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Abstract. LetH2(bΩ) be the Hardy space of a bounded weakly pseudoconvex domain
in C

n. The natural resolution of this space, provided by the tangential Cauchy–Riemann
complex, is used to show that H2(bΩ) has the important localization property known as
Bishop’s property (β). The paper is accompanied by some applications, previously known
only for Bergman spaces.

1. Introduction. A fundamental question in abstract spectral theory is
whether, given an operator or a system of operators, the underlying Hilbert
space can be localized with respect to parts of the spectrum. Any spectral
decomposition construction actually answers this question in specific terms.
A branch of modern operator theory, called local spectral theory , studies
different aspects of this localization problem.

Quite recently, a general framework based on sheaf theory and homolog-
ical algebra techniques was proposed as a simplifying and unifying language
in local spectral theory. Several classical contributions to the field (due to
N. Dunford and J. T. Schwartz [6], E. Bishop [1], C. Foiaş [8]) as well as
recent researches (see for instance the monograph of Vasilescu [17]) have
been naturally included in this framework. The monograph [7] is devoted
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to this new approach to local spectral theory. (Most of the references in our
paper will be forwarded to [7] rather than the original papers, all quoted
and commented in [7].)

Let H be a Hilbert O(Cn)-module, or, equivalently, a system of n com-
muting linear bounded operators acting on H (n ≥ 1). It turns out that,
in terms of topological modules, the spectral localization property of H is
equivalent to the existence of an analytic sheaf F of Fréchet spaces on C

n

with F(Cn) ∼= H (as topological O(Cn)-modules) and with a good cohomo-
logical behaviour known as quasi-coherence in analytic geometry or, equiva-
lently, as Bishop’s property (β) in operator theory. Various characterizations
of this class of analytic sheaves are known, for instance the topological co-
herence (i.e. the existence of topologically free resolutions to the left) or the
existence of an abstract Dolbeault resolution (i.e. a finite resolution to the
right with soft analytic Fréchet sheaves).

Once a Hilbert O(Cn)-module H is localizable in the above sense, the
spectral theory of multiplication operators on H with analytic functions
is much simplified. Questions such as the computation of Taylor’s joint
(or essential joint) spectrum, the evaluation of the Fredholm index or the
division of vector-valued distributions by operator-valued analytic func-
tions were successfully studied with the homological-topological methods
which are specific to localizable modules. See [7] for details with refer-
ences.

So far, the typical example of a localizable analytic module was the
Bergman space of a bounded pseudoconvex domain in C

n; see [7], Chap-
ter 8. The aim of the present paper is to prove that the Hardy space of
a bounded weakly pseudoconvex domain in C

n is localizable. The proof
of this fact relies, besides standard homological techniques, on the esti-
mates for the tangential ∂-operator obtained in the last two decades by
G. Henkin [9], J. J. Kohn [10] and very recently improved by M.-C. Shaw
[15]. Thus the main result of our article asserts that there is a (unique)
quasi-coherent Fréchet O(Cn)-module which localizes the Hardy space of a
weakly pseudoconvex domain. Actually, a precise description of this sheaf
is available; see Section 3. Without developing all possible consequences
of this result for the spectral analysis of Toeplitz operators with bounded
analytic symbols, we put together in a separate section some applications
which are easily obtained from the comparison with the case of Bergman
spaces.

The paper is organized as follows. After this introduction, we recall in
the second section some definitions and statements that are needed in the
following sections. The third section is devoted to the main result, and the
applications are given in the fourth and last section.
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2. Preliminaries. In this section we collect some facts, needed in the
following, from topological homology theory and local spectral theory. For a
complete introduction to this subject we refer to [7], where all the listed facts
are proved. Further, we give a brief summary of the definition and proper-
ties of the tangential ∂-operator and of Hardy spaces in several complex
variables, as far as they are used in this article.

2.1. The topological torsion functor . For two locally convex spaces E and
F we denote by E⊗̂F their completed π-tensor product (over C). Let A be a
Fréchet algebra with unit and assume that E and F are Fréchet A-modules.
Similarly to algebraic homology, we define T̂or to be the derived functor
of ⊗̂A; more precisely, we denote by BA

• (E,F ) the Bar complex associated
with E and F and define

T̂orA0 (E,F ) = E ⊗̂A F := H0(B
A
• (E,F )),

T̂orAp (E,F ) := Hp(B
A
• (E,F )) for p ≥ 1.

Here Hp denotes the pth homology space. The T̂or-spaces are equipped with
the quotient locally convex topology, which may not be Hausdorff. As in the
algebraic case, any (C-split, topologically-) free resolution can be used to
compute these spaces.

The characteristic property of the T̂or-functor is contained in the follow-
ing theorem.

Theorem 2.1. Let A be a commutative Fréchet algebra with unit , F a

Fréchet A-module and let

0 → E1 → E2 → E3 → 0

be an exact sequence of Fréchet A-modules. If A and F are nuclear , then

the induced long sequence of locally convex spaces

. . . → T̂orA1 (E1, F ) → T̂orA1 (E2, F ) → T̂orA1 (E3, F )

→ E1 ⊗̂A F → E2 ⊗̂A F → E3 ⊗̂A F → 0

is exact.

The nuclearity of A and F is not necessary for the validity of Theorem
2.1, since there are other conditions that guarantee it.

For later use we give the following definition.

Definition 2.2. Let A be a Fréchet algebra with unit. Two Fréchet
A-modules E and F are called transversal (in symbols E ⊥A F ) if

E ⊗̂A F is a Hausdorff locally convex space

and if

T̂orAp (E,F ) = 0 for p ≥ 1.
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We conclude this subsection with some remarks to our main application.
We deal primarily with the case A = O(Cn) and E = O(U) or E = E(U)
with U ⊆ C

n open. All these spaces are nuclear Fréchet spaces, and we can
use the Koszul resolution

K•(z − w,E ⊗̂ F ) → F → 0

to compute the spaces T̂or
O(Cn)
p (E,F ) for a Fréchet O(Cn)-module F . In

particular, we see in these cases that

T̂orO(Cn)
n (E,F ) is separated

and

T̂orO(Cn)
p (E,F ) = 0 for p > n.

2.2. Quasi-coherence and property (β). Although the theory studied in
this section makes sense in a more general context, we restrict ourselves to
the special analytic space C

n with the corresponding sheaf OCn of analytic
functions on C

n. A sheaf F of OCn-modules on C
n is called an analytic

sheaf ; if all spaces F(U) (for U ⊆ C
n open) are Fréchet O(U)-modules, we

call F an analytic Fréchet sheaf.

Definition 2.3. An analytic Fréchet sheaf F is called quasi-coherent if,
for all open Stein subsets U ⊆ C

n, the natural restriction and multiplication
map

O(U) ⊗̂O(Cn) F(Cn) → F(U)

is an isomorphism of Fréchet spaces, and if

O(U) ⊥O(Cn) F(Cn).

Thus, the analytic Fréchet sheaf F is quasi-coherent if and only if the
augmented Bar complex

B
O(Cn)
• (O(U),F(Cn)) → F(U) → 0

is exact for every Stein open subset U ⊆ C
n.

Proposition 2.4. Let E be a Fréchet O(Cn)-module. Then there is a

quasi-coherent sheaf such that E can be identified with its space of global

sections if and only if

(2.1) E ⊥O(Cn) O(U)

holds for every Stein open subset U ⊆ C
n. In this case, the sheaf Ẽ, defined

by

Ẽ(U) := O(U) ⊗̂O(Cn) E for U ⊆ C
n open,

is the unique quasi-coherent sheaf with the property that Ẽ(Cn) ∼= E as

Fréchet O(Cn)-modules.
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Because of Proposition 2.4, we call a Fréchet O(Cn)-module E quasi-

coherent if (2.1) holds for every Stein open subset U ⊆ C
n. In this case, Ẽ

is called its associated quasi-coherent sheaf.
The next theorem provides a useful criterion for quasi-coherence and

yields a number of non-trivial examples.

Theorem 2.5. Every soft analytic Fréchet sheaf is quasi-coherent.

Corollary 2.6. Let E be a Fréchet O(Cn)-module. If there exists a soft

analytic Fréchet sheaf F such that E ∼= F(Cn) as Fréchet O(Cn)-modules,

then E is quasi-coherent and Ẽ = F .

Corollary 2.6 allows us to call a Fréchet O(Cn)-module E soft if there is
a soft analytic Fréchet sheaf F with E ∼= F(Cn).

If E is a Fréchet E(Cn)-module, then the canonical sheaf

U 7→ O(U) ⊗̂ E for U ⊆ C
n open

is a soft analytic Fréchet sheaf with E ∼= F(Cn), and hence E is soft.
Let X be a Banach space and a = (a1, . . . , am) a commuting tuple in

L(X), the Banach algebra of bounded linear operators on X. We equip X
with the O(Cn)-module structure determined by a, i.e.

O(Cn) × X → X, (f, x) 7→ f(a)x,

where f(a) ∈ L(X) is defined in terms of power series. This turns X into a
Banach O(Cn)-module.

Definition 2.7. Let X and a be as above. We say that the tuple a
satisfies property (β) if the Banach O(Cn)-module X is quasi-coherent. In

this case the associated quasi-coherent sheaf X̃ is called the canonical sheaf

model of a.

By Proposition 2.4 the tuple a satisfies property (β) if and only if

X ⊥O(Cn) O(U)

holds for every Stein open subset U ⊆ C
n, or, using the Koszul resolution,

if the Koszul complex K•(z−a,O(U,X)) has separated homology in degree
p = 0 and is exact in degree p > 0.

If we replace the space O(U) in the above transversality relation by the
Fréchet O(Cn)-module E(U), we are led to the following definition.

Definition 2.8. The commuting tuple a ∈ L(X)m is said to satisfy
property (β)E if the Banach O(Cn)-module X satisfies

X ⊥O(Cn) E(Cn).

As before, the tuple a satisfies property (β)E if and only if the Koszul
complex K•(z − a,X ⊗̂ E(Cn)) has separated homology in degree p = 0 and
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is exact in degree p > 0. Using locally finite C∞-partititions of unity, one
can show that property (β)E yields

X ⊥O(Cn) E(U)

for all U ⊆ C
n open.

A useful criterion for property (β)E is the following.

Theorem 2.9. If X is a Banach E(Cn)-module, then

X ⊥O(Cn) E(Cn).

Let X be a Banach O(Cn)-module and denote by Mz the tuple of mul-
tiplication operators with the coordinate functions zj (1 ≤ j ≤ n). Then
a simple computation shows that the O(Cn)-module structure on X deter-
mined by Mz coincides with the given one. In particular, Theorem 2.9 shows
that the tuple Mz on a Banach E(Cn)-module X has property (β)E .

2.3. The tangential Cauchy–Riemann complex and Hardy spaces. Let
Ω ⊆ C

n, n ≥ 2, be a bounded domain with smooth boundary bΩ. For
0 ≤ p ≤ n, we consider the tangential Cauchy–Riemann complex

0 → B
p,0(bΩ)

∂b→ B
p,1(bΩ)

∂b→ . . .
∂b→ B

p,n−1(bΩ) → 0

as defined for instance in [2]. Since the spaces B
p,q(bΩ) are defined by a

pointwise orthogonality relation, they are invariant under multiplication by
E(Cn)-functions, i.e. B

p,q(bΩ) carries the structure of an algebraic E(Cn)-
module. Let σ be the surface measure on bΩ and denote by L2(bΩ) the
corresponding Lebesgue space. We define L2

q(bΩ) to be the completion of
B

0,q(bΩ) under the sum of the L2-norms of the coefficients. Then L2
q(bΩ) is

a Hilbert space and we define the operator T q to be the maximal extension
of ∂b, i.e. the domain of T q is

Dq := {f ∈ L2
q(bΩ) : ∃ g ∈ L2

q+1(bΩ) with

∂bf = g in the distribution sense},

and for f ∈ Dq we define

T q(f) := g,

where g ∈ L2
q+1(bΩ) is any solution of ∂bf = g. As usual, we use in the

following freely the notation ∂b for the operator T q as well. It is easy to see
that T q is a densely defined closed linear operator between Hilbert spaces.

The kernel of the first operator in the tangential Cauchy–Riemann com-
plex has a special meaning.

Definition 2.10. We define the Hardy space H2(bΩ) as

H2(bΩ) := Ker(T 0).

Thus, H2(bΩ) is a closed subspace of L2
0(bΩ) and hence a Hilbert space.
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The fundamental exactness and closed range property of the tangential
Cauchy–Riemann operator, which is the basis for the proof of the main result
of this article, is formulated in the following theorem, which we reproduce
from [15].

Theorem 2.11. Let Ω ⊆ C
n, n ≥ 2, be a bounded pseudoconvex domain

with smooth boundary. Then the tangential Cauchy–Riemann complex

0 → D0 ∂b→ D1 ∂b→ . . .
∂b→ Dn−1 → 0

is exact in degree 0 < q < n − 1 and Im(T n−2) ⊆ L2
n−1(bΩ) is closed.

We equip the spaces Dq with the graph norm ‖ · ‖2
T q := ‖ · ‖2

L2
q(bΩ) +

‖T q(·)‖2
L2

q+1
(bΩ)

. This turns Dq into a Hilbert space for 0 ≤ q < n − 1, and

because of Theorem 2.11, the quotient

C := L2
n−1(bΩ)/ Im(T n−2)

is a Hilbert space as well. This yields the following exact sequence of Hilbert
spaces:

(2.2) 0 → H2(bΩ) →֒ D0 ∂b→ D1 ∂b→ . . .
∂b→ Dn−1 → C → 0.

We collect the main properties of the resolution (2.2) in the next proposi-
tion. All these statements can easily be verified by using the E(Cn)-module
structure of the spaces B

0,q(bΩ) and the properties of the ∂b-operator.

Proposition 2.12. Let Ω ⊆ C
n, n ≥ 2, be a bounded pseudoconvex

domain with smooth boundary. Then the resolution (2.2) is an exact sequence

in which all spaces are Hilbert and all maps are continuous. Further we have:

• H2(bΩ), Dq (0 ≤ q ≤ n − 1), Zq := Im(T q−1 : Dq−1 → Dq) (0 < q ≤
n − 1) and C are Hilbert O(Cn)-modules.

• Dq (0 ≤ q ≤ n − 1) is a Hilbert E(Cn)-module.

We conclude this section with some remarks on the various definitions
of Hardy spaces. To simplify our discussion, we assume that the domain Ω
is strictly pseudoconvex with smooth boundary. This allows us to make use
of some deep results from function theory in order to prove the equivalence
of the above definition of the Hardy space H2(bΩ) with the others. First we
notice that every function in H2(bΩ) can be approximated by smooth CR
functions; a proof of the next lemma can be found in [9].

Lemma 2.13. Let Ω ⊆ C
n, n ≥ 2, be a bounded strictly pseudoconvex

domain with smooth boundary. Then

H2(bΩ) = {f ∈ C∞(bΩ) : ∂bf = 0}
L2(bΩ)

.
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The following proposition establishes the connection of our Definition
2.10 of the Hardy space H2(bΩ) with the others.

Proposition 2.14. Let Ω ⊆ C
n, n ≥ 2, be a bounded strictly pseudo-

convex domain with smooth boundary. Then

H2(bΩ) = A(Ω)|bΩ
L2(bΩ)

,

where A(Ω) := O(Ω)∩C(Ω) is the Banach algebra of continuous functions

on Ω that are holomorphic in Ω.

P r o o f. For f ∈ H2(bΩ), Lemma 2.13 gives us a sequence (fn)n∈N ⊆
C∞(bΩ) with ∂bfn = 0 and fn → f in L2(bΩ). By a generalization of the
Hartogs Extension Theorem (Theorem IV.2.5 in [14]) there are functions

Fn ∈ A(Ω) with Fn|bΩ = fn. This shows f ∈ A(Ω)|bΩ
L2(bΩ)

. On the other
hand, if f = F |bΩ with F ∈ A(Ω), there are functions Fn ∈ O(Ω) with
Fn → F uniformly on Ω (Theorem VII.2.1 in [14]). Then

fn := Fn|bΩ ∈ C∞(bΩ),

∂bfn = 0 and fn → f in L2(bΩ). This yields A(Ω)|bΩ ⊆ H2(bΩ) and since
H2(bΩ) is closed, the missing inclusion is proved.

If Ω ⊆ C
n is a domain with C2 boundary, there are two other equivalent

ways to define the Hardy space A(Ω)|bΩ
L2(bΩ)

. In the first one, a function
f ∈ O(Ω) belongs to H2(Ω) if and only if |f |2 has a harmonic majorant on
Ω. The second and perhaps most familiar definition of the Hardy space is

(2.3) H2(Ω) :=

{
f ∈ O(Ω) : sup

0<ε<ε0

( \
bΩε

|f |2 dσε

)1/2

< ∞

}
,

where Ωε “approximates” Ω from inside for ε ց 0. For details and complete
proofs we refer to the standard literature, for instance [11] and [12].

3. The main result. In this section we state and prove the main result
of this article concerning the localization of Hardy spaces. For this purpose
we need the following two technical lemmas.

Lemma 3.1. Let E, F be Fréchet spaces and T : E → F a continuous

linear operator. Then Im T ⊆ F is closed if and only if for every sequence

(en)n∈N ⊆ E with limn→∞ T (en) = 0 there is a sequence (ẽn)n∈N ⊆ Ker T
such that en − ẽn → 0 as n → ∞.

P r o o f. We consider the induced operator

T̂ : E/Ker T → Im T

and denote by q : E → E/Ker T the quotient map. If ImT is closed, the

open mapping theorem shows that S := (T̂ )−1 is continuous. For a sequence
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(en)n∈N ⊆ E with lim T (en) = 0 we therefore have ST (en) = q(en) → 0.

Let d be the translation invariant metric on E and d̃ the quotient metric (1)

on E/Ker T . Then we can find two sequences (ẽn)n∈N and (˜̃en)n∈N in Ker T
with

d(en − ẽn, ˜̃en) ≤ d(en − ẽn,Ker T ) + 1/n ≤ d̃(q(en), 0) + 2/n → 0.

Therefore the sequence (ẽn + ˜̃en)n∈N ⊆ Ker T has the desired properties.
On the other hand, the given condition yields the continuity of S and this
clearly implies the closedness of Im T .

For details on the quotient topology in topological vector spaces we refer
to the classical literature, for instance [16].

Lemma 3.2. We consider the following commutative diagram:

0 E0 F0 G0 0

0 E1 F1 G1 0

0 E2 F2 G2 0

0 E3 F3 G3 0

//
u0

//
v0

// //

//
u1

//

α1

OO

v1
//

β1

OO

//

γ1

OO

//
u2

//

α2

OO

v2
//

β2

OO

//

γ2

OO

//
u3

//

α3

OO

v3
//

β3

OO

//

γ3

OO

in which all spaces are Fréchet , all maps are continuous linear operators,
and we assume the rows are exact , the columns form complexes, Im β1 is

closed , Ker β1 = Im β2, Im γ2 is closed and Ker γ2 = Im γ3. Then Im α1 is

closed.

P r o o f. Let (en
1 )n∈N ⊆ E1 be a sequence with α1(e

n
1 ) → 0. According to

Lemma 3.1 we have to show that there is a sequence (ẽn
1 )n∈N ⊆ Ker α1 with

en
1 − ẽn

1 → 0. The convergence α1(e
n
1 ) → 0 implies u0α1(e

n
1 ) = β1u1(e

n
1 ) → 0

and since Im β1 is closed there are fn
1 ∈ Kerβ1 with

u1(e
n
1 ) − fn

1 → 0.

(1) For two elements e1, e2 ∈ E we have the following description of the quotient
metric on E/KerT :

d̃(q(e1), q(e2)) = inf
ẽ∈KerT

d(e1 − ẽ, q
−1(q(e2))),

where

d(e,N) := inf
˜̃e∈N
d(e, ˜̃e)

denotes the distance of the point e ∈ E to the subset N ⊆ E.



192 M. Putinar and R. Wolff

By assumption Ker β1 = Imβ2 and hence we have fn
1 = β2(f

n
2 ) with fn

2 ∈
F2. This yields

γ2v2(f
n
2 ) = v1β2(f

n
2 ) = v1(f

n
1 ) − v1u1(e

n
1 )︸ ︷︷ ︸

=0

= v1(f
n
1 − u1(e

n
1 )) → 0

and the closedness of Im γ2 gives the existence of elements gn
2 ∈ Ker γ2 such

that

v2(f
n
2 ) − gn

2 → 0.

Because of Ker γ2 = Im γ3 we have gn
2 = γ3(g

n
3 ) with gn

3 ∈ G3 and the

surjectivity of v3 yields gn
3 = v3(f

n
3 ) with fn

3 ∈ F3. Therefore f̃n
2 := β3(f

n
3 )

has the properties

β2(f̃
n
2 ) = 0 and v2(f̃

n
2 ) = v2β3(f

n
3 ) = γ3v3(f

n
3 ) = γ3(g

n
3 ) = gn

2 .

Since v2(f
n
2 − f̃n

2 ) = v2(f
n
2 ) − gn

2 → 0 and Im v2 = G2 is closed there are
u2(e

n
2 ) ∈ Im u2 = Ker v2 with

fn
2 − f̃n

2 − u2(e
n
2 ) → 0

and hence

fn
1 − u1α2(e

n
2 ) = β2(f

n
2 ) − β2(f̃

n
2 )︸ ︷︷ ︸

=0

−β2u2(e
n
2 ) → 0.

This implies

u1(e
n
1 − α2(e

n
2 )) = (u1(e

n
1 ) − fn

1 ) + (fn
1 − u1α2(e

n
2 )) → 0

and since Ker u1 = {0} and Imu1 = Ker v1 is closed, Lemma 3.1 shows that

en
1 − α2(e

n
2 ) → 0.

Therefore ẽn
1 := α2(e

n
2 ) has the desired properties and this completes the

proof.

We are now able to prove the main result of this article.

Theorem 3.3. Let Ω ⊆ C
n, n ≥ 2, be a bounded pseudoconvex domain

with smooth boundary. Then the transversality relation

H2(bΩ) ⊥O(Cn) E(Cn)

holds, i.e. the tuple Mz of multiplication operators with the coordinate func-

tions zj (1 ≤ j ≤ n) has property (β)E .

P r o o f. For shortness we use in this proof the abbreviations E := E(Cn),
H2 := H2(bΩ) and O := O(Cn). Since O and E are nuclear Fréchet spaces,

the characteristic property of the T̂or-functor (Theorem 2.1), applied to the
short exact sequence

0 → H2 →֒ D0 ∂b→ Z1 → 0,
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yields the long exact sequence of locally convex spaces

0→ T̂orOn (H2, E) → T̂orOn (D0, E) → T̂orOn (Z1, E) → . . .

. . .→ T̂orOp+1(H
2, E)→ T̂orOp+1(D

0, E)→ T̂orOp+1(Z
1, E)→ . . .

. . .→ T̂orOp (H2, E) → T̂orOp (D0, E) → T̂orOp (Z1, E) → . . .

. . .→ H2 ⊗̂O E → D0 ⊗̂O E → Z1 ⊗̂O E → 0.

By Proposition 2.12, Dq is a Hilbert E(Cn)-module and hence Dq ⊥O E for

0 ≤ q ≤ n−1 (Theorem 2.9). In particular, we have T̂orOp (D0, E) = 0 for all
p ≥ 1 and this shows

T̂orOp (H2, E) ∼= T̂orOp+1(Z
1, E) as locally convex spaces

for all p ≥ 1, and

T̂orOn (H2, E) = 0.

The same idea, applied to the short exact sequences

0 → Zq →֒ Dq ∂b→ Zq+1 → 0

for 1 ≤ q < n − 1 and

0 → Zn−1 →֒ Dn−1 → C → 0,

yields, for all p ≥ 1,

T̂orOp (Zq, E) ∼= T̂orOp+1(Z
q+1, E) and T̂orOp (Zn−1, E) ∼= T̂orOp+1(C, E).

Together we have

T̂orOp (H2, E) ∼= T̂orOp+1(Z
1, E) ∼= . . . ∼= T̂orOp+n−1(Z

n−1, E) ∼= T̂orOp+n(C, E)
︸ ︷︷ ︸

=0

for all p ≥ 1. According to Definition 2.2, it remains to show that H2 ⊗̂O E
is a Hausdorff locally convex space. We consider the commutative diagram

0 H2 ⊗̂ E D0 ⊗̂ E Z1 ⊗̂ E 0

0 (H2 ⊗̂ E)n (D0 ⊗̂ E)n (Z1 ⊗̂ E)n 0

0 (H2 ⊗̂ E)m1 (D0 ⊗̂ E)m1 (Z1 ⊗̂ E)m1 0

0 (H2 ⊗̂ E)m2 (D0 ⊗̂ E)m2 (Z1 ⊗̂ E)m2 0

// // // //

// //

α1

OO

//

β1

OO

//

γ1

OO

// //

α2

OO

//

β2

OO

//

γ2

OO

// //

α3

OO

//

β3

OO

//

γ3

OO

in which the rows arise from tensoring with E and the columns are given by
the respective Koszul resolution K•(z −w,H2 ⊗̂ E), mj =

(
m
j

)
for j = 1, 2.
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In this diagram, all spaces are Fréchet, all maps are continuous linear op-
erators, the rows are exact and the columns form complexes. Because the
isomorphisms

T̂orO1 (Z1, E) ∼= T̂orO2 (Z2, E) ∼= . . . ∼= T̂orOn (C, E)

are topological and T̂orOn (C, E) is separated, we see that T̂orO1 (Z1, E) =
Ker(γ1)/ Im(γ2) is separated and hence

Im(γ2) is closed.

By D0 ⊥O E we find that

Im(β1) is closed and Ker(β1) = Im(β2),

and, finally, T̂orO2 (Z1, E) = 0 implies

Ker(γ2) = Im(γ3).

Now, Lemma 3.2 shows that Im(α1) is closed and this is equivalent to the
fact that H2 ⊗̂O E = (H2 ⊗̂ E)/ Im(α1) is a Hausdorff locally convex space.
This proves Theorem 3.3.

Since property (β)E implies property (β), we have the following corollary.

Corollary 3.4. Let Ω ⊆ C
n, n ≥ 2, be a bounded pseudoconvex domain

with smooth boundary. Then the Hilbert O(Cn)-module H2(bΩ) is quasi-

coherent.

Let Ω ⊆ C
n, n ≥ 2, be a bounded strictly pseudoconvex domain with

smooth boundary bΩ, and let F denote the associated quasi-coherent sheaf
of H2(bΩ). Then we have the following description of F :

Let r be a smooth strictly plurisubharmonic defining function for Ω,
defined on an open neighborhood U of Ω, i.e.

Ω = {z ∈ U : r(z) < 0} and bΩ = {z ∈ U : r(z) = 0}.

Then, for a sufficiently small ε0 > 0 and 0 < ε < ε0, the set

Ωε = {z ∈ U : r(z) < −ε}

is again a bounded strictly pseudoconvex domain with smooth boundary

bΩε = {z ∈ U : r(z) = −ε},

and it approximates Ω from inside.
Because the maximal ideal space of the Banach algebra A(Ω) = O(Ω)∩

C(Ω) coincides with Ω, we have the identity σ(Mz,H
2(bΩ)) = Ω for the

Taylor spectrum of the multiplication tuple Mz on H2(bΩ) (see for in-
stance [18]). F is the sheaf model of Mz and has therefore the support
σ(Mz ,H

2(bΩ)). This shows that F|Cn\Ω̄ = 0. The global section space

F(Cn) = H2(bΩ) consists of analytic functions in Ω with certain growth
conditions at the boundary. Therefore it is clear that F|Ω = OCn |Ω; this
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identity can be proved formally by using known techniques of Fredholm
theory for several commuting operators (compare with [7], Section 4.3). It
remains to describe the stalk FP of the sheaf F at a point P ∈ bΩ.

According to the general theory of Fréchet soft analytic sheaves, pre-
sented in [7], Section 4.4, it is clear how to localize the Hilbert E(Cn)-
modules D0,D1, . . . ,Dn−1. More exactly, if Dj denotes the quasi-coherent
sheaf which localizes Dj , then u ∈ Dj

P if and only if there is an open neigh-
borhood U in bΩ of the point P and a test function ϕ ∈ D(U) with the
property that ϕ · u ∈ Dj and ϕ = 1 in a neighborhood of P . Since the
localization functor is exact, we obtain

FP = Ker(∂b : D0
P → D1

P ).

In order to describe this kernel we observe that an element u ∈ D0
P satisfies

∂bu = 0 and can therefore be extended locally to an analytic function f inside
Ω. For this, let U be an open neighborhood of P in C

n such that u is defined
on U ∩ bΩ and it extends analytically to U ∩Ω (for details see [9], Theorem
4.3). Let Ω′ be a strictly pseudoconvex domain with smooth boundary such
that Ω′ ⊂ Ω ∩ U and bΩ′ ∩ bΩ contains an open neighborhood of P in bΩ.
Let r′ be a smooth strictly plurisubharmonic defining function for Ω′; we
can assume that r = r′ in a neighborhood B of P in C

n. According to (2.3)
we have

sup
εց0

\
r′(z)=−ε

|f(z)|2 dσ′
ε(z) < ∞.

In particular, this yields

(3.1) sup
εց0

\
z∈B

r(z)=−ε

|f(z)|2 dσε(z) < ∞.

Conversely, if an analytic function f ∈ O(U ∩Ω) satisfies condition (3.1) for
an open neighborhood B of the point P ∈ bΩ, then the preceding argument
can be reversed with minor modifications, and we obtain as boundary values
of f an element u ∈ D0

P such that ∂bu = 0 and u extends analytically to f
in a neighborhood of P ∈ bΩ.

In conclusion we obtain the following description of the sheaf F at a
boundary point P ∈ bΩ:

FP =
{

f ∈ O(Bf ∩ Ω) : Bf open neighborhood of P in C
n,

sup
εց0

\
z∈Bf

r(z)=−ε

|f(z)|2 dσε(z) < ∞
}

.

This result is in accord with the similar description of the sheaf which lo-
calizes the Bergman space of a pseudoconvex domain; cf. [7], Chapter 8.
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4. Applications. In this last section of the present paper, we collect
some applications of the theory developed in the first three sections. All of
them are derived analogously to the Bergman case, treated in Chapter 8 of
[7]. We only sketch the ideas and proofs, a complete and precise treatment
will be given in the second author’s Ph.D. thesis.

4.1. Tuples Tf with f ′ ∈ H∞ have property (β). As a first application
we show that the tuple of multiplication operators on H2(bΩ) with symbols
in a certain class of functions has property (β).

If Ω ⊆ C
n is a bounded open set, we denote the Banach algebra of

bounded holomorphic functions on Ω by H∞(Ω). The space

H∞
1 (Ω) := {f ∈ H∞(Ω) :

all partial derivatives of f are bounded on Ω}

is clearly a closed subalgebra of H∞(Ω) and hence a Banach algebra itself.
If Ω is in addition strictly pseudoconvex with smooth boundary bΩ, then
every f ∈ H∞(Ω) has non-tangential boundary limit at almost every point

of bΩ, and the limit function f̃ belongs to L∞(bΩ). Then the Hardy space
H2(bΩ) is a Hilbert H∞(Ω)-module. Further, the spaces Dq (0 ≤ q ≤ n−1)
and C in the resolution (2.2) are Hilbert H∞

1 (Ω)-modules, as one can prove
directly from the definitions.

We denote the commuting tuple of multiplication operators on H2(bΩ)
with f = (f1, . . . , fm) ∈ (H∞(Ω))m by Tf = (Tf1

, . . . , Tfm
). If we restrict

the symbol f to the subalgebra H∞
1 (Ω), we have the following result.

Theorem 4.1. Let Ω ⊆ C
n, n ≥ 2, be a bounded strictly pseudoconvex

domain with smooth boundary. If m ≤ n and f ∈ (H∞
1 (Ω))m, the commut-

ing tuple Tf on H2(bΩ) has property (β).

P r o o f. We consider the pull-back map

f∗ : O(Cm) → H∞
1 (Ω)

that maps F ∈ O(Cm) onto the function f∗(F ) := F ◦ f in H∞
1 (Ω). Since

f(Ω) ⊆ C
m is bounded, f∗ is well defined and clearly a continuous homo-

morphism of algebras. Therefore, every Banach H∞
1 (Ω)-module X becomes

a Banach O(Cm)-module with the module structure determined by f∗, i.e.

O(Cm) × X → X, (F, x) 7→ f∗(F )x.

It is easy to check that the module structure determined by f∗ on X coin-
cides with the module structure on X determined by the tuple Tf ∈ (L(X))m

of multiplication operators (cf. Section 2.2). Clearly, every H∞
1 (Ω)-module

homomorphism becomes an O(Cn)-module homomorphism. Thus, the tu-
ple Tf has property (β) if and only if X, equipped with the O(Cm)-module
structure determined by f∗, is quasi-coherent.
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Because (2.2) is an exact sequence in the category of Hilbert H∞
1 (Ω)-

modules, we obtain the exact sequence

(4.1) 0 → H2(bΩ) →֒ D0 ∂b→ D1 ∂b→ . . .
∂b→ Dn−1 → C → 0

of Hilbert O(Cm)-modules. In this resolution, the spaces Dq (0 ≤ q ≤ n−1)
are soft, because f induces in a similar way an E(Cm)-module structure on
each Dq. Therefore, if m = n, the O(Cm)-module H2(bΩ) is quasi-coherent
by Corollary 4.4.5 in [7]. If m < n, we cut the resolution (4.1) to the right
length, i.e. we consider the exact sequence

0 → H2(bΩ) →֒ D0 ∂b→ D1 ∂b→ . . .
∂b→ Dm−1 → Dm/ Im(∂b) → 0,

and apply the same corollary to this resolution. This proves Theorem 4.1.

4.2. Quasi-similarity of tuples Tf as in 4.1. We recall that two bounded
linear operators T and S acting on the Banach spaces X and Y are called
quasi-similar if there are two injective bounded linear operators with dense
range A : X → Y and B : Y → X such that AT = SA and BS = TB. In the
last two decades, it was proved by different methods that this equivalence
relation preserves the various spectra of certain classes of operators.

A unifying approach to these phenomena, which at the same time allows
for the generalization to commuting tuples of operators, is based on the
observation that a large part of the concrete classes of operators can be
characterized by Bishop’s property (β).

We cite the following theorem from [13].

Theorem 4.2. Let T = (T1, . . . , Tm) and S = (S1, . . . , Sm) denote two

commuting m-tuples of bounded linear operators acting on the Banach spaces

X, Y , respectively. Assume that there exist bounded linear operators with

dense range A : X → Y and B : Y → X such that ATj = SjA and

BSj = TjB for j = 1, . . . ,m. If both tuples T and S have Bishop’s property

(β), then their Taylor and essential Taylor spectra coincide:

σ(T,X) = σ(S, Y ) and σess(T,X) = σess(S, Y ).

Since the operators A and B in Theorem 4.2 are not required to be
injective, this theorem holds under a slightly weaker condition than the
quasi-similarity. However, for most applications the quasi-similarity relation
is important.

As in the Bergman case, we immediately obtain the next corollary.

Corollary 4.3. Let Ω ⊆ C
n and Ω′ ⊆ C

n′

, n, n′ ≥ 2, be two bounded

strictly pseudoconvex domains with smooth boundaries, and let f = (f1, . . .
. . . , fm) and g = (g1, . . . , gm), m ≤ min(n, n′), be two tuples in H∞

1 (Ω),
H∞

1 (Ω′), respectively. If the tuples Tf = (Tf1
, . . . , Tfm

) and Tg =
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(Tg1
, . . . , Tgm

), acting on the Hardy spaces H2(bΩ), H2(bΩ′), respectively ,
are quasi-similar , then

σ(Tf ,H2(bΩ)) = σ(Tg,H
2(bΩ′))

and

σess(Tf ,H2(bΩ)) = σess(Tg,H
2(bΩ′)).

4.3. Finite-codimensional invariant subspaces. Let Ω ⊆ C
n, n ≥ 2, be

a bounded strictly pseudoconvex domain with smooth boundary. A sub-
space S ⊆ H2(bΩ) is called analytically invariant if it is invariant under all
Toeplitz operators with symbols in H∞(Ω), i.e.

f · S := {fu : u ∈ S} ⊆ S for all f ∈ H∞(Ω).

There are two natural examples of analytically invariant subspaces of
H2(bΩ). First, we consider spaces of the form

I · H2(bΩ) := cl span{ϕu : ϕ ∈ I, u ∈ H2(bΩ)}

for an ideal I ⊆ O(Ω). Here cl span S denotes the closed linear span of the
set S.

The second class of analytically invariant subspaces consists of spaces of
the form

S(V ) := {u ∈ H2(bΩ) : u|V = 0},

where V is a closed subset of Ω. Clearly, I ·H2(bΩ) and S(V ) are invariant
under multiplication with f ∈ H∞(Ω).

We show in this section that every analytically invariant subspace of
finite codimension in H2(bΩ) belongs to the first class; more precisely, we
have the following theorem.

Theorem 4.4. Let Ω ⊆ C
n, n ≥ 2, be a bounded strictly pseudoconvex

domain with smooth boundary. If S ⊆ H2(bΩ) is an analytically invariant

subspace of finite codimension, then there are polynomials P1, . . . , Pm (in
z1, . . . , zn) with only finitely many zeroes inside Ω such that

S =

m∑

j=1

Pj · H
2(bΩ).

Thus, S = I ·H2(bΩ), where I is the ideal in O(Ω) generated by P1, . . . , Pm.

P r o o f. We consider the quotient space Q := H2(bΩ)/S. Then Q is a
Fréchet O(Cn)-module of finite dimension, and has therefore a finite sup-
port that is contained in Ω. Moreover, it can be shown that the support is
contained in Ω.

By Corollary 3.4, the Hilbert O(Cn)-module H2(bΩ) is quasi-coherent,
and the same is true for the Fréchet O(Cn)-module Q. Let F and Q denote
their associated quasi-coherent sheaves. A detailed description of the sheaf
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F was given at the end of Section 3. Since supp(Q) is finite, Hilbert’s Syzyzy
Theorem yields a global finite resolution

0 → Omr

Cn → . . . → Om1

Cn → OCn → Q → 0

in which the boundaries are induced by polynomials P1, . . . , Pm. Because
supp(Q) ⊆ Ω and F|Ω = OCn |Ω , we can obtain a new exact sequence by
tensoring this complex with ⊗̂OCn F :

0 → Fmr → . . . → Fm1 → F → Q → 0.

Both sheaves F and Q are acyclic on C
n, and hence the corresponding

sequence of global sections

0 → H2(bΩ)mr → . . . → H2(bΩ)m1 → H2(bΩ) → Q → 0

remains exact. This shows that S is the image of the last differential in this
complex, which is of the desired type. This proves Theorem 4.4.

Theorem 4.4 connects the finite-codimensional analytically invariant sub-
spaces of H2(bΩ) with a certain class of polynomial ideals I ⊂ C[z1, . . . , zn].
This can be used to classify these invariant subspaces modulo isomorphisms
of topological O(Cn)-modules.

If V ⊆ Ω is closed and we denote by I(V ) the closed ideal of functions
in O(Ω) that vanish on V ,

I(V ) := {f ∈ O(Ω) : f |V = 0},

then I(V ) ·H2(bΩ) ⊆ S(V ). Another question that could be treated in this
context is under what conditions these two spaces coincide.

4.4. Rigidity of Hardy submodules. The classification of all analytically
invariant subspaces of the Hardy space of a domain in several complex vari-
ables is far from being as simple and as well understood as the classification
given by Beurling’s theorem in the case of the unit disc. An important se-
ries of results in this unknown territory was recently obtained by Ronald G.
Douglas and his school; see [4] and [5]. By exploiting our main result (the
quasi-coherence of the Hardy space) and some classical algebraic facts, we
obtain below a rigidity theorem which complements similar results from [4]
and [5]. In the sequel we closely follow the proof of Theorem 8.4.2 in [7]
(which is the same result for the Bergman space). Consequently, we skip
some technical details and a (more than necessary) preparation.

Let Ω ⊆ C
n be a bounded strictly pseudoconvex domain with smooth

boundary. Let J ⊆ OΩ be a coherent sheaf of ideals which satisfies the
following two conditions:

(i) O(Ω)/J (Ω) ⊥O(Ω) H2(bΩ),

(ii) J (Ω) · H2(bΩ) = {f ∈ H2(bΩ) : f |Ω ∈ J (Ω)}.
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The sheaf O/J is called in that case privileged with respect to the Hardy
space H2(bΩ)—a notion introduced and studied in analytic geometry by
A. Douady; see [3].

If the ideal J ⊆ OΩ satisfies conditions (i) and (ii), then we infer via
known results of analytic geometry (the structure of coherent sheaves and
Hilbert’s Syzygy Theorem) that there is a finite exact complex (of O(Ω)-
modules) of the form

0 → H2(bΩ) → . . . → H2(bΩ)p0 → H2(bΩ)
res
→ O(Ω)/J (Ω) → 0.

See for details [7], §8.4.

Theorem 4.5. Let Ω ⊆ C
n, n ≥ 2, be a bounded strictly pseudoconvex

domain with smooth boundary and let J1,J2 ⊆ OΩ be two coherent ideals

satisfying conditions (i) and (ii). Suppose that maxj=1,2(dimC suppOΩ/Jj)

≤ n − 2. Then the (closed) analytic subspaces J1(Ω) · H2(bΩ) and J2(Ω) ·
H2(bΩ) are isomorphic as topological O(Cn)-modules if and only if J1 = J2.

P r o o f. The condition in the statement and the preceding resolution
show that the analytic modules Jj(Ω)·H2(bΩ) (j = 1, 2) are quasi-coherent.
Let Fj (j = 1, 2) be the corresponding Fréchet analytic sheaves. Since the
localization of H2(bΩ) coincides with the sheaf of analytic functions for
points λ ∈ Ω, we obtain Fj,λ = Jj,λ (j = 1, 2; λ∈Ω). Therefore J1,λ

∼= J2,λ

(as Oλ-modules) for all λ ∈ Ω. The support condition then implies (via a
non-trivial algebraic result of Grothendieck) that J1,λ = J2,λ for all λ ∈ Ω
(see for details [7], Lemma 8.3.3, or [5]).

In conclusion, J1(Ω) = J2(Ω); but condition (ii) implies that J1(Ω) ·
H2(bΩ) = J2(Ω) · H2(bΩ) and the proof is complete.
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