
model (cf. [17]):

Dy S

where for a Hilbert space £, H?(€) is the usual Hardy space and S is the
shift operator on H?(E).

We shall adopt and use freely other notations and terminology from
the Sz.-Nagy—Foiag theory of contractions following the book [17]. Other
terminology is from [4] and [7].

For example, if £ and F are separable Hilbert spaces, we shall denote by
H>(B(€,F)) the Banach space of all bounded analytic functions defined
on the unit disc D in the complex plane C with values bounded linear
operators from £ to F. H™(B(E)) is H>*(B(E,€)) and H*(B(E,F)) is
the unit ball of H>*(B(&,F)). A function © € H>*(B(&, F)) has a.e. radial
strong limit ©(e'). Pointwise multiplication defines the bounded operators
O from H2(E) into H2(F) and O from L2(€) into L2(F), O being the unique
extention of © to an intertwining of the bilateral shifts on L?(€) and L?(F)
respectively. We have

(1.3) 18] =[O = (18]l = sup [|O(2)|| = ess sup||O(e™)]|.
zeD 0<t<2r

(1.2) Ka=He HXDy), Us— ( 4 0),

An analytic function 2 from D into B(&E,F) defined by
(1.4) 2(z) = 2,2"
n=0

will be called L2-bounded if there exists a constant M > 0 such that for any
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a € € we have

(1.5) > I120al® < M2|jal?.
n=0
Clearly, (1.5) is equivalent to the fact that the formula
(1.6) (a)(z) = 2(z)a, z€D, ack,
defines a bounded operator (2 from £ to H2(F), and ||2|] < M.

2. Harnack parts and Harnack distance. We say that the contrac-
tion A is Harnack dominated by the contraction B (cf. [1]) if there exists
a positive constant ¢ such that for any analytic polynomial p satisfying
Rep(z) > 0 for |z] <1 we have

(2.1) Rep(A) < ?Rep(B).

Harnack domination is clearly a preorder relation on B;(H) and we shall
call the equivalence relation induced by it Harnack equivalence (cf. [12]).
The equivalence classes are called Harnack parts. For a contraction A we
shall denote by A(A) the Harnack part containing A. Clearly, A and B are
Harnack equivalent if and only if there exists ¢ > 1 such that

(2.2) (1/a*)Rep(A) < Rep(B) < a*Rep(A)

for any analytic polynomial p with positive real part on the unit disc D.
Let us denote

(2.3) wr (A, B) = inf{a | (2.2) holds for a}
and
(2.4) 0 (A, B) =logwy (A, B).

It is easy to see that wgy(A, B) is symmetric in A, B and 0y (A, B) is a
distance on each Harnack part A of By (H). We shall call this distance the
Harnack (hyperbolic) distance on A (cf. [15]).

In case H = C the only non-trivial (one-point) Harnack part of By (H)
is A(0) = D and the Harnack distance on D coincides with the classical
hyperbolic (Poincaré) distance § on D defined by

|2 — wl

_ -1
d(z,w) = tanh <‘1 .

), z,w € D.
It was shown in [12] that (2.1) is equivalent to the fact that there exists

a bounded operator Sp 4 from Kp to K4 such that ||Sp 4|l < ¢ and for any
hg,h1,...,h, € H we have

(2.5) Sp.a Y Ukh; => Uih;.
j=0 §=0
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Clearly, in this case Sp 4 is the unique bounded operator from Kp to K4
which intertwines U and U4 and whose restriction to H is the identity
operator. A is Harnack equivalent to B if and only if S 4 is invertible. We
have S;}A = Sa,p and

(2.6) wi (A, B) = max{[|Sa sl [55.l}-

It was shown in [3] that A is Harnack equivalent to the null contraction
on H if and only if A is a strict contraction, i.e. ||A|| < 1. This means that
By is the Harnack part A(0Oz) of the null contraction on H.

For T € Bi(H) and 0 <r < 1let us put T, = 7.

THEOREM 1. For A, B € B1(H) the following assertions are equivalent:

(i) A is Harnack dominated by B.
(i) supgcr<1 [19B,,4, 1| < oc.
If (i), and consequently (ii), holds then

(2.7) 1SB.all = sup [ISB, A,
0<r<1
Proof. For any A € D, let f(z,A\) = (14 A2)/(1 — A2), z € D. Since
Re f(2,A) > 0 for z € D and f(z,A) is in D a uniform limit of analytic
polynomials with positive real part, it follows from (2.1) that

(2.8) Re f(A,A) < [|Sp,all” Re f(B, \).

Since any analytic polynomial p with positive real part can be written in
the form

27
(2.9) p(z) = |

0

1+e iy

where p is a positive measure and « is a real constant, by (2.8) we have

(2.10) Rep(A,) = S Re f(A, re) du(t)
0
27

< 1Sal® | Re f(B,re) du(t) < [1Sp,al* Rep(B,).
0

Hence for any r, 0 < r < 1, we have

(2.11) 198, .4,Il < [I5B,al
and the implication (i)=-(ii) is proved.
Suppose now that

sup ||SB,.a,.| =c < oc.
o<r<1
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For any r, 0 < r < 1, and any analytic polynomial p with positive real part
we have

Rep(rA) = Rep(A,) < ||Ss,.a,|* Rep(B,) < ?Rep(B,) = ¢ Rep(rB).
Letting » — 1 we obtain
Rep(A) < ¢* Rep(B).
Hence A is Harnack dominated by B and
(2.12) 15B,all <c= sup |, 4,
o<r<1

From (2.11) and (2.12) we obtain (2.7) and the proof is complete.

COROLLARY 1. The contractions A, B are Harnack equivalent if and only

if
(2.13) sup wg (A, By) < 0.
0<r<1

If this is the case, we have

(2.14) wi(A,B) = sup wg(A,, By),
0<r<1

(2.15) 0n(A,B) = sup 0u(A,, By).
0<r<1

COROLLARY 2. For any A,B € B1(H), both ||Sp,. a,| and wg(A,, B,)
are increasing functions of r on the interval (0,1).

3. The analytic structure of the operator S. Having in mind the
Sz.-Nagy-Foiag structure (1.2) of the minimal isometric dilation, we look for
a matrix form of the intertwining operator S. It will be given by a pair of
analytic functions as in the following;:

THEOREM 2. The contraction A is Harnack dominated by the contraction
B if and only if there exist bounded operators {2y from H to Dg and Gy from
Dy to D such that:

(i) We have
(3.1) Dp(2y = A" — B”,
(3.2) DpBy = D4.

(ii) The formula
(3.3) Q) = I — XA

defines a B(H,Dg)-valued L?-bounded analytic function.
(iii) The formula

(3.4) O(\) = By + MU[I — ANA*]"'D4
defines a B(Da, Dpg)-valued bounded analytic function.
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If this is the case then the bounded operator S = Sp a from Kp =
H® H?(Dg) into Ko = H®H?*(D,) satisfying S|H = Iy and SUp = UaS
s given by

(3.5) s*:(é (g>: g - g ,
H*(Da)  H*(Ds)

where 2 and © are the operators from H to H*(Dg) and from H?*(Dy) to
H?(Dg) defined by

(2h)(\) = Q(\)h, heH, \eD,
©@5)(N) =60\ f(), feH*(Dp), AeD.

Proof. Suppose A is Harnack dominated by B and let S = Sp 4 :
Kp — K4 be the corresponding intertwining. Since S|H = Iy we have

H H
H*(Da)  H*(Dp)

where 2 is a bounded operator from H to H?(Dp) and O is a bounnded
operator from H?(D4) to H*(Dg).
From S*U} = UjS* we obtain

I 0 A* DY\ _ (B D% I 0
2 e o s/ 0 & 2 )’
where for a contraction 7" on H, DY is the operator from H?(Dr) into H

defined by
Dy.f = Drf(0), fe H*(Dr).

We obtain
( A* DY >_<B*+DOBQ DOB@>
NA* QDY +68*) S S*O
Hence
(3.6) A* = B*+ D%,
(3.7) NA* = 8%,
(3.8) DY = D%e,
(3.9) DY = S*6 — 68*.
Let £29 be the operator from H to Dpg defined by
(3.10) Q0h = (£2h)(0).
Since

1201115, = (20)(0)IID, < [120152(p ) < 9207111,
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it results that (2 is bounded. From (3.6) we obtain
Dp$h = Dp(2h)(0) = D%Qh = (A* — B*)h,
for any h € H. Hence
(3.11) Dpf2 = A* — B*.
Using (3.7) we obtain
(1/N[2R)(N) — (2h)(0)] = (S*CR)(A) = (A" R)(N)
for any h € H and A € D, A # 0. Thus
(2h)(N) = 20h + N(R2A7h)(N),

which implies

(2h)(N) = Q[ — NA*] " h.

It results that {2 is given by the multiplication on H with the L?-bounded
analytic function defined on D by

(3.12) Q(\) = ]I — NA*] L.
Setting
(3.13) Gog = (09)(0), g € Da,
we obtain a bounded operator ©y from D4 to Dp. From (3.8) it results that
(3.14) Dp©y = Dy,

and from (3.9) we have
(1/N)[(Og)(A) = Bog] = (1/M)[(Og)(A) — (Og)(0)] = (S"Og)(A)
= ([570 = 657]g)(A) = (2D ag)(A) = 2(A)Dag
for any g € Dp and A € D, A # 0. Hence
(Og)(\) = Opgg + A2(N)Dag, g€ Dp, A€ D.
It results that © is the operator from H?(D,) into H?(Dp) given by the
pointwise multiplication with the bounded analytic function
(3.15) O(N\) = Oy + M[I — NA*] 71Dy,

In this way we produced (2,0 such that (i)—(iii) are satisfied and S
has the form (3.5).

Suppose now there exist 29,0y such that (i)—(iii) hold and let S be
defined by (3.5). Clearly we have A* = B* + D% 2 and DY = D%6. Since
for any h € H we have

(S*2h)(N) = (1/N)[(2h)(N) = (24)(0)] = (1/N) (2]l = AA"]'h — )
— (1/N)(20 — Qo[ — AT — AA*|"Th = QoA [T — AA*]"1h
= QoI — AA"] LA = (247h)(\)
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and for any f € H*(Dp) we have

(§*0f =608 f)(A) = (/N[O F(A) = O f(0)] = ON)(1/N)[F(A) — f(0)]
= (/N[O f(N) + A2\ Daf(A) = Bof(0)]
— (1/NB[f(N) = f(0)] = (M) Dalf(A) = f(0)]
= (1/N)6B0lf(A) = F(O)] + LX) f(N)
— (1/NBo[f(N) = fF(0)] = (M) Dalf(A) = f(0)]

= 2(\)DAf(0) = (2D f)(N),

it results that the relations (3.6)—(3.9) are fulfilled. These clearly imply
S*U} = UpS*. Since S|H = Iy we proved that A is Harnack dominated
by B.

The proof of Theorem 2 is complete.

Let 25 4 = (2, Op 4 = O if 2,0 appear in the form (3.5) of S = Sp 4.

COROLLARY 3. If A is Harnack dominated by C' and C is Harnack
dominated by B, then A is Harnack dominated by B and

Op,a=060pcOc,a.

When A is Harnack dominated by B, they are Harnack equivalent if and
only if the corresponding O, 4 is invertible. In this case we have

—1
@A7B - @B,A'

COROLLARY 4. The contraction A is Harnack dominated by the null
contraction if and only if the spectrum o(A) of A is contained in D. Fur-

thermore, A is Harnack equivalent to the null contraction if and only if
|All < 1.

Proof. If A is Harnack dominated by B = 0 then 2y = A*, Oy = Dy4
and
Qo4 =AT—NA* 7Y, BOpa=[I—-NA*|"'Da.

Hence ©p 4 is bounded if and only if 0(A) C D. For the second assertion,
A is Harnack equivalent to 0 if and only if @y = D 4 is invertible, i.e. if and
only if [|A| < 1.

COROLLARY 5. Suppose A, B are strict contractions. Then A and B are
Harnack equivalent and

(3.16) Op.a(\) = D' [I = AB*][I — MA*] "' Da.

In computing the Harnack distance beetwen two Harnack equivalent con-
tractions A and B we are interested in ||S4 p|| and ||Sp,al. We have the
following:
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THEOREM 3. Let A and B be strict contractions on H. Then
(3.17)  ||ISB,all = 1O, allec = sup |[D5'[I — e B*|[I — " A*] " Dy,
0<t<2m

and

(3.18) wi (A, B) = max(||©4,Blloo; [|08,40)-

Proof. Let S = Sp 4, © = Op, 4 be as in Theorem 2. Extend S to an
intertwining S of UB with U A- This means S: K 4 — K B, U AS S UB and
S]KB = S. Clearly, SKB C KA, SK*B C Kyx. From (1.1) it results that
S*[K4s© H] C K © H. Hence S*|Kp & H = S*|Kp © H.

Since A and B are strict contractions we can identify their unitary di-
lations with the bilateral shift on L?(H). In this identification K4 and Kp
become subspaces in L?(H) such that K4 © H and K& H become H?(H).
From (3.5) we obtain

S*|H?(H) = 6.
It results that in this model S* is given by the pointwise multiplication by
© on L?(H). Consequently,

(3.19) 157 = 16l oo-
Since ||S| = [|S]| = ||S*|, using (3.16) and (3.19) we obtain
15,41l = 1€5.alle = 509 [ D5 = ABIIT = A4 D
= sup ||DZ'[I —e"B*|[I —e"A* 7' D4|.
0<t<om
We also have
wr (A, B) = max{|[©4,8lls, 5.4l }

= max{ sup |[Dgz'[I —e"B*|[I—e"A* 7 'D4l,
0<t< <2

sup || D;'[I — " A"][I — " B"]" Dy}

0<t<2m

and the theorem is proved.

COROLLARY 6. For any strict contraction A we have

1 1 1. 144
—log <dg(0,A) < =log .
2 " 1-4] 2 7 1-4]
If A is a normal strict contraction then
1. 14+ A]
0 (0,A) = = log .
2 " 1-]4]
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Proof. From (3.16) we have
Opa(N) = [T —AA*]'Da,  Oao(N) =D, — A"

Hence
1 [1+ || Al|)*/2
e < L2t
1 a7z = 19a0loer 1€0alloe = e
If A is a normal strict contraction then
[1— ez [1+ ]| AJ|)*/2
Oapollocc = sup sup = .
1Oa0lle = o oD =PI~ [ A2

COROLLARY 7. For any two contractions A, B which are Harnack equiv-
alent we have

wi (A, B) = max{supsup ||[I — r2A* A]7Y/2[I — e"'rA*|
T t
. [[ _ eitT‘B*]_l[I _ T'QB*B]I/QH’
supsup [ — r2B*B]~Y2(1 — ey BY[L — e'r A7 (L — 124" A2}
T t

4. Schwarz—Pick Lemma with respect to the Harnack distance.
Using the formulas for the Harnack distance obtained in the previous sec-
tions, we shall prove the following Schwarz—Pick Lemma for operator-valued
contractive analytic functions defined in the unit disc of complex plane.

THEOREM 4. Let F : D — B(H) be a contractive analytic function. For
any z1,ze € D the contractions F(z1), F(22) are Harnack equivalent and

(41) 5H(F(Zl),F(ZQ)) § 5(21,22).

Proof. We can suppose z; = 0. Indeed, if for any function G in
H*(B(H)) and 2y € D we know that G(0) and G(zp) are Harnack equiva-
lent and

01 (G(0),G(20)) < 6(0,20)
then taking w to be the Mobius transform
2tz

@) =13 Z12
and G(z) = F(w(z)), 20 = w (22) we have G(0) = F(w(0)) = F(z1) and
G(z0) = F(w(z20)) = F(z2). Hence

61 (F(21), F(22)) = 01 (G(0),G(20)) < 6(0,20) = (21, 22)

because the Poincaré distance is invariant under Mobius transformations.

We can also suppose that || F(z)|| <1 for any z € D. Indeed, suppose that
(4.1) holds for such a function. Setting F'(0) = A, F(z9) = B for arbitrary
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Fin H{°, and F, = rF for any r, 0 < r < 1, we obtain ||F,.(2)|| <r <1,
F.(0)=rA=A,, F.(20) = rB = B, and consequently

6H(Ar7 Br) = 5H(Fr(0)7 FV’(ZO)) < 6(07 ZO)’
Hence

sup om (A, By) <6(0,20) < o0.
0<r<1

From Corollary 2 it results that A and B are Harnack equivalent and
(A, B) = sup dg(A,, B,) <40, z).

0<r<1

Suppose now that F' € H*(B(H)) is such that [|F(z)|| < 1 for any
z € D. Let zp € D and A = F(0), B = F(z). A and B being strict
contractions, they are Harnack equivalent. Let G be the function defined
on D by

(4.2) G(2) = —A+ Dy F(2)[I — A*F(2)]7'Ds, z€D.
We have G(0) = 0. Using the fact that the operator matrix
—A Dy~
Dy A*

is unitary and remarking that

(on %) (ropr - a'keornan)

_ G(2)h
- <DAh+ A*F(z)[I — A*F(z)]lDAh> ’

we obtain
IG (=)
= [hl* + [|[F(2)l] — A*F(2)] "' Dah|®
— |[Dah + A*F(2)[I — A*F(2)] "' D h)|?
= [0l* = (Ilf = A"F(2)] "' Dahl* = [|[F(2)[I — A"F(2)] "' Dahl*) < ],

forany z € D and h € H.

Hence G(z) is contractive and G(0) = 0. Then G(z) = zF;(z) with F}
analytic in D. Since for any r, 0 < r < 1, and any z, 0 < |z] < r < 1, we
have

I1F1 ()l = IG(2) /2] < sup |G(2)[|/r < 1/r

|z|=r

it results that ||F1(z)]] <1 for any z € D, i.e. F} € H{°(B(H)). Also,
G(z) = DH{—A[l — A"F(2)] + [I — AA*|F(2)}[I — A*F(2)] ' Da
=D} [F(2) — A][l — A*F(2)] "' Da.
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Hence
F(2) = A4+ Ds-G(2)[I + A*G(2)] ' D4
and from G(z) = zF1(z) we obtain
(4.3) F(2)=A+2Da-Fi(2)[I + zA*F1(2)] 'D4, 2z €D,

with Fy € H°(B(H)).
Let us define

(44) C = Fl(ZO);
we have ||C|| <1 and from F(zy) = B we obtain
(4.5) B = A+ 2D-C[I + 2A*C] ' Da.

Using again the fact that the operator matrix

(A DA*>
A —AF
is unitary and (4.5) we obtain
IBR|I* = [7]]* + 20C[I + 20A*C]~ D ah|®
— | Dah — 2 A*CIL + 2C] ' Db
= [|B)I* + |20 |IC[I + 20 A*C) ' Dahl|]” — ||[I + 20A*C] "D h]|*.
Hence
IDBhI* = || + 20A*C]" Dahl|* = [20*||C[I + 20A*C] ™" Dahl|*.
Writing ¢ = ||C||, we have

(4.6) Il + 20A*CT ' Dah* < 5 [IDBh.

1 —|z0[%0
Let now © = Op 4 correspond as in Theorem 2 to the Harnack equivalent

contractions A and B. Since A, B are strict contractions, according to (3.16)
we have

O(\) = Op a(\) = DI — AB*|[I — AA*]7'Da, Ae€D.
Using (4.5) we obtain
O\) = D {I — AA* = XZo DAl + Z20C* A" C*D g }[I — ANA*] 7' D4y
= D3'Da — A2gD5' DAl + Z20C* A7 'C*D g« [I — NA*]| 7' D4
= D' Da[l + ZC* A" HI 4+ 20C* A — A\Z0C* D - [I — NA*]"'D4}
= D' Da[l + ZC* A" HI + 20C* (A — ADa-[I — NA*]"'D4)}.
Hence

(4.7) O(\) = D' D[l + Z0C* AT — 2,C*04(\)], N €D,
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where
OA(N) = —A+ AD.[I —NA*] 71Dy
is the characteristic function of A.
Using (4.6) and (4.7) and the fact that the characteristic function is
contractive we obtain
IO Al* = ||l — 2004(N)*CI[I + 20A"C] ™' DaDy " h|?

[1+ |20]0]? 1+ |z0l0 1+ |2
< = [Ihl]? = ——|Inll> < —=|Inl?,
1 — 20|20 1 —|zol0 |20l
for any h € H and A € D.
From Theorem 3 it results that
[1 4 [z0])*/2

S = sup ||© A =sup |V < 0——+F5 -
” B,A” )\611:))” B,A( )H )\611:))” ( ) H = [1_’20”1/2

By symmetry we obtain

[1+ |20)*/2
S < —
184,51 < =72
Thus
_ [1+ |20]*/2
wi (4, B) = ma‘X{HSA7B”7 HSB,A”} < [1 _ ’20’]1/2 ’
Hence
1 1+‘2’0‘
og(A,B) < —log —— =94 .
H( ) )—2 Ogl—‘Zo‘ (0720)

Theorem 4 is completely proved.
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