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Abstract. In this paper we give some analytic formulas for the hyperbolic (Harnack)
distance between two contractions which permit concrete computations in several situ-
ations, including the finite-dimensional case. The main consequence of these formulas is
the proof of the Schwarz–Pick Lemma. It modifies those given in [13] by the avoidance
of a general Schur type formula for contractive analytic functions, more exactly by reduc-
ing the case to the more manageable situation when the function takes as values strict
contractions.

The Harnack equivalence was introduced in [11] and studied in many
articles (cf. [1], [3], [5], [6], [16]).

The hyperbolic (Harnack) distance on the Harnack parts was introduced
in [15] in a general context of completely positive maps from a subspace of a
C∗-algebra into B(H). The special case of the contractions was considered
in [13], where the Schwarz–Pick Lemma for an operator-valued contractive
analytic function defined on the open unit disc in the complex plane was
proved.

In the present paper we give some analytic formulas for the hyperbolic
(Harnack) distance between two contractions (Sections 2, 3) which permit
concrete computations in several situations, including the finite-dimensional
case. The main consequence of these formulas is the proof of the Schwarz–
Pick Lemma given in Section 4. It modifies those given in [13] by the avoid-
ance of a general Schur type formula for contractive analytic functions, more
exactly by reducing the case to the more manageable situation when the
function takes strict contractions as values.
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240 I. Suciu

The paper uses as preliminaries elements of the Sz.-Nagy–Foiaş theory
of contractions. Some of them are presented in Section 1, following mainly
[4], [7] and [17].

1. Preliminaries. Let H be a separable Hilbert space and B(H) be
the Banach space of all linear bounded operators on H. We shall denote
by B0(H) the open unit ball in B(H) and by B1(H) its closure. For a
contraction A ∈ B1(H),DA = [I − A∗A]1/2 is the defect operator of A and
DA = DA(H) its defect space.

We shall denote by ŨA acting on K̃A the minimal unitary dilation of A
(cf. [17]). If KA =

∨
n≥0 Ũn

AH, K∗A =
∨

n≤0 Ũn
AH, UA = ŨA|KA then UA

acting on KA is the minimal isometric dilation of A. We have

(1.1) K̃A = [K∗A ⊖ H] ⊕ H ⊕ [KA ⊖ H].

For the minimal isometric dilation of A we have the following matrix
model (cf. [17]):

(1.2) KA = H ⊕ H2(DA), UA =

(
A 0

DA S

)
,

where for a Hilbert space E , H2(E) is the usual Hardy space and S is the
shift operator on H2(E).

We shall adopt and use freely other notations and terminology from
the Sz.-Nagy–Foiaş theory of contractions following the book [17]. Other
terminology is from [4] and [7].

For example, if E and F are separable Hilbert spaces, we shall denote by
H∞(B(E ,F)) the Banach space of all bounded analytic functions defined
on the unit disc D in the complex plane C with values bounded linear
operators from E to F . H∞(B(E)) is H∞(B(E , E)) and H∞

1 (B(E ,F)) is
the unit ball of H∞(B(E ,F)). A function Θ ∈ H∞(B(E ,F)) has a.e. radial
strong limit Θ(eit). Pointwise multiplication defines the bounded operators

Θ from H2(E) into H2(F) and Θ̃ from L2(E) into L2(F), Θ̃ being the unique
extention of Θ to an intertwining of the bilateral shifts on L2(E) and L2(F)
respectively. We have

(1.3) ‖Θ‖ = ‖Θ̃‖ = ‖Θ‖∞ = sup
z∈D

‖Θ(z)‖ = ess sup
0≤t≤2π

‖Θ(eit)‖.

An analytic function Ω from D into B(E ,F) defined by

(1.4) Ω(z) =
∞∑

n=0

Ωnzn

will be called L2-bounded if there exists a constant M > 0 such that for any
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a ∈ E we have

(1.5)

∞∑

n=0

‖Ωna‖2 ≤ M2‖a‖2.

Clearly, (1.5) is equivalent to the fact that the formula

(1.6) (Ωa)(z) = Ω(z)a, z ∈ D, a ∈ E ,

defines a bounded operator Ω from E to H2(F), and ‖Ω‖ ≤ M .

2. Harnack parts and Harnack distance. We say that the contrac-
tion A is Harnack dominated by the contraction B (cf. [1]) if there exists
a positive constant c such that for any analytic polynomial p satisfying
Re p(z) ≥ 0 for |z| ≤ 1 we have

(2.1) Re p(A) ≤ c2 Re p(B).

Harnack domination is clearly a preorder relation on B1(H) and we shall
call the equivalence relation induced by it Harnack equivalence (cf. [12]).
The equivalence classes are called Harnack parts. For a contraction A we
shall denote by ∆(A) the Harnack part containing A. Clearly, A and B are
Harnack equivalent if and only if there exists a ≥ 1 such that

(2.2) (1/a2)Re p(A) ≤ Re p(B) ≤ a2 Re p(A)

for any analytic polynomial p with positive real part on the unit disc D.
Let us denote

(2.3) ωH(A,B) = inf{a | (2.2) holds for a}

and

(2.4) δH(A,B) = log ωH(A,B).

It is easy to see that ωH(A,B) is symmetric in A,B and δH(A,B) is a
distance on each Harnack part ∆ of B1(H). We shall call this distance the
Harnack (hyperbolic) distance on ∆ (cf. [15]).

In case H = C the only non-trivial (one-point) Harnack part of B1(H)
is ∆(0) = D and the Harnack distance on D coincides with the classical
hyperbolic (Poincaré) distance δ on D defined by

δ(z,w) = tanh−1

(
|z − w|

|1 − wz|

)
, z, w ∈ D.

It was shown in [12] that (2.1) is equivalent to the fact that there exists
a bounded operator SB,A from KB to KA such that ‖SB,A‖ ≤ c and for any
h0, h1, . . . , hn ∈ H we have

(2.5) SB,A

n∑

j=0

U j
Bhj =

n∑

j=0

U j
Ahj .
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Clearly, in this case SB,A is the unique bounded operator from KB to KA

which intertwines UB and UA and whose restriction to H is the identity
operator. A is Harnack equivalent to B if and only if SB,A is invertible. We
have S−1

B,A = SA,B and

(2.6) ωH(A,B) = max{‖SA,B‖, ‖SB,A‖}.

It was shown in [3] that A is Harnack equivalent to the null contraction
on H if and only if A is a strict contraction, i.e. ‖A‖ < 1. This means that
B0 is the Harnack part ∆(0H) of the null contraction on H.

For T ∈ B1(H) and 0 < r < 1 let us put Tr = rT .

Theorem 1. For A,B ∈ B1(H) the following assertions are equivalent :

(i) A is Harnack dominated by B.

(ii) sup0<r<1 ‖SBr ,Ar
‖ < ∞.

If (i), and consequently (ii), holds then

(2.7) ‖SB,A‖ = sup
0<r<1

‖SBr ,Ar
‖.

P r o o f. For any λ ∈ D, let f(z, λ) = (1 + λz)/(1 − λz), z ∈ D. Since
Re f(z, λ) ≥ 0 for z ∈ D and f(z, λ) is in D a uniform limit of analytic
polynomials with positive real part, it follows from (2.1) that

(2.8) Re f(A,λ) ≤ ‖SB,A‖
2 Re f(B,λ).

Since any analytic polynomial p with positive real part can be written in
the form

(2.9) p(z) =

2π\
0

1 + e−itz

1 − e−itz
dµ(t) + iα,

where µ is a positive measure and α is a real constant, by (2.8) we have

Re p(Ar) =

2π\
0

Re f(A, reit) dµ(t)(2.10)

≤ ‖SB,A‖
2

2π\
0

Re f(B, reit) dµ(t) ≤ ‖SB,A‖
2 Re p(Br).

Hence for any r, 0 < r < 1, we have

(2.11) ‖SBr ,Ar
‖ ≤ ‖SB,A‖

and the implication (i)⇒(ii) is proved.

Suppose now that

sup
0<r<1

‖SBr ,Ar
‖ = c < ∞.
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For any r, 0 < r < 1, and any analytic polynomial p with positive real part
we have

Re p(rA) = Re p(Ar) ≤ ‖SBr,Ar
‖2 Re p(Br) ≤ c2 Re p(Br) = c2 Re p(rB).

Letting r → 1 we obtain

Re p(A) ≤ c2 Re p(B).

Hence A is Harnack dominated by B and

(2.12) ‖SB,A‖ ≤ c = sup
0<r<1

‖SBr ,Ar
‖.

From (2.11) and (2.12) we obtain (2.7) and the proof is complete.

Corollary 1. The contractions A, B are Harnack equivalent if and only

if

(2.13) sup
0<r<1

ωH(Ar, Br) < ∞.

If this is the case, we have

ωH(A,B) = sup
0<r<1

ωH(Ar, Br),(2.14)

δH(A,B) = sup
0<r<1

δH(Ar, Br).(2.15)

Corollary 2. For any A,B ∈ B1(H), both ‖SBr,Ar
‖ and ωH(Ar, Br)

are increasing functions of r on the interval (0, 1).

3. The analytic structure of the operator S. Having in mind the
Sz.-Nagy–Foiaş structure (1.2) of the minimal isometric dilation, we look for
a matrix form of the intertwining operator S. It will be given by a pair of
analytic functions as in the following:

Theorem 2. The contraction A is Harnack dominated by the contraction

B if and only if there exist bounded operators Ω0 from H to DB and Θ0 from

DA to DB such that :

(i) We have

DBΩ0 = A∗ − B∗,(3.1)

DBΘ0 = DA.(3.2)

(ii) The formula

(3.3) Ω(λ) = Ω0[I − λA∗]−1

defines a B(H,DB)-valued L2-bounded analytic function.

(iii) The formula

(3.4) Θ(λ) = Θ0 + λΩ0[I − λA∗]−1DA

defines a B(DA,DB)-valued bounded analytic function.
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If this is the case then the bounded operator S = SB,A from KB =
H⊕H2(DB) into KA = H⊕H2(DA) satisfying S|H = IH and SUB = UAS
is given by

(3.5) S∗ =

(
I 0
Ω Θ

)
:

H
⊕

H2(DA)
→

H
⊕

H2(DB)
,

where Ω and Θ are the operators from H to H2(DB) and from H2(DA) to

H2(DB) defined by

(Ωh)(λ) = Ω(λ)h, h ∈ H, λ ∈ D,

(Θf)(λ) = Θ(λ)f(λ), f ∈ H2(DB), λ ∈ D.

P r o o f. Suppose A is Harnack dominated by B and let S = SB,A :
KB → KA be the corresponding intertwining. Since S|H = IH we have

S∗ =

(
I 0
Ω Θ

)
:

H
⊕

H2(DA)
→

H
⊕

H2(DB)
,

where Ω is a bounded operator from H to H2(DB) and Θ is a bounnded
operator from H2(DA) to H2(DB).

From S∗U∗
A = U∗

BS∗ we obtain
(

I 0
Ω Θ

)(
A∗ D0

A

0 S∗

)
=

(
B∗ D0

B

0 S∗

)(
I 0
Ω Θ

)
,

where for a contraction T on H, D0
T is the operator from H2(DT ) into H

defined by

D0
T f = DT f(0), f ∈ H2(DT ).

We obtain (
A∗ D0

A

ΩA∗ ΩD0
A + ΘS∗

)
=

(
B∗ + D0

BΩ D0
BΘ

S∗Ω S∗Θ

)

Hence

A∗ = B∗ + D0
BΩ,(3.6)

ΩA∗ = S∗Ω,(3.7)

D0
A = D0

BΘ,(3.8)

ΩD0
A = S∗Θ − ΘS∗.(3.9)

Let Ω0 be the operator from H to DB defined by

(3.10) Ω0h = (Ωh)(0).

Since

‖Ω0h‖
2
DB

= ‖(Ωh)(0)‖2
DB

≤ ‖Ωh‖2
H2(DB) ≤ ‖Ω‖2‖h‖2,
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it results that Ω0 is bounded. From (3.6) we obtain

DBΩ0h = DB(Ωh)(0) = D0
BΩh = (A∗ − B∗)h,

for any h ∈ H. Hence

(3.11) DBΩ0 = A∗ − B∗.

Using (3.7) we obtain

(1/λ)[(Ωh)(λ) − (Ωh)(0)] = (S∗Ωh)(λ) = (ΩA∗h)(λ)

for any h ∈ H and λ ∈ D, λ 6= 0. Thus

(Ωh)(λ) = Ω0h + λ(ΩA∗h)(λ),

which implies

(Ωh)(λ) = Ω0[I − λA∗]−1h.

It results that Ω is given by the multiplication on H with the L2-bounded
analytic function defined on D by

(3.12) Ω(λ) = Ω0[I − λA∗]−1.

Setting

(3.13) Θ0g = (Θg)(0), g ∈ DA,

we obtain a bounded operator Θ0 from DA to DB . From (3.8) it results that

(3.14) DBΘ0 = DA,

and from (3.9) we have

(1/λ)[(Θg)(λ) − Θ0g] = (1/λ)[(Θg)(λ) − (Θg)(0)] = (S∗Θg)(λ)

= ([S∗Θ − ΘS∗]g)(λ) = (ΩDAg)(λ) = Ω(λ)DAg

for any g ∈ DB and λ ∈ D, λ 6= 0. Hence

(Θg)(λ) = Θ0g + λΩ(λ)DAg, g ∈ DB , λ ∈ D.

It results that Θ is the operator from H2(DA) into H2(DB) given by the
pointwise multiplication with the bounded analytic function

(3.15) Θ(λ) = Θ0 + λΩ0[I − λA∗]−1DA.

In this way we produced Ω0, Θ0 such that (i)–(iii) are satisfied and S
has the form (3.5).

Suppose now there exist Ω0, Θ0 such that (i)–(iii) hold and let S be
defined by (3.5). Clearly we have A∗ = B∗ + D0

BΩ and D0
A = D0

BΘ. Since
for any h ∈ H we have

(S∗Ωh)(λ) = (1/λ)[(Ωh)(λ) − (Ωh)(0)] = (1/λ)(Ω0[I − λA∗]−1h − Ω0h)

= (1/λ)(Ω0 − Ω0[I − λA∗])[I − λA∗]−1h = Ω0A
∗[I − λA∗]−1h

= Ω0[I − λA∗]−1A∗h = (ΩA∗h)(λ)



246 I. Suciu

and for any f ∈ H2(DB) we have

(S∗Θf − ΘS∗f)(λ) = (1/λ)[Θ(λ)f(λ) − Θ0f(0)] − Θ(λ)(1/λ)[f(λ) − f(0)]

= (1/λ)[Θ0f(λ) + λΩ(λ)DAf(λ) − Θ0f(0)]

− (1/λ)Θ0[f(λ) − f(0)] − Ω(λ)DA[f(λ) − f(0)]

= (1/λ)Θ0[f(λ) − f(0)] + Ω(λ)f(λ)

− (1/λ)Θ0[f(λ) − f(0)] − Ω(λ)DA[f(λ) − f(0)]

= Ω(λ)DAf(0) = (ΩD0
Af)(λ),

it results that the relations (3.6)–(3.9) are fulfilled. These clearly imply
S∗U∗

A = U∗
BS∗. Since S|H = IH we proved that A is Harnack dominated

by B.

The proof of Theorem 2 is complete.

Let ΩB,A = Ω, ΘB,A = Θ if Ω,Θ appear in the form (3.5) of S = SB,A.

Corollary 3. If A is Harnack dominated by C and C is Harnack

dominated by B, then A is Harnack dominated by B and

ΘB,A = ΘB,CΘC,A.

When A is Harnack dominated by B, they are Harnack equivalent if and

only if the corresponding ΘB,A is invertible. In this case we have

ΘA,B = Θ−1
B,A.

Corollary 4. The contraction A is Harnack dominated by the null

contraction if and only if the spectrum σ(A) of A is contained in D. Fur-

thermore, A is Harnack equivalent to the null contraction if and only if

‖A‖ < 1.

P r o o f. If A is Harnack dominated by B = 0 then Ω0 = A∗, Θ0 = DA

and

Ω0,A = A∗[I − λA∗]−1, Θ0,A = [I − λA∗]−1DA.

Hence ΘB,A is bounded if and only if σ(A) ⊂ D. For the second assertion,
A is Harnack equivalent to 0 if and only if Θ0 = DA is invertible, i.e. if and
only if ‖A‖ < 1.

Corollary 5. Suppose A,B are strict contractions. Then A and B are

Harnack equivalent and

(3.16) ΘB,A(λ) = D−1
B [I − λB∗][I − λA∗]−1DA.

In computing the Harnack distance beetwen two Harnack equivalent con-
tractions A and B we are interested in ‖SA,B‖ and ‖SB,A‖. We have the
following:



Analytic formulas for the hyperbolic distance 247

Theorem 3. Let A and B be strict contractions on H. Then

(3.17) ‖SB,A‖ = ‖ΘB,A‖∞ = sup
0≤t≤2π

‖D−1
B [I − eitB∗][I − eitA∗]−1DA‖,

and

(3.18) ωH(A,B) = max(‖ΘA,B‖∞, ‖ΘB,A‖∞).

P r o o f. Let S = SB,A, Θ = ΘB,A be as in Theorem 2. Extend S to an

intertwining S̃ of ŨB with ŨA. This means S̃ : K̃A → K̃B, ŨAS̃ = S̃ŨB and
S̃|KB = S. Clearly, S̃KB ⊂ KA, S̃K∗B ⊂ K∗A. From (1.1) it results that

S̃∗[KA ⊖ H] ⊂ KB ⊖ H. Hence S̃∗|KB ⊖ H = S∗|KB ⊖ H.

Since A and B are strict contractions we can identify their unitary di-
lations with the bilateral shift on L2(H). In this identification KA and KB

become subspaces in L2(H) such that KA⊖H and KB ⊖H become H2(H).
From (3.5) we obtain

S̃∗|H2(H) = Θ.

It results that in this model S̃∗ is given by the pointwise multiplication by
Θ on L2(H). Consequently,

(3.19) ‖S̃∗‖ = ‖Θ‖∞.

Since ‖S‖ = ‖S̃‖ = ‖S̃∗‖, using (3.16) and (3.19) we obtain

‖SB,A‖ = ‖ΘB,A‖∞ = sup
λ∈D

‖D−1
B [I − λB∗][I − λA∗]−1DA‖

= sup
0≤t≤2π

‖D−1
B [I − eitB∗][I − eitA∗]−1DA‖.

We also have

ωH(A,B) = max{‖ΘA,B‖∞, ‖ΘB,A‖∞}

= max{ sup
0≤t≤<2π

‖D−1
B [I − eitB∗][I − eitA∗]−1DA‖,

sup
0≤t<2π

‖D−1
A [I − eitA∗][I − eitB∗]−1DB‖}

and the theorem is proved.

Corollary 6. For any strict contraction A we have

1

2
log

1

1 − ‖A‖
≤ δH(0, A) ≤

1

2
log

1 + ‖A‖

1 − ‖A‖
.

If A is a normal strict contraction then

δH(0, A) =
1

2
log

1 + ‖A‖

1 − ‖A‖
.
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P r o o f. From (3.16) we have

Θ0,A(λ) = [I − λA∗]−1DA, ΘA,0(λ) = D−1
A [I − λA∗].

Hence

1

[1 − ‖A‖]1/2
≤ ‖ΘA,0‖∞, ‖Θ0,A‖∞ ≤

[1 + ‖A‖]1/2

[1 − ‖A‖]1/2
.

If A is a normal strict contraction then

‖ΘA,0‖∞ = sup
0≤t≤2π

sup
|z|≤‖A‖

|1 − eitz|

[1 − |z|2]1/2
=

[1 + ‖A‖]1/2

[1 − ‖A‖]1/2
.

Corollary 7. For any two contractions A,B which are Harnack equiv-

alent we have

ωH(A,B) = max{sup
r

sup
t

‖[I − r2A∗A]−1/2[I − eitrA∗]

· [I − eitrB∗]−1[I − r2B∗B]1/2‖,

sup
r

sup
t

‖[I − r2B∗B]−1/2[I − eitrB∗][I − eitrA∗]−1[I − r2A∗A]1/2‖}.

4. Schwarz–Pick Lemma with respect to the Harnack distance.

Using the formulas for the Harnack distance obtained in the previous sec-
tions, we shall prove the following Schwarz–Pick Lemma for operator-valued
contractive analytic functions defined in the unit disc of complex plane.

Theorem 4. Let F : D → B(H) be a contractive analytic function. For

any z1, z2 ∈ D the contractions F (z1), F (z2) are Harnack equivalent and

(4.1) δH(F (z1), F (z2)) ≤ δ(z1, z2).

P r o o f. We can suppose z1 = 0. Indeed, if for any function G in
H∞

1 (B(H)) and z0 ∈ D we know that G(0) and G(z0) are Harnack equiva-
lent and

δH(G(0), G(z0)) ≤ δ(0, z0)

then taking ω to be the Möbius transform

ω(z) =
z + z1

1 + z1z

and G(z) = F (ω(z)), z0 = ω−1(z2) we have G(0) = F (ω(0)) = F (z1) and
G(z0) = F (ω(z0)) = F (z2). Hence

δH(F (z1), F (z2)) = δH(G(0), G(z0)) ≤ δ(0, z0) = δ(z1, z2)

because the Poincaré distance is invariant under Möbius transformations.

We can also suppose that ‖F (z)‖<1 for any z ∈ D. Indeed, suppose that
(4.1) holds for such a function. Setting F (0) = A, F (z0) = B for arbitrary
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F in H∞
1 , and Fr = rF for any r, 0 < r < 1, we obtain ‖Fr(z)‖ ≤ r < 1,

Fr(0) = rA = Ar, Fr(z0) = rB = Br and consequently

δH(Ar, Br) = δH(Fr(0), Fr(z0)) ≤ δ(0, z0).

Hence

sup
0<r<1

δH(Ar, Br) ≤ δ(0, z0) < ∞.

From Corollary 2 it results that A and B are Harnack equivalent and

δH(A,B) = sup
0<r<1

δH(Ar, Br) ≤ δ(0, z0).

Suppose now that F ∈ H∞
1 (B(H)) is such that ‖F (z)‖ < 1 for any

z ∈ D. Let z0 ∈ D and A = F (0), B = F (z0). A and B being strict
contractions, they are Harnack equivalent. Let G be the function defined
on D by

(4.2) G(z) = −A + DA∗F (z)[I − A∗F (z)]−1DA, z ∈ D.

We have G(0) = 0. Using the fact that the operator matrix
(
−A DA∗

DA A∗

)

is unitary and remarking that
(
−A DA∗

DA A∗

)(
h

F (z)[I − A∗F (z)]−1DAh

)

=

(
G(z)h

DAh + A∗F (z)[I − A∗F (z)]−1DAh

)
,

we obtain

‖G(z)h‖2

= ‖h‖2 + ‖F (z)[I − A∗F (z)]−1DAh‖2

− ‖DAh + A∗F (z)[I − A∗F (z)]−1DAh‖2

= ‖h‖2 − (‖[I − A∗F (z)]−1DAh‖2 − ‖F (z)[I − A∗F (z)]−1DAh‖2) ≤ ‖h‖2,

for any z ∈ D and h ∈ H.
Hence G(z) is contractive and G(0) = 0. Then G(z) = zF1(z) with F1

analytic in D. Since for any r, 0 < r < 1, and any z, 0 < |z| ≤ r < 1, we
have

‖F1(z)‖ = ‖G(z)/z‖ ≤ sup
|z|=r

‖G(z)‖/r ≤ 1/r

it results that ‖F1(z)‖ ≤ 1 for any z ∈ D, i.e. F1 ∈ H∞
1 (B(H)). Also,

G(z) = D−1
A∗{−A[I − A∗F (z)] + [I − AA∗]F (z)}[I − A∗F (z)]−1DA

= D−1
A∗ [F (z) − A][I − A∗F (z)]−1DA.
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Hence

F (z) = A + DA∗G(z)[I + A∗G(z)]−1DA

and from G(z) = zF1(z) we obtain

(4.3) F (z) = A + zDA∗F1(z)[I + zA∗F1(z)]−1DA, z ∈ D,

with F1 ∈ H∞
1 (B(H)).

Let us define

(4.4) C = F1(z0);

we have ‖C‖ ≤ 1 and from F (z0) = B we obtain

(4.5) B = A + z0DA∗C[I + z0A
∗C]−1DA.

Using again the fact that the operator matrix
(

A DA∗

A −A∗

)

is unitary and (4.5) we obtain

‖Bh‖2 = ‖h‖2 + ‖z0C[I + z0A
∗C]−1DAh‖2

− ‖DAh − z0A
∗C[I + z0C]−1DAh‖2

= ‖h‖2 + |z0|
2‖C[I + z0A

∗C]−1DAh‖2 − ‖[I + z0A
∗C]−1DAh‖∗.

Hence

‖DBh‖2 = ‖[I + z0A
∗C]−1DAh‖2 − |z0|

2‖C[I + z0A
∗C]−1DAh‖2.

Writing ̺ = ‖C‖, we have

(4.6) ‖[I + z0A
∗C]−1DAh‖2 ≤

1

1 − |z0|2̺2
‖DBh‖2.

Let now Θ = ΘB,A correspond as in Theorem 2 to the Harnack equivalent
contractions A and B. Since A,B are strict contractions, according to (3.16)
we have

Θ(λ) = ΘB,A(λ) = D−1
B [I − λB∗][I − λA∗]−1DA, λ ∈ D.

Using (4.5) we obtain

Θ(λ) = D−1
B {I − λA∗ − λz0DA[I + z0C

∗A]−1C∗DA∗}[I − λA∗]−1DA

= D−1
B DA − λz0D

−1
B DA[I + z0C

∗A]−1C∗DA∗ [I − λA∗]−1DA

= D−1
B DA[I + z0C

∗A]−1{I + z0C
∗A − λz0C

∗DA∗ [I − λA∗]−1DA}

= D−1
B DA[I + z0C

∗A]−1{I + z0C
∗(A − λDA∗ [I − λA∗]−1DA)}.

Hence

(4.7) Θ(λ) = D−1
B DA[I + z0C

∗A]−1[I − z0C
∗ΘA(λ)], λ ∈ D,
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where

ΘA(λ) = −A + λDA∗ [I − λA∗]−1DA

is the characteristic function of A.
Using (4.6) and (4.7) and the fact that the characteristic function is

contractive we obtain

‖Θ(λ)∗h‖2 = ‖[I − z0ΘA(λ)∗C][I + z0A
∗C]−1DAD−1

B h‖2

≤
[1 + |z0|̺]2

1 − |z0|2̺2
‖h‖2 =

1 + |z0|̺

1 − |z0|̺
‖h‖2 ≤

1 + |z0|

1 − |z0|
‖h‖2 ,

for any h ∈ H and λ ∈ D.
From Theorem 3 it results that

‖SB,A‖ = sup
λ∈D

‖ΘB,A(λ)‖ = sup
λ∈D

‖Θ(λ)∗‖ ≤
[1 + |z0|]

1/2

[1 − |z0|]1/2
.

By symmetry we obtain

‖SA,B‖ ≤
[1 + |z0|]

1/2

[1 − |z0|]1/2
.

Thus

ωH(A,B) = max{‖SA,B‖, ‖SB,A‖} ≤
[1 + |z0|]

1/2

[1 − |z0|]1/2
.

Hence

δH(A,B) ≤
1

2
log

1 + |z0|

1 − |z0|
= δ(0, z0).

Theorem 4 is completely proved.
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[3] C. Foia ş, On Harnack parts of contractions, Rev. Roumaine Math. Pures Appl. 19

(1974), 314–318.
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